Scientific and Techincal Computing

Introduction to Linux shell environment.

Elliot S. Menkah, Ph.D.

National Institute for Mathematical Sciences, Ghana. Kwame Nkrumah University of Science and Technology, Ghana. ICTP, Trieste.

October 25, 2022

- Using computers to analyze and solve problems
 - Eg. Automating daunting and repetitive task such as huge-size matrix vector operations.
- It allows the study of mathematical models of physical phenomena.
- It is used to find optimal system parameters.
- Experimentalists use computers to control experiments and to gather relevant data.

- Using computers to analyze and solve problems
 - Eg. Automating daunting and repetitive task such as huge-size matrix vector operations.
- It allows the study of mathematical models of physical phenomena.
- It is used to find optimal system parameters.
- Experimentalists use computers to control experiments and to gather relevant data.

- Using computers to analyze and solve problems
 - Eg. Automating daunting and repetitive task such as huge-size matrix vector operations.
- It allows the study of mathematical models of physical phenomena.
- It is used to find optimal system parameters.
- Experimentalists use computers to control experiments and to gather relevant data.

- Using computers to analyze and solve problems
 - Eg. Automating daunting and repetitive task such as huge-size matrix vector operations.
- It allows the study of mathematical models of physical phenomena.
- It is used to find optimal system parameters.
- Experimentalists use computers to control experiments and to gather relevant data.

Linux Command Line - Outline

- File system
 - Linux File system
- Basic Operations
 - Basic Commands
 - File operations
 - User Environment
 - Access Control
 - Process Management
 - Network Management
- Text Editor
 - Vim

- Shell Tools & Programs
 - Shell Program
- Shell Programming
 - Bash Scripting
 - Variables
 - Statements
 - Conditionals
 - Control Sequence / Loops
 - Functions
- Regular Expressions
 - Regular Expression

Linux Command Line - File system

- Filesystem Types: ext2, ext3, ext4, reiserfs, vfat, xfs, nfs
- Devices: Block devices, Loop devices
- Block Devices:
- inodes
- FHS: Filesystem Hierarchy Standard
- NFS: Network File System

Linux Command Line - Linux Directory Structure

Linux Command Line - Basic Operations

- Basic Operations
 - Basic Commands
 - File operations
 - User Environment
 - Access Control
 - Process Management
 - Network Management

Linux Command Line - Basic Commands

Is: list files

pwd: present working directory

cd: change directory

cat: list file content

alias: remap a command

date: check or set date/time

uname: OS info. version and architecture

Linux Command Line - Basic Commands

- **pwd:** present working directory

- Is: list files/directories

Is: list files

~ \$ ls

pwd: present working directory

~ \$ pwd

cd: change directory
cd <directory-name>

~ \$ cd Desktop

Navigate one step(directory) back cd ..

~ \$ cd ..

- **cd:** change directory

ls

- Desktop Pictures
- 2 Documents Downloads

pwd

1 /home/elliott

pwd

/home/elliott/Desktop

pwd

/home/elliott

Linux Command Line - Basic Commands

touch: create new files

mkdir: create new directory

cp: cp files & directories

mv: relocate/move file & directories

rm: delete files & directories

Linux Command Line - Basic Commands ...

- touch: create a new file
 - mkdir: create a new directory
- Create a new file
- touch <filename>
- ~ \$ touch file1
- 2 ~ \$ touch file2

Create a new directory mkdir <directoryname>

Eg. To create two directories called dir1 and dir2

- ~ \$ mkdir dir1
- ~ \$ mkdir dir2 dir4 dir5

Copy a file from a particular location to another cp <file-to-be-copied> <new-destination> Eg. Copy file1 to directory called dir1

1 ~ \$ cp file1 dir1

Copy a directory from a particular location to another Copying is done **recursively**. [-r] cp -r <directory-to-be-copied> <new-destination> Eg. Copy *file1* to directory called **dir1**

- cp: copy files & directories

Linux Command Line - Basic Commands ...

 mv: move/relocate/rename or a file/directory Move/Relocate a file/directory to a new location mv <file-to-be-moved> <new-destination>
 Eg. To place file2 into dir2

```
~ $ mv file2 dir2
```

<file-to-be-moved> and <new-destination> are actually paths.

Linux allows relative paths

Technically, the syntax below shows how it absolute paths works with mv

1 ~ \$ mv /home/elliott/file2 /home/elliott/dir2

Rename a file

mv < file-to-be-renamed > < new-name >

Eg. To rename file1 into file3

~ \$ mv file1 file3

Rename a directory

mv <directory-to-be-renamed> <new-name>

Eg. To rename dir1 into dir3

~ \$ mv dir1 dir3

Linux Command Line - Process Management

ps:: list processes

kill: kill processes

top: monitor processes

fuser: find process owner

Linux Command Line - User Environment

env: command to view user environment

export: command to add to user environment

bashrc: file to store user environment settings

profile: file for global user environment settings. /etc/profile

tilde: reference to current user

Linux Command Line - Basic Commands ...

End of Basic Commands, thank you ...

End of talk

Thank you ...