

Beamline design

Matteo Altissimo Elettra Sincrotrone Trieste SCpA S.S. 14, km163.5, Basovizza (TS)

Email: matteo.altissimo@elettra.eu

School on Synchrotron Light Sources and their Applications

Goal of beamline design

Design a photon transport system connecting the light source to the experimental station within a set of specific parameters:

- Photon flux
- Photon energy
- Photon energy bandwidth
- Photon beam spatial size
- . . .

Beamline design process

Tools available

- Physical side: Photons' interactions with matter
 - Refraction
 - Reflection
 - Diffraction
- Design side: Simulators
 - Ray tracers
 - Wave optics
 - Finite Elements

Quick word about simulators

C. Welnak, P. Anderson, M. Khan, S. Singh, and F. Cerrina, "Recent developments in SHADOW," *Review of Scientific Instruments*, vol. 63, p. 865, 1992. O. Chubar, P. E. P. O. T. E. Conference, 1998, "Accurate and efficient computation of synchrotron radiation in the near field region," *accelconf.web.cern.ch* L. Rebuffi, M. Sanchez del Rio, "OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual xperiments", Proc. SPIE 10388,

103880S (2017) . DOI: 10.1117/12.2274263

L. Rebuffi, M. Sanchez del Rio, "ShadowOui: A new visual environment for X-ray optics and synchrotron beamline simulations", J. Synchrotron Rad. 23 (2016). DOI:10.1107/S1600577516013837

A quick recap

just to set the scene...

School on Synchrotron Light Sources and their Applications

Handles available for "manipulating" x-ray photons

Usage

.

4.5

.

Diffraction
$$2d \cdot sin\theta = m\lambda$$
 $d \cong \lambda$ Monochromatization
Focussing

Reflection
$$sin\phi' = \frac{sin\phi}{n} \cong \frac{sin\phi}{1-\delta} = \frac{\theta_C \approx \sqrt{2\delta}}{\theta_C \approx 81\sqrt{\delta}} (rad)$$
 Transport
 $\theta_C \approx 81\sqrt{\delta} (degrees)$ Transport
Divergence corrections
Focussing
Basic energy filtering

Retraction

n = 1 - 0 + ip

 $\beta = 10^{-1} \div 10^{-8}$

Focussing

Synchrotron beam emitted by source

 γ = 1957 E_e[GeV]

A couple of undulator simulations $E_e=2.4$ GeV, N = 17, period = 56mm, first harmonic only

It's even more complicated...

E_e =2.4GeV, N = 17, period = 56mm

So what am I going to talk about??

- Mirrors for X-rays
- Basics of diffracting elements
- Monochromators for X-rays
- The thermal load issue

Mirrors for x-rays

Transport Divergence corrections Focussing Basic energy filtering

Mirror figures used in synchrotron beamlines

		Some numbers
Plane	Re-direction/filtering	R>100km
Cylindrical	1D focusing	R~ 100's m
Spherical	2D focusing	R~ 100's m
Paraboloid	Infinity to point (or viceversa)	a ~ cm, f ~ m
Elliptical	Point to point focusing	r>>r`
Toroidal	Astigmatic focusing	R ~ 100m, ρ ~ 10's cm

All this with an rms roughness ~ nm or less

A quick look at reflectivities

 $\theta_c = \sqrt{2\delta} \propto \lambda \sqrt{Z}$

The higher the energy, the more grazing the incidence angle $(1 \text{ mrad} = 0.057^{\circ}, 1^{\circ} = 17 \text{ mrad})$

Source for examples

Spatial Dimensions:

$$\sigma_x = 48\mu m$$
 $\sigma_z = 1.3\mu m$

FWHM (X)=105 μm FWHM(Z)=3 μm

Angular dimensions:

$$\sigma_x' = 3.8 \mu rad$$
 $\sigma_z' = 1.82 \mu rad$

FWHM (X')=8.6 μ rad FWHM(Z')=4.2 μ rad

Plane mirror, r = 20 m, r' = 20 m, $\theta = 88^{\circ}$

₩₩₩₩₩(₩))=3250mm FWHM(**X**)=12340μm

FWHM (X')=8.6 μ rad FWHM(Z')=4.2 μ rad

Toroidal mirror: focussing properties

Condition for a stigmatic image of a point source:

$$\frac{\rho}{R} = \cos^2\theta$$

Toroidal mirror, r = 20 m, r' = 10 m, $\theta = 88^{\circ}$

$$R = \left(\left(\frac{1}{r} + \frac{1}{r'}\right) \frac{\cos\theta}{2} \right)^{-1} = 382 \text{ m} \quad \rho = \left(\left(\frac{1}{r} + \frac{1}{r'}\right) \frac{1}{2\cos\theta} \right)^{-1} = 0.46 \text{ m}$$
$$f_t = \frac{R \cdot \cos\theta}{2} = 6.6 \text{ m} \qquad f_s = \frac{\rho}{2\cos\theta} = 6.6 \text{ m}$$

M. Altissimo, 7th December 2021

School on Synchrotron Light Sources and their Applications

Spherical mirrors

Same as toroidal mirrors with:

$$\frac{R = \rho}{\left(\frac{1}{r} + \frac{1}{r'}\right)\frac{\cos\theta}{2}} = \frac{1}{R} \qquad \left(\frac{1}{r} + \frac{1}{r'}\right)\frac{1}{2\cos\theta} = \frac{1}{R} \qquad f_t = \frac{R \cdot \cos\theta}{2}$$
$$f_s = \frac{R}{2\cos\theta}$$

A stigmatic image is only possible if:

$$\frac{\rho}{R} = \cos^2\theta = 1$$

i.e. this is possible only for normal incidence!

ISO 9001 OHSAS 18001 BUREAU VERITAS Certification

Paraboloidal mirror, r = 20 m, r' = 20 m, $\theta = 88^{\circ}$

Parabola parameter $a = fcos^2\theta = 0.02435m$

Paraboloidal Mirror image Source image @ 20 mt Χ, Ζ Χ, Ζ 150 150 100 100 50 50 [μη] z [mµ] Z 0 0 -50 -50 -100 -100-150 -150100 -100 0 -200 200 -100100 0 X [μm] X [µm] FWHM (X)=260 µm FWHM(Z)=864µpm FWHM (X)=172 µm FWHM(Z)=83 µm FWHM (X')=8.6 μ rad FWHM(Z')=4.2 μ rad FWHM (X')=5.2 μ rad FWHM(Z')=0.1 μ rad

ISO 9001 OHSAS 18001 BUREAU VERITAS

Ellipsoidal mirror

Ellipsoidal mirror, r = 20 m, r' = 5 m, $\theta = 88^{\circ}$

a = 12.5 m, b = 0.349 m, e=0.999610

Our source dimensions are: FWHM (X)=105 µm FWHM(Z)=3 µm

WARNING!

All the simulations above are for educational purposes!

- Reflectivity set to 1, and independent of energy
- Ideal source
- No mirror errors (roughness, figure errors, etc)

http://www.esrf.eu/home/UsersAndScience/Experiments/ CBS/ID09/OpticsHutch/mirror.html

http://www.crystal-scientific.com/ mirror_plano.html R. Radhakirshnan et al, DOI 10.1149/07711.1255ecst

M. Altissimo, 7th December 2021

Diffracting elements

Gratings Crystals Multilayers Zone Plates

Monochromatization Focussing

School on Synchrotron Light Sources and their Applications

Usage: Overwhelmingly for monochromatization

School on Synchrotron Light Sources and their Applications

Diffraction gratings

Artificial periodic structure, with a precisely defined period d.

 α and β have opposite signs if on opposite side of the surface normal

Grating resolving power

Angular dispersion of a grating with line density L: $\Delta \lambda = \frac{s' cos \beta}{Lmr'}$

Resolving power R: $R = \frac{E}{\Delta E} = \frac{\lambda}{\Delta \lambda} = \frac{\lambda Lmr'}{s' cos \beta}$

Based on Bragg's law: $2dsin\theta = m\lambda$

Since $sin\theta \leq 1$, $\lambda \leq \lambda_{MAX}$ ($E \geq E_{MIN}$) =2d

Si(111): d=3.13 Å (E_{MIN}~2keV) Si(311): d=1.64 Å (E_{MIN}~3.8keV) InSb(111): d=3.74 Å (E_{MIN}~1.7keV)

Where does $\Delta \theta$ come from?

 $\Delta \theta_{beam}$ Angular divergence of the incoming beam *

$\omega_{crystal}$

Intrinsinc width of Bragg reflection, the Darwin curve

* more on this later...

D. Attwood, X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press, 2017

School on Synchrotron Light Sources and their Applications

Multi-layer mirrors

What if $n_a(z)$ is still periodic, but not a simple s

M. Altissimo, 7th December 2021

d?

Multi-layer mirrors

Monochromator

School on Synchrotron Light Sources and their Applications

The need for collimated illumination

Crystals Energy resolution:

Gratings

 $\frac{\Delta E}{E} = \frac{\Delta \lambda}{\lambda} = \frac{\cos\beta}{\lambda Lmr'} \Delta\beta$

Undulator

5th Harmonic (~1 keV) ΔE =500eV

Collimating mirror before monochromator

Mirror calculated setting virtual source distance (r) very far (~100s m) *

* more on this later...

Double Crystal monochromator

Second crystal acts merely as a mirror

Plane grating monochromator

H. Petersen. O. Communication, vol. 40, no. 6. 1982, pp. 402–406.

Plane grating monochromator

Something to keep in mind: thermal loads!

From first mono element standpoint: kW in, NOTHING out!

Thermal load issues (besides melting)

Q is the incoming power, D the mirror/crystal thickness

 $H = \alpha \left(\frac{QD^2}{2k} + \frac{QD}{h} \right)$

For H₂O - cooled Si: $\alpha = 4.2 \ 10^{-6} \ ^{\circ}C^{-1}$ $k = 1.2 \ W/cm \ ^{\circ}C$ $h = 1 \ W/cm^{2}$

Smither, Nucl. Instr. Meth. in Phys. Res. A291 (1990)

Silicon vs Copper Thermal conductivity

M White et al 2014 Metrologia 51 S245

School on Synchrotron Light Sources and their Applications

... finally a couple of examples

School on Synchrotron Light Sources and their Applications

TwinMic Beamline @ Elettra

Photon energy: 400eV to 2 keV X-ray microscopy and microFluorescence

Diffraction Beamline @ Elettra

Photon energy: 4 to 21 keV

Thank you!

