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How did you dial into this presentation?

a. Computer

b. Smart phone




a. Computer
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Importance of mineral commaodities to society
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Synchrotron light and ore deposits
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Energy tuneability
Excellent spatial resolutions
Sub-ppm concentration
detection limits.

Chemical insights into the
molecular-level bonding

environments.




Based on three fundamental properties:

X-ray imaging:
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X-ray scattering:

X-ray spectroscopy:

Optical view
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Based on three fundamental properties:

X-ray imaging:

Mil

e.g.;

STXM: Scanning
Transmission X-ray
Microscopy

PEEM: Photoelectron
Emission Microscopy

XFM: X-ray fluorescence
microscopy

XCT: X-ray Computed
Tomography

X-ray scattering:

Intensity (counts)

N

P B N
e-gl;

M-XRD: p-X-ray
Diffraction

RIXS: Resonant
Inelastic X-ray
Scattering

SAXS: Small Angle X-
ray Scattering

s

X-ray spectroscopy:

Normalized absorbance

11910 1

e.g.;

XANES: X-ray Absorption s, s
Near-Edge Structure w505 D

OH, pH 6-8

H, pH 6.0

EXAFS: Extended X-ray
Absorption Fine Structure

XES: X-ray Emission
Spectroscopy

S
M-XRF: p-X-ray

Fluorescence

Images from various published literature sources. Subject to copyright.




Synchrotron light and ore deposits

e.g.;

STXM: Scanning
Transmission X-ray
Microscopy

PEEM: Photoelectron
Emission Microscopy

XFM: X-ray fluorescence
microscopy

XCT: X-ray Computed
Tomography

Intensity (counts)

PR

e.g.;

H-XRD: p-X-ray
Diffraction

RIXS: Resonant
Inelastic X-ray
Scattering

SAXS: Small Angle X-
ray Scattering

Normalized absorbance

-
ry
0
=
o
-

SN

e.g.;

XANES: X-ray Absorption
Near-Edge Structure

EXAFS: Extended X-ray
Absorption Fine Structure

XES: X-ray Emission
Spectroscopy

u-XRF: p-X-ray
Fluorescence




Synchrotron light and ore deposits

. Ore-related research studies
utilising synchrotron techniques

No. of publications

Legend
[ Geology samples

’ Geochemistry samples
® Paleontology samples




Synchrotron light and ore deposits
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Synchrotron light and ore deposits

ESRF DESY
BM30B, BM23, Beamline L

SRS - decommissioned ;= m——
9.2 93

SSTRC
Elemental analyser

APS
PNC-CAT, 131D,
2-ID-D, 20BM-B

Photon Factory

BL-4A, BL-208
SSRL

Beamlines 11.2, 2.3 3¢° Spring-8
BL37XU

R : = : §  Australian Synchrotron
NSLS - now NSLS2 |§ XFM Beamline, XAS
X26A - - - — . — - 180°E Beamline




Synchrotron light and ore deposits

* Factors to consider in selecting a beamline:

Energy range

* sXRF (mapping) versus XANES/EXAFS
(spectroscopy).

4820 keV
5075 keV
24-27 keV
2310 keV
547 keV

420 keV
5-25 keV
45-113 keV
41-20 keV
5-31 keV
49-23 keV
537 keV
4.3-52keV
5-30 keV
4975 keV
27-35keV

100-300 pm?

9 pm*-13 mm®
0.06-15 mm*
750 pm?-1 mm?
100 pm

25 ym?

001 ym*-15 mm”
510,000 m?




Synchrotrons and beamlines most frequently used in ore geology research:

* Factors to consider in selecting a beamline:

* sXRF (mapping) versus XANES/EXAFS
(spectroscopy).

* Energy range required.
e High spatial resolution for sSXRF mapping.

Campbell et al. 2015



Synchrotrons and beamlines most frequently used in ore geology research:

* Factors to consider in selecting a beamline:

* sXRF (mapping) versus XANES/EXAFS
(spectroscopy).

* Energy range required.
e High spatial resolution for sSXRF mapping.

* Specialized end station equipment:
* High pressure — high temperature cells

__ Bellows for

ceramics

Alumina internal ce

us samples

T // Appled force
F

Incident X-ray beam

Flouresence X-ray
beam to detectors

After Testemale et al. 2005;
Schmidt and Rickers, 2003




Synchrotrons and beamlines most frequently used in ore geology research:

* Factors to consider in selecting a beamline: y
* sXRF (mapping) versus XANES/EXAFS o 13 @mm‘%m
(spectroscopy). o _
* Energy range required.
* High spatial resolution for sXRF mapping.

* Specialized end station equipment:
* High pressure — high temperature cells

e Multi-detector arrays for expedited mapping at um
resolution over large areas.

Distribution of U and Ge in the Pannikan U deposit
(Australia). The full slide (34x17 mm; Li et al., 2016) was
mapped for chemical information at 5 pm pixel resolution
using sXRF at the XFM beamline (Australian Synchrotron)
for a total duration of 315 min.



Major sub-themes of ore geology research studied using synchrotron light:
1. Application to fundamental ore geology research
1.1. Metal solubility and complexation in model hydrothermal fluids

"7l TTTTTTTTTTTTTTT T Neutral fluid: 2.2+0.2 S atoms at 2.29+0.01 A

Illlll
e Understanding mobility and ultimate i 600 bar &
precipitation of ore minerals from ore fluids -
is reliant on full characterization of the (A0

metal-ligand speciation data.

e Conducted in high T-high P cells e.g., 500°C
and 600 bar pressure.

/'l Au-05mS-0.4m NaOH 233
i O-

Acid fluid: 2.2+0.3 S atoms at 2.29+0.01 A

Fourier Transform Magnitude of EXAFS spectrum

* Typically XAFS: redox state, coordination e.9o
number, ligand identity, bond distances, 2zol|
solubility. O

* Scope remains for lessor studied moieties — 0
and for studies in melt systems. T T I I AUH,0)HS®  Au(H;S)HS®  Au(SOpHS"®

Distance, A {1

* polysulfides, thiosulfates [-S-S-Au-S-S-
Pokrovski et al., Geol. Soc. London. Spec. Publ.. (2014) ROEYSVETIEIN; OGN ]




Major sub-themes of ore geology research studied using synchrotron light:

1. Application to fundamental ore geology research

1.2. Empirical investigations of ore fluids using information from fluid inclusions

b

Rankin et al. (1992):
First use of sXRF to
provide qualitative
insight into fluid

Nagaseki (2006):
Synthetic Cu and Zn

Phillipot et al. (2000);
sXRF mapping of U
(and associated
elements] distributions

chemical composition:

Mole Granite Sn-W-Cu-

Pb-Zn mineralisation
(Australia)

within inclusions
Strelsov U deposit
(Russia),

1992 —»

1994
1996

Anderson et al. (1998):
First use of XANES and
EXAFS to determine Zn
complexes from
Knaumuhle Pegmatite
(Germany)

\ Cu porphyry, New Zealand).

1998

\— 2002

:

Menez et al, (2002):

Intercalibration between

sXRF, pPIXE and crush-
leach (Chiveor emerald
field, Columbia).

inclusions developed as

standards for sXRF.

Rapien and Bodnar (2003);
Quantification of Cu and Zn in
melt inclusions (White Island

Cauzid et al. (2007): Helical

fluorescence tomography used to
image vapour and liquid
inclusions (Male Granite

!

2006
2008
2010

2
Cauzid et al. &a\

Development of a Berry et al. (2006):
standardless method Cu XANES collected
for quantifying fluid from synthetic
inclusion chemistry inclusions to predict
(Brusson Au deposit, Cu behavior in
Italy). hydrothermal fluids.

2012

r, polymetallic deposit, Australia).

2014
2016

/

Yao et al. (2015):
sXCT to determine
singe fluid inclusion
volumes
(Qingliangzhaigou Pb—
Zn deposit, China).

Von der Heyden, 2020



Major sub-themes of ore geology research studied using synchrotron light:

1. Application to fundamental ore geology research

1.3. Low-temperature biogeochemical transformations experienced by ore

commodities

* Low temperature systems typically comprise
small particles that are commonly poorly
crystalline.

* XAFS techniques used to understand the
speciation of these phases.

e Common applications include:
* biogenic precipitates,

* surficial ore deposits arising from weathering
reactions

* mineral bi-products and surface complexes
(particularly deleterious ones) resulting from
mining activity.

%7 (a)

Normalized yield
1

Au,S,0,
Au,S
Au Foll
25 mM Au

10 mM Au
5 mMAu

11.85

11.89 11.93 1197 1201 12.05
keV

Shuster et al., Geol. Soc. London. Spec. Publ.. (2013)



Major sub-themes of ore geology research studied using synchrotron light:

1.

Application to fundamental ore geology research :
1.4. Ore deposit formation linked to Earth’s metallogenic evolution |

* Synchrotron techniques well suited to evaluate valence
speciation at high spatial resolution.

* Tracking Mn valence state in the rock record has been used to
infer Min oxidation prior to the Great Oxidation Event (~2.4

* Reaction cells used to track early diagenetic changes to Fe
and Mn mineralogy to provide insights into BIF/bedded Mn
deposit formation.

Johnson et al. (2016)

B AT 5530 6550

IR
; Iy A
Braunite ] 1\ Wi

|
Mn-carbonate |ei|
1

Mn-silicate

A Spectra

_—Rhodochrosite
/

Kutnohorite

_— Braunite

| Cryptomelane
.
~—-5D92.07m

b
—5011.08m

6580 6600
Energy (eV)




Major sub-themes of ore geology research studied using synchrotron light:
2. Application of synchrotron light to applied ore geology research

* sXRF used extensively to show fine-scale spatial and elemental relationships between
ore minerals and gangue.

* XAFS used to show coordination of metals hosted as refractory phases within other
minerals: straddles the fundamental-applied nexus.

Barnes etal. 2016




Perceived future directions:

Fourth generation light sources will enable ore research at
increasingly high spectral resolutions and elemental detection limits.

A. Ore research across higher-order dimensions

e Micro-computed tomography coupled with uXRD, uXRF and uXAS enable
textural and chemical analyses across three dimensions.

* Time resolved measurements will enable kinetic measurements of ore fluid
and mineral reactions.

o
o
o

B. Advances in lesser utilised synchrotron techniques
* Scope for application of pRaman, IR, uXPS and SAXS techniques.
e Correlative approaches

N-content (ppm)

100 /= /

C. Incorporation of synchrotron study techniques at the front end of AR [
geological investigation b 20 40 60 80 ., 20 40 60 8 b
Dobrzhinetskaya et al. | (2006) N-aggregation
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The environmental sciences

Legend
[ Geology samples

’ Geochemistry samples

® Paleontology samples
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* TLS O7A beamline, National Synchrotron Radiation Research
e Centre (NSRRC), Taiwan.

* Au and As are strongly associated. Au mining can be a notable point
source of As release into the environment.

* As toxicity is strongly controlled by its speciation, As(lll) more toxic

than As(V). —

» Scorodite and arsenopyrite are | p —de| g _.‘
the two major forms of Asin | : ”
the spoils, typically associated " ‘
with fine fractions. s ’




* TLS O7A beamline, National Synchrotron Radiation Research
e Centre (NSRRC), Taiwan.

* Au and As are strongly associated. Au mining can be a notable pa
source of As release into the environment.

* As toxicity is strongly controlled by its speciation, As(lll) more ta

than As(V). —
» Scorodite and arsenopyrite are | = _.‘
the two major forms of Asin | : ”
the spoils, typically associated " ‘
with fine fractions. s ’
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Case study 2: Fe L-edge investigations of
marine Fe speciation

CO2 emissions versus CO2 levels

w— Total anthropogenic CO2 emissions
= = = 46% of total emissions
r[V\fV CO2 levels from direct measurements

T <. CO2 levels from ice cores

1
S
8
:
:

Sinks for atmospheric CO, include:

1) Terrestrial plants and soils

2) Marine phytoplankton (the ocean’s
“biological pump”) -




Photosystem I Photosystem |

H+
H4
Cytochrome :
Antenna complex b,-f complex H
Plastocyanin

ATP

Plastoquinone

iy o et

i

- 3% Neme e Ferredoxin
m H* Ferredoxin H* H*
H* NADP reductase H*
Thylakoid Light 1x2Fe-2Scenter
T i rnembranew - H ATP synthase
1x non-heme Fe 1x2Fe-25 protein  3x 4Fe-4S centers 2 Fe = 23-24 atoms
3x heme Fe Sxhams Fe

After Boyd et al., 2007

- Fe is an important trace element needed for the growth of
photosynthetic organisms

- Constituent of the electron transport chain in the thylakoid
membrane of cyanobacteria

- However, in large tracts of the world’s oceans; low Fe
concentrations limit primary productivity

Von der Heyden et al. 2012
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Local coordination:
Fe3* metal centre (goethite)

Fe L, ;-edge probes local
coordination

AeV reflects energies of valence
orbitals

Intensity ratio reflects the
chemical character of the
valence orbitals

Spectral parameters affected by:
- Valence state
- Coordination number
- Coordinating ligands
- Distortion effects
All of which are reflected in a
mineral’s chemistry and
mineralogy!
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valence orbitals

Spectral parameters affected by:
- Valence state
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- Coordinating ligands
- Distortion effects
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Case study 2: Fe L-edge investigations of
marine Fe speciation
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Distribution of Fe mineralogy in
the Southern Ocean reflecting:

High degree of heterogeneity
Magnetite in the Sub-Antarctic
Frontal Zone
Increased prevalence of Fe(ll) in
the high latitudes

- Biological control

- Slower oxidation kinetics

- Fe(ll) sources
Coinciding with greater
chlorophyll
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“Global science continues to evolve towards a paradigm in which molecular-, sub-micrometer-
and micrometer-scale observations are used to add important insights into macro- or even
global-scale processes, synchrotron-based X-ray methodologies will continue to rise in
prominence as a tool to conduct cutting-edge scientific research.”

- sXRF techniques are superior to contemporary techniques for mapping and quantifying elemental
distributions of earth samples

- Synchrotron spectroscopies such as XANES and EXAFS provide unique and detailed molecular-level chemical
information of e.g., element redox state in ore minerals and environmental contaminant moieties (generally
not obtainable by conventional analytical methodologies)

- Techniques have already been successfully applied to Earth Science samples, however, number of studies is
still on the low end of the spectrum.

- Challenge remains to attract a larger synchrotron user base from the Earth Sciences, several disciplines and
communities (notably the African scientific community) are presently under represented.
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