THz Quantum cascade lasers: High performance and last developments

G. Scalari J. Faist

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

Gain medium design: in the THz is challenging

Photon energy smaller than the phonon in the host material

 $h\nu < \hbar\omega_{LO}$

- Emission of optical phonon by thermal electrons (~0.5 ps)
- Absorption of optical phonons (2-5 ps)
- electron-electron scattering (~5-40 ps)
- impurity scattering, interface roughness (~10-30 ps)
- acoustic phonons (~300 ps)
- photons (~10 μ s)

Elastic processes: they thermalize but they do not cool down electron distribution

Mid-IR:

- Optical phonon dominated
- Weak temperature dependence

THz:

- Optical phonon dominated at high T
- Strong temperature dependence

Terahertz semiconductorheterostructure laser

Rüdeger Köhler*, Alessandro Tredicucci*, Fabio Beltram*, Harvey E. Beere†, Edmund H. Linfield†, A. Giles Davies†, David A. Ritchie†, Rita C. lotti‡ & Fausto Rossi‡

Tmax ~ 65 K

Population inversion by phase space engineering

Köhler, Tredicucci et al., NATURE | VOL 417 | 9 MAY 2002 |

The key is the low loss waveguide....

 $\alpha_w = 16 \, cm^{-1} \, \Gamma = 0.42$

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

Surface-plasmon waveguide in the THz

The overlap with the undoped substrate is virtually lossless

Figure of merit Γ/α still good at these frequencies

R. Köhler et al., NATURE | VOL 417 | 9 MAY 2002 | www.nature.com

G. Scalari, TTZ Quantum Cascade Lasers Winter College on Optics, ICTP 2023

Bound-to-continuum: play on the diagonal transition

Far-infrared ($\lambda \approx 87 \ \mu$ m) bound-to-continuum quantum-cascade lasers operating up to 90 K

Giacomo Scalari,^{a)} Lassaad Ajili, and Jérôme Faist^{b)} Institute of Physics, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland

Harvey Beere, Edmund Linfield, and David Ritchie Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

Giles Davies School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

Population inversion: Phase space + diagonal transition

Appl. Phys. Lett., Vol. 82, No. 19, 12 May 2003

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

Γ Broadening of the levels

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

The advent of the double metal waveguide

High confinement factor, intrinsical high reflectivity due to impedance mismatch

Highly patterned far field: subwavelength aperture as a laser facet

ETHzürich Double-metal waveguide: fabrication technology

Unterrainer (2002), then Williams (2003)

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

THz waveguides comparison

J. Ulrich et al., Physica B, 272, 216, (1999).

R. Kohler et al., Nature 417, 156 (2002)

K. Unterrainer et al., Appl. Phys. Lett. **80**, 3060 (2002) B.S. Williams et al., Appl. Phys. Lett. **83**, 2124 (2003)

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

Potential drop per period > optical phonon energy

Unfavorable ratio of lifetimes

Use selective depopulation of lower State by resonant tunneling

Principal design strategies

Lower current densities (no LO phonon),
Lower applied bias
longer lower state lifetime (elastic scattering and tunneling, Tmax 100 K)
So far, lowest frequency demonstrated

R. Kohler et al., Nature 417, 156 (2002)G. Scalari et al., Appl. Phys. Lett. 82, 3165 (2003)Walther et al., Appl. Phys. Lett., 91, 131122 (2007)

- Higher current densities
 Higher applied bias
 shorter lower state lifetime
- •So far, highest Tmax demonstrated

H. Luo et al, Appl. Phys. Lett. 90, 041112 (2007)M.A. Belkin et al., Opt. Express 16, 3242 (2008)S. Kumar et al., Appl. Phys. Lett. 94, 131105 (2009)

High T_{max} with diagonal 3 W

S. Fathololoumi,^{1,3,*} E. Dupont,¹ C.W.I. Chan,² Z.R. Wasilewski,¹ S.R. Laframboise,¹ D. Ban,³ A. Mátyás,⁴ C. Jirauschek,⁴ Q. Hu,² and H. C. Liu^{1,5}

Received 21 Nov 2011; revised 17 Jan 2012; accepted 18 Jan 2012; published 1 Feb 2012 13 February 2012 / Vol. 20, No. 4 / OPTICS EXPRESS 3866

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

Design evolution: progressively reduce the number of wells

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

Two quantum well laser: direct phonon depopulation

GaAs/Al_{0.15} Ga_{0.85}As
220 periods
Lp=34.5 nm

$$n_s \simeq 3 \times 10^{10} \, cm^{-2}$$

 $z_{32} = 28 \, \text{\AA}$
 $E_{32} = 11.4 \, meV$

•Strongly diagonal, enhance upper state lifetime

•No more resonant tunneling for the carrier extraction

F=14 kV/cm

G. Scalari et al. Op. Express 18, 8043 (2010)

140

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

APPLIED PHYSICS LETTERS 112, 021104 (2018)

Two-well quantum cascade laser optimization by non-equilibrium Green's function modelling

M. Franckié, $^{1,a)}$ L. Bosco, 1 M. Beck, 1 C. Bonzon, 1 E. Mavrona, 1 G. Scalari, 1 A. Wacker, 2 and J. Faist 1

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

Thermoelectrically Cooled Laser Box

Laser box size W×L×H = 9×9×5.5 cm³

4-stage thermoelectric cooler ΔT=130 °C

ETHzürich **Cu-Cu waveguides: thermoelectrically cooled THz QCL up to 210 K**

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

Recent results: up to 250 K!!!! (actually 261 K still unpub..) **ETH** zürich

High-power portable terahertz laser systems

Ali Khalatpour¹, Andrew K. Paulsen¹, Chris Deimert⁰², Zbig R. Wasilewski^{02,3,4,5} and Qing Hu⁰¹

Two wells over 10 years evolution.....

Year	2010	2019	2020
Material composition	GaAs/Al _{0.15} Ga _{0.85} As	GaAs/Al _{0.25} Ga _{0.75} As	GaAs/Al _{0.30} Ga _{0.70} As
Tmax pulsed	125 K	210 K	250 K (260)
Waveguide	Au/Au wet etch	Cu/Cu dry etch	Cu/Cu dry etch
E _{ex}	32 meV	41 meV	55 meV

Difficult to use direct phonon depopulation: selective injection is The challenge

APPLIED PHYSICS LETTERS 89, 231121 (2006)

Scalable design (1.2-2THz)

G. Scalari et al, Laser & Photonics reviews, (2009)

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

ETHzürich Marginal population inversion: wide Stark tuning of the gain curve

Current density [A/cm2]

- Strong Stark shift of gain curve, 16% of center frequency
- Lasing on Fabry-Pérot modes of the cavity (1mm x 165µm)

C. Walther et al., Appl. Phys. Lett., 91, 131122, (2007)

Use intra-cavity DFG in 3-15 μ m QCLs to create room-temperature sources in 60-300 μ m (1-5 THz) range

THz QCL source based on intra-cavity DFG

• Dual-frequency mid-infrared QCLs with giant $\chi^{(2)}$

- Coherent THz output at room temperature
- THz output tunable over the entire 1-5 THz range

Belkin lab, UTA

Hzürich

ω

W

$\chi^{(2)} = N_e \frac{e^3}{\hbar^2 \varepsilon_0} \times \frac{z_{12} z_{23} z_{31}}{\left(\omega_{THz} - \omega_{23} + i\Gamma\right)} \left(\frac{1}{\left(\omega_1 - \omega_{13} + i\Gamma\right)} + \frac{1}{\left(\omega_{12} - \omega_2 + i\Gamma\right)}\right)$

Laser action instead of absorption!

. . .

Active region design

$\chi(2)$ -section design

Performance (1mm-long, 35µm-wide device)

Vijayraghavan et al., Appl. Phys. Lett. **100**, 251104 (2012), higher power from Northwestern University, Lu et al., Appl. Phys. Lett. **101**, 251121 (2012)

External cavity: tunable source

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3021

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

High power THZ QCLs

(b)

APPLIED PHYSICS LETTERS 103, 171113 (2013)

High power terahertz quantum cascade lasers with symmetric wafer bonded active regions

Martin Brandstetter,^{1,a)} Christoph Deutsch,¹ Michael Krall,¹ Hermann Detz,² Donald C. MacFarland,² Tobias Zederbauer,² Aaron M. Andrews,² Werner Schrenk,² Gottfried Strasser,² and Karl Unterrainer¹

ntum Cascade Lasers Winter Colle

Multi-Watt high-power THz frequency quantum cascade lasers

L.H. Li⁵⁰, L. Chen, J.R. Freeman, M. Salih, P. Dean, A.G. Davies and E.H. Linfield

Multi-Watt high-power terahertz (THz) frequency quantum cascade lasers are demonstrated, based on a single, epitaxially grown, 24-µm-thick active region embedded into a surface-plasmon waveguide. The devices emit in pulsed mode at a frequency of -4.4 THz and have a maximum operating temperature of 132 K. The maximum measurable emitted powers from a single facet are -2.4 W at 10 K and -1.8 W at 77 K, with no correction being made for the optical collection efficiency of the apparatus, or absorption by the cryostat polyethylene window.

ELECTRONICS LETTERS 8th June 2017 Vol. 53 No. 12 pp. 799–800

Towards more directional emission

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

Applications like integrated solutions

Edge emission

DFB 3rd order

M. Amanti Nat. Phot. (2009)

Plasmonic collimator N. Yu, Nat. Mater. (2010)

Surface emission

Chassagneux, Nature (2009) Sevin APL (2010)

Photonic Crystals

THz photonic wire laser

THz VECSEL Metasurface laser

Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL

Christopher A. Curwen¹, John L. Reno² and Benjamin S. Williams ¹

ETHzürich High power (2W!!) single frequency phase locked array

Phase-locked terahertz plasmonic laser array with 2 W output power in a single spectral mode

YUAN JIN,^{1,3} JOHN L. RENO,² AND SUSHIL KUMAR^{1,*}

Planarization allows antenna integration

A patch-array antenna single-mode low electrical dissipation continuous wave terahertz quantum cascade laser

L. Bosco,^{1,a)} C. Bonzon,¹ K. Ohtani,¹ M. Justen,² M. Beck,¹ and J. Faist¹ ¹Institute for Quantum Electronics, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland ²I. Institute of Physics, University of Cologne, Zulpicher Strasse 77, 50937 Cologne, Germany

Horizontal Angle (deg)

(b) 30

30

-30 -20 -10 0 10 20 30 Horizontal Angle (deg)

T. Olariu et al., to be submitted

ETHzürich Why are intersubband QCL so good for broadband

- Atomic-like joined density of state
 - Transparent on both sides of the transition
 - Possibility to combine active regions at different colors
 - Low dispersion of the gain
- Flexibility in design broadband active region
 - Bound-to-continuum have very broad gain inherently

A. Hugi, et al., , Semicond Sci Tech, vol. 25, no. 8, p. 083001, (2010).

ETHzürich Modelling of the structure: three different substacks

	Design emission	z ₅₄ / z ₅₃ (Å)	f_{54}/f_{53}	f' ₅₄ / f' ₅₃	E _{NDR} (kV/cm)
A	12.1 meV / 3 THz	40.9 /30.3	4.78/3.24	0.32 /0.22	7.25
В	10.7 meV / 2.6 THz	43.1 /35.6	4.59 /4.02	0.31 /0.27	6.95
С	8.9 meV / 2.2 THz	54.2 /44	5.89 /5.16	0.39 /0.35	6.6

$$g_c^{tot} = \sum_{i=1}^N N_{p,i} \cdot g_{c,i}$$

Simple model, no rate eq., only gc

FWHM: 1.6 THz

D.Turčinková, G. Scalari et al., Appl. Phys. Letter **99** 191104 (2011)

Octave spanning laser

M. Roesch, G. Scalari et al., Nature Photonics 9, 42 (2015)

What is a comb?

Source of electromagnetic radiation with equidistant modes in the frequency domain The modes are phase coherent

The Nobel Prize in Physics 2005 Roy J. Glauber, John L. Hall, Theodor W. Hänsch

Photo: Sears.P.Studio John L. Hall Prize share: 1/4 Photo: F.M. Schmidt Theodor W. Hänsch Prize share: 1/4

S.Diddams, JOSA B, Vol. **27**, Issue 11, pp. B51-B62 (2010) T.Hänsch, Rev. Mod. Phys., Vol **78** (2006) T.Udem et al., Nature **416**, 233 (2003)

Different comb "families"

Mode locked lasers: same phases, pulses in the time domain

A. Hugi, J. Faist et al., Nature, vol. 492, 229-233 (2012)

THz QCL combs

nature ARTICLES photonics PUBLISHED ONLINE: 11 MAY 2014 J DOI: 10.1038/ARPHOTON.2014.85

Terahertz laser frequency combs

David Burghoff¹*, Tsung-Yu Kao¹, Ningren Han¹, Chun Wang Ivan Chan¹, Xiaowei Cai¹, Yang Yang¹, Darren J. Hayton², Jian-Rong Gao^{2,3}, John L. Reno⁴ and Qing Hu¹

Evidence for frequency comb emission from a Fabry-Pérot terahertz quantum-cascade laser

M. Wienold,* B. Röben, L. Schrottke, and H. T. Grahn

15 December 2014 | Vol. 22, No. 25 | DOI:10.1364/OE.22.030410 | OPTICS EXPRESS 30411

ARTICLES nature photonics

Octave-spanning semiconductor laser

Markus Rösch*, Giacomo Scalari*, Mattias Beck and Jérôme Faist

G. Scalari, THz Quantum Cascade Lasers Winter College on Optics, ICTP 2023

M. Roesch, G.S. et al., Nature Photonics 9, 42 (2015)

Doubly Chirped mirrors (THz)

Burghoff et al. Nat. Phot. (2014)

U. Senica,...G.S., accepted in Light: Science & Applications (2022)

New waveguide geometries

Narrow planarized ridge (40 µm)

 Free-running comb: >800 GHz, >-55 dBm RF

Narrow planarized ridge (40 µm)

Free-running comb: >800 GHz, >-55 dBm RF

Free-running harmonic : 1 THz span

Narrow planarized ridge (40 µm)

Free-running comb: >800 GHz, >-55 dBm RF

Free-running harmonic : 1 THz span

RF-injected: 1.6 THz span

Pulses with active mode locking

U. Senica,..., G.S., Light: Science & Appl., (2022)