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Conditional and stochastic resetting in a 1 d
quantum system

Stochastic resetting is a highly discussed topic in the statistical physics community
these days and several non-trivial phenomena arise for different resetting or renewal
protocols. I am interested in using this resetting process in a one-dimensional lattice
system with a conditional resetting scheme. In this way, the system exhibits some
non-trivial stationary state owing to this particular stochastic modulation. Currently, I
am working on this project and I am solving this both analytically and numerically. My
goal is to study the time dynamics of probability amplitude in lattice sites and observe
other aspects using the said protocol. This technique helps study resetting processes
with non-unitary evolution in quantum systems and investigates some appearance of
stationary states at longer times. Moreover, the used approach is quite general, in a
sense, it is independent of the Hamiltonian of the system under consideration. The
scheme can be visualised as modelling environmental interactions or disturbances
due to measurement apparatus. It also suffices the random nature of this kind of
disturbance.
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Multiplex network modeling for the impact of
the opinion and behavior of mask wearing on

the spreading and control of COVID-19

We propose a network model to find out how and to what extent the level of people's
opinions and behavior will affect the spread and transmission of a disease spreading
such as the SEAIRS model of COVID-19. We have shown how two simultaneous
spreading processes such as disease spreading and behavior-changing spreading
work together and affect each other in the same group of the population by applying a
multiplex network. Firstly we present a two-layer multiplex network for two spreading
processes at the same time, one layer for disease spreading and the other for the
dynamic of opinion behavior-changing toward mask-wearing as a protection measure
for Covid 19 transmission. Then we apply a discrete Micro Markov Chain approach to
express the dynamical system of the model. As well as the Markov chain, the
threshold model exhibits people's behavior-changing parameters. We have
investigated the effect of “peer pressure” and "fear of the increasing number of daily
confirmed cases" on people’s behavior changes. Our results show that different levels
of people's adherence to mask-wearing protection measures can influence disease
spreading and vice-versa. Keywords: Covid19 transmission; multiplex network; mask-
wearing behavior; mathematical model; Markov chain; threshold model
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Interactions between life stages counteract
positive population-level effects of mortality

For an unstructured population model, meaning a model for the dynamics of
indistinguishable individuals that accounts for population abundances only, conditions
can be selected for the decreasing density-mortality rule to hold. This rule indicates
that an increase in per-capita mortality leads to a decrease in population density at
equilibrium. Under the same conditions, except now structure considered into the
model, taking into account differences between individuals in age or size, this rule
loses generality. The phenomenon of a population increasing in response to an
increase in its per-capita mortality rate has been termed the "hydra effect". We
evaluated the hydra effect in a resource-consumer structured population model
(system of ODEs). Resources were kept unstructured. The model includes foraging,
assimilation (including production of new juvenile offspring and maturation) and aging,
and is stage-structured based on age: juveniles, adults, and post-reproductive adults.
An increased mortality rate in post-reproductive individuals is considered, and its
impact over the total population size in equilibrium is calculated. We found conditions
leading to hydra effect and to anti-hydra effect. Interestingly, we found that adding a
cooperation interaction (analog to commensalism between species) between post-
reproductive and juvenile individuals counteracts the hydra effect, removing positive
population-level effects of mortality. "Social populations", whose individuals interact
cooperatively, respond negatively to an increase in old-age-related diseases,
decreasing the steady state total population density. Since an empirical correlation
has been found between found between the social character of mammal populations
and lifespan of its individuals, these results may have implications in evolutionary
biology.
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Prediction of Parkinson's disease using
machine learning

Parkinson disease(PD), the second most common neurological disorder that causes
significant disability, reduces the quality of life and has no cure. Nerve cells in this part
of the brain are responsible for producing a chemical called dopamine. Dopamine
acts as a message between the parts of the brain and nervous system that help
control and co-ordinate body movements. As dopamine generally neurons in the
parts begin to experience difficulty in speaking, writing, walking or completing other
simple task .Approximately, 90% affected people with Parkinson have speech
disorders. The average age of onset is about 70 years, and the incidence rises
significantly with advancing age. However, a small percent of people with PD have
“early-onset” disease that begins before the age of 50.More than 10 million people
worldwide are living with PD. No cure for PD exists today, but research is ongoing and
medications or surgery can often provide substantial improvement with motor
symptoms. Parkinson disease is one of the most serious diseases. Hence diagnosing
it at an earlier stage could help prevent or reduce the effects. The machine learning
classification algorithms are used to predict if a person has Parkinson disease or not,
comparing different machine learning algorithm such as logistic regression, decision
tree, k-nearest neighbour as well as some “Ensemble” learning techniques where we
attempt to improve the accuracy by combining several models .The machine learning
model can be implemented to significantly improve diagnosis method of Parkinson
disease.
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Measuring climate teleconnections in
Colombia through information transfer in a

complex network.

Climate is a complex system whose dynamics evolve on different spatio-temporal
scales. It is impossible to predict from a mechanistic perspective given the number of
variables and interactions to which it is subject. In the study of climate variability, one
of the alternative approaches to classical modeling consists of the design of complex
networks constructed from metrics derived from measurable physical quantities or
statistical relationships. Recently, Liang and Kleeman proposed a theoretical
formalism to measure information transfer -based on mutual entropies- between time
series of variables that are dynamically related. This rate of information transfer
measures the causal relationship between the variables, the direction of causality and
how one variable influences the predictability of the other. In this work we use the
Liang-Kleeman formalism to estimate and analyze the causal relationships between
geographical areas more than 1000 km apart, in order to establish possible climatic
teleconnections in a region of northern South America that includes the Colombian
territory. We constructed a complex network whose nodes correspond to a regular
division of the surface of the study area and its links are defined by the transfer of
information from global climatic phenomena -such as ElNino3.4 - to the climatic
variables. We include monthly data of surface temperature, pressure, humidity and
climate variability indices for the period 1970-2020. Our results show a high
connectivity of the Colombian territory with global climatic processes. Likewise, the
influence of oceanic processes in the links established throughout the study area is
verified.
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Simplicially driven simple contagion
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Single contagion processes are known to display a continuous transition from an epidemic-free phase at low
contagion rates to the epidemic state for rates above a critical threshold. This transition can become discontinuous
when two simple contagion processes are coupled in a bi-directional symmetric way. However, in many cases,
the coupling is not symmetric and the processes can be of a different nature. For example, social behaviors—such
as hand-washing or mask-wearing—can affect the spread of a disease, and their adoption dynamics via social
reinforcement mechanisms are better described by complex contagion models, rather than by the simple contagion
paradigm, which is more appropriate for disease spreading phenomena. Motivated by this example, we consider
a simplicial contagion (describing the adoption of a behavior) that uni-directionally drives a simple contagion
(describing a disease propagation). We show that, above a critical driving strength, such driven simple contagion
can exhibit both discontinuous transitions and bi-stability, which are instead absent in standard simple contagions.
We provide a mean-field analytical description of the phase diagram of the system, and complement the results
with Markov-chain simulations. Our results provide a novel route for a simple contagion process to display the
phenomenology of a higher-order contagion, through a driving mechanism that may be hidden or unobservable in
many practical instances.

Contagion processes have been widely studied using com-
plex networks as the underlying structure supporting the prop-
agation [1–3]: dynamical processes such as disease spread-
ing, opinion formation, and diffusion evolve on top of these
networks through the pairwise interactions of nodes [1, 4–6].
The most studied examples include simple contagion mod-
els (where “simple” refers to the fact that a contagion event
can be caused by a single contact), such as the paradigmatic
Susceptible-Infectious-Susceptible (SIS), widely used to de-
scribe the diffusion of a single pathogen in a population.

In reality, however, we often observe contagion processes
that co-exist and affect each other [7]. Infectious diseases can
indeed display complex comorbidity interactions, in which the
presence of a pathogen impacts the individual susceptibility
towards another pathogen [8]. For example, it is well known
that HIV increases susceptibility to other sexually transmitted
diseases [9]. Several research lines have extended modelling
efforts in this direction to include both cooperation [10–12]
and competition [13–15] between diseases. However, to date
the systematic investigation of models of interacting conta-
gion processes has been developed under two main assump-
tions: (i) they consider simple contagions, and (ii) they assume
the interaction between processes to be symmetric, that is,
bi-directional and of equal strength. Within these modeling
restrictions, an interesting phenomenology has been uncovered:
cooperative models can display a discontinuous transition to
the epidemic state [11], and also become indistinguishable
at the mean-field level from complex contagion models de-
scribing social reinforcement [16]. We recall that “complex”
contagion refers to a process in which exposure to multiple
sources presenting the same stimulus is needed for the conta-
gion to occur [17].

Interactions between spreding processes are naturally not

restricted to infectious diseases, as the interplay between a
disease and a social behavior can also dramatically impact
the resulting disease spreading dynamics [18–22]. A cur-
rent and cogent example is the impact of the adoption of
safe behaviors, such as the use of non-pharmaceutical in-
terventions (hand washing, masks, self-isolation), during the
COVID pandemic [22]. Motivated by this example, we chal-
lenge both restrictions described above. First, it is known
that reinforcement mechanisms influence social behavior so
that models of simple contagion—that assume independent
pairwise exposures—do not offer the most adequate descrip-
tion [17]. Simplicial contagion has been proposed as an al-
ternative approach to account for simultaneous exposures via
group-contagion events [23, 24]. Such group (“higher-order”)
contributions were shown to induce discontinuous transitions,
bi-stability and critical mass phenomena even for single pro-
cesses [25–29]. Second, most contagion processes do not
interact in a symmetric way. This can happen e.g. for dis-
eases with very different time scales [30], or when considering
interactions between a disease and the adoption of prudent be-
haviors [21], which is instead driven by a phenomenologically
and analytically different social contagion process.

Here, we show that a simple contagion (describing infec-
tious disease spreading) can exhibit the characteristics of a
simplicial contagion when it is cooperatively driven by a sim-
plicial contagion (describing the spread of a social behavior).
Namely, a simple contagion in the epidemic-free regime can
exhibit an abrupt transition to the epidemic regime, as well as
bi-stability, if the cooperative driving by the social process is
stronger than a critical value. In particular, in the asymmetri-
cally driven case, discontinuous transitions can only take place
when the driving process is simplicial, contrary to cases of
bi-directional symmetric interactions. We describe the phase
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FIG. 1. The model of interacting simplicial contagions. (a) Transi-
tion probabilities between the compartments: susceptible (S, gray),
infected exclusively by one disease (A or B, respectively blue/red)
or by both (AB, black). (b)-(d) A susceptible node i can acquire A
after a contact with an infectious k-simplex (this also includes AB
individuals). In (d), since i is part of a 2-simplex composed by two
other infectious nodes, the infection can come both from each of
the two 1-faces (links) with probability βA and from the 2-face with
probability β4A . (e)-(g) If i is already infected with B, the probability
of getting A for each contact is affected by the coupling factor εBA.
The same rules symmetrically apply to B instead of A. The driving
process of A on B is realized by setting εAB > 1, εBA = 1.

diagram of the system through a mean-field (MF) approach,
complemented by Markov-type simulations, and provide an
analytical expression for the critical value of the cooperation.
Finally, we identify effective infectivities as markers of the
abrupt driven transition by rewriting the MF equations as a
simple contagion with effective parameters.

The model. We consider a model for two interacting spread-
ing processes, denoted as A and B, that also include simplicial
contagions [23, 25]. Individuals are represented by a set of N
nodes {ni}Ni=1 that can each be in one of four compartments,
following the standard SIS framework [3]: those susceptible
to both diseases (S), infected exclusively by one of the two
diseases (either A or B), or by both (AB) [see Fig. 1(a)]. The
compartment membership of each node i is encoded in three bi-
nary variables xγi ∈ {0, 1}, where γ ∈ {A,B,AB}. If node i
is in state γ then xγi = 1, otherwise it is zero: each node has ei-
ther one non-zero or all zero variables. The density of nodes in
state γ is given, at each time t, by ργ(t) = 1

N

∑N
i=1 x

γ
i (t). The

densities ~ρ(t) = {ρA(t), ρB(t), ρAB(t)} serve as macroscopic
order parameters (with ρS(t) = 1− ρA(t)− ρB(t)− ρAB(t)
the density of susceptible individuals).

Nodes can interact in pairs or larger groups, so that contagion
events, which cause nodes to change compartment, take place
on top of a contact structure that allows also for higher-order
(non-pairwise) interactions [24, 31–33]. We mathematically
represent a group encounter as a k-hyperedge, a set of k + 1
interacting nodes [34]. For simplicity, we allow for interactions
up to dimension k = 2. These groups involving 2 and 3 nodes
are respectively called 1-hyperedges (links) and 2-hyperedges
(triangles). Six parameters—three for each disease—yield
contagion and recovery probabilities, as illustrated in Fig. 1.
The infectivity of disease x ∈ {A,B} at order k = 1, βx,1 ≡
βx, is the probability per unit time for a node i susceptible to
pathogen x to acquire x from an “infectious” 1-hyperedge it
is part of [see Fig. 1(b)-(d)]. Similarly, βx,2 ≡ β4x control
infections coming from 2-hyperedges [see Fig. 1(d)]. Note that

all other nodes in the hyperedge need to be infectious for the
hyperedge to be considered so. Finally, µx ∈ [0, 1] denotes the
standard spontaneous recovery probability (from x) per unit
time.

The interaction between the two contagion processes is con-
trolled via two additional non-negative parameters εAB and
εBA that multiply the transition probabilities to a double in-
fection (AB) from a single infection (A or B). For example,
the transition B → AB occurs with probability εBAβA from a
pairwise contact with A [see Fig. 1(e)-(g)]. The two processes
cooperate if εxx′ > 1 and compete if εxx′ < 1, while they are
independent if εxx′ = 1. Note that the symmetry εAB = εBA
does not need to hold. Furthemore, although the model is
defined on a generic higher-order structure, we focus here on
simplicial complexes, a particular class of hypergraphs [24].
In a simplicial complex K, by definition, groups of nodes are
called simplices and must respect downward closure: each
sub-simplex ν ⊂ σ built from subsets of a simplex σ ⊂ K is
also part of the complex K [in an infectious 2-simplex thus,
contagion can occur both through the 1-hyperedges contained
and through the 2-hyperedge itself, see Fig. 1(d),(g)]. We make
this choice for coherence with previous work [23], but it can
be relaxed to more general hypergraphs [25–27, 29] without
affecting the MF results.

Mean-field description. We first consider the MF descrip-
tion of the model, obtained under a homogeneous mixing hy-
pothesis [35]. For simplicity, we assume identical recovery
rates µA = µB = µ (see Sup. Mat. for the case µA 6= µB) and
introduce the rescaled infectivity parameters λx = βx 〈k〉 /µ
and λ4x = β4x 〈k4〉 /µ, for x ∈ {A,B}, where 〈k〉 and
〈k4〉 respectively denote the average numbers of 1- and 2-
hyperedges incident on a node.

We focus on the following scenario: a simplicial contagion
A that cooperatively and unidirectionally drives a simple con-
tagion B. We thus set λ4A > 0, λ4B = 0, and the interactions
εAB > 1 and εBA = 1. After rescaling time by µ and intro-
ducing the total density of nodes infected by diseases A and
B, respectively ρAtot = ρA + ρAB , and ρBtot = ρB + ρAB (see
Sup. Mat. I), we end up with the system of coupled equations:

ρ̇Atot = ρAtot [−1 + λA(1− ρAtot)

+ λ4A ρAtot(1− ρAtot)], (1a)
ρ̇Btot = ρBtot [−1 + λB(1− ρBtot)

+λB(εAB − 1)(ρAtot − ρAB)] , (1b)
ρ̇AB = −2ρAB + εABλB(ρAtot − ρAB)ρBtot

+ λA(ρBtot − ρAB)ρAtot + λ4A (ρBtot − ρAB)ρ2
Atot
, (1c)

with the additional conservation equation

ρS(t) = 1− ρAtot − ρBtot + ρAB . (2)

Note that equations (1) include two known models as specific
cases. First, without interaction between the processes (εAB =
εBA = 1), ρBtot and ρAtot evolve independently as a simple and
simplicial contagion [23], respectively. Second, by considering
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only pairwise interactions, λ4A = 0 = λ4B , A and B evolve
as interacting simple contagions [8]. In general, under the
conditions we set, the dynamics of ρAtot is decoupled from the
other two variables and drives them.

We first study by numerical integration the non-equilibrium
stationary state (NESS) reached by the system (1) at large
times and illustrate the transitions of the corresponding value
ρ∗Btot

= limt→∞ ρBtot(t) in Fig. 2. The most interesting case
is given by λB < 1, for which —without a driving process
A— the simple contagion process B would be in the epidemic-
free absorbing state (ρ∗Btot

= 0). We thus illustrate how the B
epidemic NESS ρ∗Btot

depends on the parameters of the driverA,
on the coupling εAB , and how it can transition to the epidemic
active state, despite having λB < 1. If λ4A ≤ 1, we always
obtain a continuous transition for ρ∗Btot

[see Fig. 2(a,b)]. On
the other hand, if λ4A > 1, the driven process can exhibit
a discontinuous transition [see Fig. 2(c,d)]. More precisely,
the transition changes from continuous to discontinuous when
the coupling parameter εAB becomes larger than a critical
value εcAB . Above this threshold (εAB > εcAB , black circles in
Fig. 2c), there is a discontinuous transition at a critical value
λcA that does not depend on εAB . For weaker cooperation
(εAB < εcAB , white and grey symbols in Fig. 2c), a continuous
transition occurs from ρ∗Btot

= 0 to the epidemic state ρ∗Btot
> 0

when λA crosses another critical value λ
′c
A ≥ λcA that decreases

as εAB increases (and λ
′c
A → λcA in the limit εAB → εcAB).

Moreover, the epidemic-free absorbing state ρ∗Btot
= 0 remains

stable as long as λA < 1, so that there is a region of bi-
stability λcA < λA < 1 (shaded region) for εAB > εcAB , and
bi-stability can also be observed when εAB < εcAB in the
region λ

′c
A < λA < 1 (grey symbols). Hence, the simple

contagion B exhibits characteristics of simplicial contagion—
an abrupt transition and bi-stability—due to the driving of the
simplicial contagion A.

To analytically explain this behavior, we need to find the
NESS by setting ρ̇x = 0. We can first directly solve ρ̇Atot = 0,
as Eq. (1a) exactly maps back to the single simplicial contagion
analysed in Ref. [23]. It presents a trivial solution ρ∗Atot

= 0 and
two other NESS ρ∗,±Atot

(see Sup. Mat. II), which are physically
valid only when non-negative. We also know that λ4A controls
the type of transition to the epidemic state [23]. That is, for
λ4A ≤ 1, the bifurcation diagram has a continuous transition
at λA = 1 from ρ∗Atot

= 0 to the epidemic state ρ∗,+Atot
. When

instead λ4A > 1, a discontinuous transition to ρ∗,+Atot
occurs at

λcA = −λ4A + 2
√
λ4A ≤ 1. The epidemic-free state remains

stable for λA ≤ 1, but becomes unstable above: This leads to
bi-stability in the parameter region {λ4A > 1, λcA ≤ λA ≤ 1}.
The discontinuous transition is therefore the direct consequence
of a sufficiently strong three-body (higher-order) interaction in
A (λ4A > 1).

We now need to solve the two-dimensional system
(ρBtot , ρAB). It is decoupled in the absorbing state (0, 0) only,
which is always stable for ρAB , but stable for ρBtot only if
λB < 1. While the non-trivial analytical solutions can be
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FIG. 2. A simplicial driver can induce a discontinuous transition
(c,d), contrary to a simple driver (a,b). We show the stable NESS
of ρ∗Btot in the MF Eqs. (1), as the driving process for A follows a
simple contagion (a,b), with λ4A = 0, or a simplicial contagion (c,d),
with λ4A = 2.5 [λB = 0.8, λ4B = 0]. Note the different scales on
the x-axes. (a,c) The stationary solutions for ρ∗Btot are plotted as a
function of the rescaled pairwise infectivity λA for three values of
the driving strength εAB . In (c), the transition of the simple conta-
gion B becomes discontinuous above a critical value of cooperation
εcAB . (b,d) Heatmaps of ρ∗Btot as a function of λA and εAB . Dashed
horizontal lines correspond to the selected εAB values shown in (a)
and (b) respectively. The blue dot in (d) highlights the critical point
(λc

A, ε
c
AB). The blue and red crosses represent a visual hint to locate

the results within the full phase diagram of Fig. 3.

found explicitly, the corresponding formula are rather compli-
cated and do not easily provide insights; we thus leave them
to Sup. Mat. II. Instead, we discuss here the implicit solutions
for ρ∗Btot

, given by

ρ∗,±Btot
= 1− 1

λB
+ (ρ∗,±Atot

− ρ∗,±AB)(εAB − 1). (3)

Equation (3) implicitly contains two solutions ± from ρ∗,±Atot

and ρ∗,±AB .
We can now explain the behavior shown in Fig. 2. If λ4A < 1

[Figs. 2(a,b)], ρ∗Atot
exhibits a continuous transition at λA = 1,

below which it is zero. This implies that ρAB also goes to
the absorbing state if λA < 1. Hence, from Eq. (3), we have
limλA→1+ ρ∗,±Btot

≤ 0 (remember λB < 1) and, as λA increases
above 1, ρ∗,+Atot

increases continuously [23], leading ρ∗,±Btot
to also

cross continuously 0 at a certain λA ≥ 1. For λ4A ≥ 1 instead,
ρ∗Atot

has a discontinuous transition at λA = λcA which implies
that ρ∗AB has one too. Consequently, from Eq. (3), since λB <
1, we have limλA→λc,−

A
ρ∗Btot

= 0, but limλA→λc,+
A

ρ∗,±Btot
> 0

above a certain value εAB > εcAB . Hence, this critical value
εcAB can be derived analytically by solving ρ∗,+Btot

= 0 at λcA.
In other words, we find the critical driving strength εcAB by
finding the ρ∗,+Btot

curve, between the grey and black curves in
Fig. 2(c), such that it reaches zero at λcA. This corresponds
to the case λB ≤ 1, λ4A > 1 which we denoted region I.
Similarly, if λB > 1 instead (with λ4A > 1, region II), it
suffices solving ρ∗,+Btot

= 1− 1/λB at λcA because 1− 1/λB is
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FIG. 3. The phase diagram in the (λB , λ
4
A ) parameter space has four

regions. In region I (λB ≤ 1, λ4A > 1), ρ∗Btot undergoes an abrupt
transition if the driving cooperation is strong enough, εAB > εcAB .
The value of εcAB is represented by shades of green. For visual
clarity, the green scale is truncated at a maximum value of 5, so
that larger values are represented by the same color as 5. The red
cross corresponds to the case shown in Figs. 2(c,d). In region II
(λB > 1, λ4A > 1), εcAB = 1 and the transition is discontinuous
for all εAB . For λ4A ≤ 1, that is regions III and IV, the transition
is always continuous. The blue cross indicates the case shown in
Figs. 2(a,b).

now the pre-transition NESS. Finally, the solution is given by

εcAB =


√
λ4A−λB(√
λ4A−1

)
λB

in region I,

1 in region II,
(4)

which is shown in Fig. 3. In region I, increasing λ4A or λB
make εcAB decrease, so that discontinuous transitions are ob-
tained for smaller values of driving strength εAB . In fact,
εcAB → +∞ as λ4A → 1 or λB → 0. In region II, εcAB = 1
so that all values of cooperation εAB > 1 yield a discontin-
uous transition. Finally, no critical value of cooperation can
be defined in regions III and IV, where transitions are always
continuous.

Effective formalism. For εAB > εcAB —that is, when sim-
plicial behavior is possible for B— the driven process B will
exhibit discontinuous transitions and bi-stability as a function
of λA. To illustrate how this phenomenology emerges, we can
rewrite the dynamics of B as an effective simple contagion.
We follow ideas from Ref. [16] to rewrite the MF equation of
the single simplicial ρAtot from Eq. (1a) as a simple contagion
with effective infectivity λ̃A = λA + λ4A ρAtot . We then rewrite
Eq. (1b) of the driven ρBtot as a simple contagion

ρ̇Btot = −ρBtot + λ̃B ρBtot [1− ρBtot ], (5)

with effective infectivity

λ̃B = λB + λB(εAB − 1)
1

1− ρBtot

ρA. (6)

This expression can be cast into the same form as λ̃A by defin-
ing an effective simplicial infectivity

λ̃4B = λB(εAB − 1)
ρA

ρBtot(1− ρBtot)
, (7)

which implicitly depends on λA and λ4A through ρA (see
Fig. 4). If there is no interaction (εAB = 1), we recover

1.40

FIG. 4. The discontinuous nature of the driven contagion B can be
determined from its effective infectivity λ̃B . We show λ̃B for a range
of cooperation εAB and infectivity λA values, corresponding to the
curves in Fig. 2(c). The dot in panel (b) shows the critical point
(λc

A, ε
c
AB).

λ̃B = λB and the effective simplicial infectivity vanishes,
λ̃4B = 0, as expected. More importantly, the effective λ̃B has
a critical value of 1 which can help distinguish between the
transitions observed in Fig. 2. Indeed, λ̃B is the effective in-
fectivity parameter of the simple contagion that has stationary
solutions given by 1 − 1/λ̃B . We know this solution has a
critical value λ̃B = 1 below which the only stable solution is
0, and above which it is positive. Thus, the driven contagion B
has a transition to an epidemic state if and only if λ̃B crosses
1 as λA increases. Moreover, that transition is discontinuous
if and only if the transition of λ̃B across one is discontinuous.
This can be seen by comparing the three curves in Fig. 4(a) to
the corresponding curves for ρ∗Btot

in Fig. 2(c).
Temporal properties. The bifurcation diagrams in Figs. 2,

3, and 4 give us a clear picture of the asymptotic states, but
lack information about the temporal evolution of trajectories,
which, in practical settings, are often the only data available.
Let us consider a case where we would only be able to observe
the spreading of disease B via ρBtot(t), while the driving so-
cial contagion process A is unobservable. Interestingly, the
evolution of the observed simple contagion B depends then on
the initial conditions of the hidden process A. To show this,
and further confirm the phenomenology described beyond the
homogeneous mixing hypothesis adopted in the MF approach,
we shift to a Markov-chain formalism [36, 37]—able to en-
code a non-trivial interaction structure between nodes (see Sup.
Mat. III for the corresponding set of equations). We consider a
synthetic random simplicial complex, constructed with the gen-
erative model introduced in Ref. [23], with N = 2000 nodes
and generalized average degrees 〈k〉 = 20 and 〈k4〉 = 6 [24],
and integrate the Markov equations to follow the temporal
evolution of the system.

We place ourselves in the same scenario of the black curve
(εAB = 1.75) of Fig. 2(b), that is, with a simplicial driver
A (λ4A = 2.5). We fix all other parameters, including the
initial condition ρBtot(0), but vary the initial condition of the
driver, ρAtot(0). Results are shown in Fig. 5. If the driver
contagionA is in the endemic regime (but not in the bi-stability
region, e.g. λA = 1.2), ρBtot reaches the same NESS for all
values of ρAtot(0), but with different transient dynamics. This
affects the relaxation time, and the evolution can even be non-
monotonic [Fig. 5(a)]. Moreover, if the simplicial driver is
in the bi-stability region (λA = 0.7), it induces bi-stability
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FIG. 5. The temporal evolution of the simple contagion B is affected
by the initial conditions of the (hidden) simplicial driver A. We show
ρBtot over time, for A in (a) the endemic region, λA = 1.2, and (b)
the bi-stable region, λA = 0.7. Shades of red represent a range of
initial conditions of the driver ρA(0) ∈ [0.001, 0.35] . In (b), the—
simple contagion—process B can reach one of two stationary states,
depending on those initial conditions. Other parameters are set to
λB = 0.8, λ4B = 0, εAB = 1.75, and λ4A = 2.5.

in the—otherwise simple—process B. Specifically, ρBtot(t)
can reach two different states, depending on the driving initial
condition, even though all “visible” B parameters are fixed
[Fig. 5(a)]. Note that this bi-stability emerges only if the
driving is simplicial with λ4A > 1 (see also Sup. Mat. Fig. S1).

In conclusion, we have introduced a model of interacting
simplicial contagions, focusing on the case where a simple
contagion—that can represent the spread of a disease—is co-
operatively driven by a (potentially hidden) simplicial one
describing behavioral spread. We showed numerically and an-
alytically that the simple contagion can then exhibit an abrupt
transition to the epidemic state and bi-stability, but only if
the driving process behaves as a “truly” simplicial one, i.e.,
λ4A ≥ 1. The results highlight that an abrupt transition in the
observed process can occur as a function of the control parame-
ter of a second—potentially hidden—driver process. Consider
the situation of an observer of an epidemic process, who does
not know whether it is simple or driven by some underlying re-
inforcing mechanisms of complex contagion, leading to discon-
tinuous behaviors. A natural intervention would then be to try
to reduce the intrinsic infectivity of the spreading pathogen, for
example through pharmaceutical interventions or reduction of
social contacts (e.g. sanitary lockdowns): this would however
lead only to a continuous change in the incidence. However,
if the spread is driven by an underlying complex contagion,
acting on the hidden driver process (e.g. promoting social
adoption of safe behaviors) could result in a more effective
strategy and lead to an abrupt transition to the epidemic-free
state (if the interaction is strong enough εAB > εcAB). Fi-
nally, different populations could be characterised by different
properties of the hidden behavioral contagion process (hetero-
geneous λA and λ∆

A values), thus leading to a large diversity of
temporal evolutions, and—potentially—of final outcomes of
the pathogen’s spread, without the need for different intrinsic
infectivity properties of the pathogen across these populations.

Results also suggest that other driving spreading processes
could yield a similar phenomenology if they exhibit a discon-
tinuous transition, inducing a change from a continuous to a
discontinuous transition in the driven process. We note in this
context that the framework of Ref. [38] suggests a universal

route to abrupt transitions, achieved through the addition of a
control parameter to a process that displays a continuous phase
transition. However, the situation that we have explored here
broadens the picture. Indeed, if both spreading processes are
simple contagions, it appears that a bi-directional interaction
(leading to a feedback loop) is an additional necessary condi-
tion for a discontinuous transition to emerge. In the case of
a unidirectional coupling, instead, the driving process needs
to be itself simplicial with bi-stability. It seems thus that this
provides a novel, different route to the emergence of abrupt
transitions. The exact conditions under which these routes
apply to coupled systems would be an interesting direction for
future works. Another interesting perspective consists in the
analysis of real-world data and the development of tools to
detect the simple, complex or coupled character of a process
from observed time series [39] (as well potentially as the full
reconstruction of the interactions [40]).
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Supplementary Material: Simplicially driven simple contagion

I. MEAN-FIELD DESCRIPTION

The general mean field equations describing the evolution of the densities are:

ρ̇A =− ρA + λAρS(ρA + ρAB) + λ4A ρS(ρA + ρAB)2 + ρAB − εABλBρA(ρB + ρAB)− εABλ4B ρA(ρB + ρAB)2 (S1a)

ρ̇B =− ρB + λBρS(ρB + ρAB) + λ4B ρS(ρB + ρAB)2 + ρAB − εBAλAρB(ρA + ρAB)− εBAλ4A ρB(ρA + ρAB)2 (S1b)

ρ̇AB =− 2ρAB + εABλBρA(ρB + ρAB) + εABλ
4
B ρA(ρB + ρAB)2 + εBAλAρB(ρA + ρAB) + εBAλ

4
A ρB(ρA + ρAB)2

(S1c)

with the additional condition that

ρS = 1− ρA − ρB − ρAB . (S2)

As explained in the main text, we focus on the case εBA = 1, λ4B = 0, so that Eq. (S1) becomes

ρ̇A =− ρA + λAρS(ρA + ρAB) + λ4A ρS(ρA + ρAB)2 + ρAB − εABλBρA(ρB + ρAB) (S3a)

ρ̇B =− ρB + λBρS(ρB + ρAB) + ρAB − λAρB(ρA + ρAB)− λ4A ρB(ρA + ρAB)2 (S3b)

ρ̇AB =− 2ρAB + εABλBρA(ρB + ρAB) + λAρB(ρA + ρAB) + λ4A ρB(ρA + ρAB)2 (S3c)

Then, we apply the following change of variables: ρAtot = ρA + ρAB , ρBtot = ρB + ρAB . This yields

ρ̇Atot = (−ρA − ρAB) + λAρAtot [1− ρBtot − ρA + ρB ] + λ4A ρ
2
Atot

[1− ρBtot − ρA + ρB ] (S4a)
ρ̇Btot =(−ρB − ρAB) + λBρBtot [1− ρAtot − ρB + εABρA] (S4b)

ρ̇AB = − 2ρAB + εABλBρAρBtot + λAρBρAtot + λ4A ρBρ
2
Atot

(S4c)

We further rewrite this by replacing all remaining ρA and ρB , and using the identity 1− ρBtot − ρA + ρB = 1− ρAtot ,

ρ̇Atot = − ρAtot + λAρAtot [1− ρAtot ] + λ4A ρ
2
Atot

[1− ρAtot ] (S5a)
ρ̇Btot =− ρBtot + λBρBtot [1− ρAtot − ρBtot + ρAB + εAB(ρAtot − ρAB)] (S5b)

ρ̇AB = − 2ρAB + εABλB(ρAtot − ρAB)ρBtot + λA(ρBtot − ρAB)ρAtot + λ4A (ρBtot − ρAB)ρ2
Atot

(S5c)

which can be refactored to obtain Eqs. (1) from the main text.

II. DERIVATION OF THE MEAN-FIELD FIXED POINTS

Equation (1a) in the main text is the same as the simplicial contagion from Ref. [23]. Its non-trivial solutions are

ρ∗,±Atot
=

(λ4A − λA)±
√

(λA − λ4A )2 + 4λ4A (λA − 1)

2λ4A
. (S6)

The remaining two-dimensional system (ρBtot , ρAB) can be solved analytically by hand or with the help of software like
Mathematica. The implicit solution for Eq. (1a) in the main text is given by Eq. (3).

To solve for ρAB , we rewrite Eq. (1c) from the main text by factorising and setting the left-hand-side to zero:

0 =− 2ρAB + εABλB(ρAtot − ρAB)ρBtot + λA(ρBtot − ρAB)ρAtot + λ4A (ρBtot − ρAB)ρ2
Atot
, (S7)

=ρAB

[
−2− εABλBρBtot − λAρAtot − λ

4
A ρ

2
Atot

]
+ ρAtotρBtot

[
εABλB + λA + λ4A ρAtot

]
, (S8)

from which we already see that ρ∗AB = 0 if ρAtot = 0 or ρBtot = 0. Now, we inject the expression of ρBtot from Eq. (3) and cast the
equation into the usual quadratic form in ρAB :

0 = Aρ2
AB +BρAB + C, (S9)
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where

A = + εABλBE
−
AB , (S10)

B = − 2− εABλB(Λ−B + E−ABρ
∗
Atot

)− (λA + E−ABK)ρ∗Atot
− λ4A ρ

∗2
Atot
, (S11)

C = ρ∗Atot
K(Λ−B + E−ABρ

∗
Atot

). (S12)

To shorten the notation, we have also defined

E−AB = εAB − 1, (S13)

Λ−i = 1− 1/λi, (S14)

K = εABλB + λA + λ4A ρ
∗
Atot
. (S15)

The non-zero solutions for ρAB the usual quadratic solution

ρ∗,±AB =
−B ±

√
B2 − 4AC

2A
, (S16)

which, unfolded, is an expression in terms of the parameters of the system only. These together with ρ∗Atot
can be re-injected into

Eq. (3) for ρ∗Btot
to close the system.

III. MARKOV-CHAIN APPROACH

Here we write a system of coupled Markov-chain equations which govern the microscopic evolution of our model [36, 37].
More precisely, we can write down the conditional probability P (xγi (t+ 1) = 1|x(t), θ,A) ≡ piγ(t) of finding each node i in
state γ = {S,A,B,AB} at time t+ 1 given the probability vector representing the status of all nodes at time t x(t) = xγi (t),
the model parameters θ = {βA, β4A , βB , β

4
B , µA, µB , εAB , εBA}, and the structure A. Using the simplified notation piγ(t), we

impose that, at each time,

piS(t) = 1− piA(t)− piB(t)− piAB(t). (S17)

The Markov-chain equations for the three states are the following:

piAB(t+ 1) = pib(t)(1− µB)(1− qiA(t)) + piA(t)(1− µA)(1− qiB(t)) + piAB(t)(1− µA)(1− µB) (S18a)

piA(t+ 1) = piAB(t)µB(1− µA) + piA(t)(1− µA)qiB(t) + piB(t)µB(1− qiA(t)) + piS(t)(1− qiAB(t))f iA(t) (S18b)

piB(t+ 1) = piAB(t)µA(1− µB) + piB(t)(1− µB)qiA(t) + piA(t)µA(1− qiB(t)) + piS(t)(1− qiAB(t))f iB(t) (S18c)

The different qix(t) denote the probability of node i not being infected by disease x by any of the simplices it participates to.
Considering again only contributions up to D = 2, we have:

qiA(t) =
∏
j∈V

{
1− aijεBAβA[pjA(t) + pjAB(t)]

} ∏
j,l∈V

[
1− aijlεBAβ4A [pjA(t) + pjAB(t)][plA(t) + plAB(t)]

]
(S19a)

qiB(t) =
∏
j∈V

{
1− aijεABβB [pjB(t) + pjAB(t)]

} ∏
j,l∈V

[
1− aijlεABβ4B [pjB(t) + pjAB(t)][plB(t) + plAB(t)]

]
(S19b)

qiAB(t) =
∏
j∈V

{
1− aij

[
βa[pjA(t) + pjAB(t)] + βB [pjB(t) + pjAB(t)]− βAβB [pjAB(t)]2

]}
∏
j,l∈V

{
1− aijl

[
β4A [pjA(t) + pjAB(t)][plA(t) + plAB(t)] + β4B [pjB(t) + pjAB(t)][plB(t) + plAB(t)]

]}
(S19c)

where the first product of each equation accounts for the contagion through the links of the simplicial complex K. These links
are fully specified by means of the standard adjacency matrix {aij}, whose elements aij = 0, 1 denote the absence or presence of
a link (i, j). Similarly, the second product accounts for the contagion of i through the 2-simplices of K (triangles), which are
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analogously specified by the elements of the adjacency tensor {aijl}. This tensor is the 3-dimensional version of the adjacency
matrix, in which a non-zero element denotes the presence of a 2-simplex (i, j, l).

Finally, the factors f iA(t) and f iB(t) in Eq. (S18) denote the probability of transitioning from the status S to one of the states A
or B when exposed simultaneously to both pathogens. Assuming equal probability for both diseases [37], we can write:

f iA(t) =
q̄iA(t)(1− 0.5q̄iB(t))

q̄iA(t)(1− q̄iB(t)) + q̄iB(t)(1− 0.5q̄iA(t))
(S20a)

f iB(t) =
q̄iB(t)(1− 0.5q̄iA(t))

q̄iA(t)(1− q̄iB(t)) + q̄iB(t)(1− 0.5q̄iA(t))
(S20b)

where q̄iA(t) and q̄iB(t) correspond to 1− qiA(t) and 1− qiB(t), as given by Eqs. (S19), after setting εAB = εBA = 1.

IV. CASE OF DIFFERENT RECOVERY RATES: µA 6= µB

In the main text we assumed identical recovery rates. Here, we remove this constraint and allow them to be potentially different,
so that µA 6= µB . By rescaling all equations by µA (instead of µ), we have the following—instead of Eqs. (S3):

ρ̇A =− 1ρA + λAρS(ρA + ρAB) + λ4A ρS(ρA + ρAB)2 +
µB
µA

ρAB − εABλB
µB
µA

ρA(ρB + ρAB) (S21a)

ρ̇B =− µB
µA

ρB + λB
µB
µA

ρS(ρB + ρAB) + 1ρAB − λAρB(ρA + ρAB)− λ4A ρB(ρA + ρAB)2 (S21b)

ρ̇AB =− (1 +
µB
µA

)ρAB + εABλB
µB
µA

ρA(ρB + ρAB) + λAρB(ρA + ρAB) + λ4A ρB(ρA + ρAB)2 (S21c)

which, introducing the total densities, becomes

ρ̇Atot = (−ρA − ρAB) + λAρAtot [1− ρBtot − ρA + ρB ] + λ4A ρ
2
Atot

[1− ρBtot − ρA + ρB ] (S22a)

ρ̇Btot =(−ρB − ρAB)
µB
µA

+ λB
µB
µA

ρBtot [1− ρAtot − ρB + εABρA] (S22b)

ρ̇AB = − (1 +
µB
µA

)ρAB + εABλB
µB
µA

ρAρBtot + λAρBρAtot + λ4A ρBρ
2
Atot
. (S22c)

and then

ρ̇Atot = − ρAtot1 + λAρAtot [1− ρAtot ] + λ4A ρ
2
Atot

[1− ρAtot ] (S23a)

ρ̇Btot =− ρBtot

µB
µA

+ λB
µB
µA

ρBtot [1− ρAtot − ρBtot + ρAB + εAB(ρAtot − ρAB)] (S23b)

ρ̇AB = − (1 +
µB
µA

)ρAB + εABλB
µB
µA

(ρAtot − ρAB)ρBtot + λA(ρBtot − ρAB)ρAtot + λ4A (ρBtot − ρAB)ρ2
Atot

(S23c)

which, compared to the case of identical recovery rates, contain the additional µB

µA
factors. We denote that dimensionless ratio

δ = µB

µA
and the equations become, after refactoring:

ρ̇Atot = ρAtot [−1 + λA(1− ρAtot) + λ4A ρAtot(1− ρAtot)], (S24a)
ρ̇Btot = ρBtotδ [−1 + λB(1− ρBtot) +λB(εAB − 1)(ρAtot − ρAB)] , (S24b)

ρ̇AB = −(1 + δ)ρAB + εABλBδ(ρAtot − ρAB)ρBtot + λA(ρBtot − ρAB)ρAtot + λ4A (ρBtot − ρAB)ρ2
Atot
. (S24c)

So, the equation for ρAtot (simplagion) is unchanged, as expected. For ρBtot , we notice a temporal rescaling by a factor δ, but the
implicit solution is unchanged,

ρ∗,±Btot
= 1− 1

λB
+ (ρ∗,±Atot

− ρ∗,±AB)(εAB − 1). (S25)

We can consider two limits where the timescales for A and B are of different orders. First, in the limit δ � 1, which means
that B heals much slower than A, ρ̇Btot ≈ 0, that is process B is quasi-static compared to the timescale of process A. Thus, ρAtot

converges fast to its NESS and ρBtot is driven by that NESS. Second, in the limit δ � 1, B heals much faster than A, it is the
opposite. It is possible then to rescale time by δ to see that process A now appears quasi-static compared to the timescale of B.
So, ρBtot converges fast to its NESS which is in fact adiabatically moving towards its asymptotic NESS, driven by ρAtot that slowly
converges to its own NESS.
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FIG. S1. The temporal evolution of the simple contagion B is affected by the initial conditions of the hidden driver process A. As for Fig. 5 of
the main text, we show ρBtot over time (a-c), but together with the temporal dynamics of the driver process, as given by ρAtot (d-f). In (a,d) a
simple driver process is used (λ4A = 0.8), while in (b,e) and (c,f) the driver process A is truly simplicial (λ4A = 2.5). The process A is placed
either in the endemic region, λA = 1.2 [(a,d) and (b,e)] or in the bi-stable region (λA = 0.7). Different curves correspond to different initial
conditions of the driver process, ρA(0). The other parameters are set to λB = 0.8, λ4B = 0, and εAB = 2.
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FIG. S2. Effective triangle infectivity λ̃4B of simple contagion B as a function of λA, for several values of the interaction εAB (indicated on the
curves). The dashed grey curve indicates the value λc

A, where diverge λ̃4B diverges.
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It is necessary that biological systems stop growing after reaching a target size. Although

significant insights have been gained by studying size regulation via morphogens in the wing

disc of the fruit fly, D. melanogaster, we still do not fully understand the mechanical aspects

of growth control and termination. Here, we present a framework to model growth in a 1-D

tissue, where couplings between mechanics, growth and signaling arise naturally.

We model an isolated tissue as a continuum of cells. That is, at each point, we define

relevant macroscopic fields – a displacement field of cells, a density field and concentration

fields of signaling morphogens that tell the cells when to divide (Fig 1). The idea is to write

FIG. 1: Growth control in a 1-D tissue can be modeled by writing down hydrodynamic equations for the

density of cells, displacement of cells and concentrations of signaling morphogens in the tissue.

hydrodynamic equations for the evolution of these fields on a growing domain and ask questions

about the dynamics of growth up to a target size and mechanisms that stop growth beyond

this target size.
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We want to formulate the latter as a control problem – by demanding that the tissue passes

through a given time sequence of steady state lengths L⋆(t), we would like to reverse-engineer

and extract out the minimal requirements for the model to to do so.


