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These notes present the basics of Curve fitting. You will find these methods useful no

matter what branch of science you work in because we deal with data in all areas of science.

INTRODUCTION

The process of constructing an approximate

curve y = f(x), which fit best to a given discrete

set of data points (xi, yi), i = 1, 2, 3, ..., n is

called curve fitting. Curve fitting and inter-

polation are closely associated procedures. In

interpolation, the fitted function should pass

(a)

(b)

FIG. 1: (a) Interpolation and (b) Curve fitting of an

arbitrary data set

through all given data points, whereas curve

fitting methodologically fits a unique curve

to the data points, which may or may not lie

on the fitted curve. The difference between

interpolation and curve fitting; while attempt-

ing to fit a linear function is illustrated in the

adjoining figure reffig1.

Interpolation: The method connects all

the data points. If the data is reliable, i.e.

we know that the values are error-free in all

respects, we can plot it and connect the dots.

This is a piece-wise linear interpolation, and has

limited use as a general function f(x). Since its

really a group of small f(x)s, connecting one

point to the next doesn’t really work well for

data that has built in random errors (scatter).

Curve fitting Captures the trend in the

data by assigning a single function across the en-

tire range. The example in fig. 1 uses a straight

line function. A straight line is described gener-

ically by f(x) = ax+ b. Our goal is to identify

the coefficients “a” and “b” such that f(x) “fits”

the data well. But what does it mean to require



2
CGN 3421 - Computer Methods   Gurley

Numerical Methods Lecture 5 - Curve Fitting Techniques page 90 of 102

other examples of data sets that we can fit a function to.
 

Is a straight line suitable for each of these cases ?
No. But we’re not stuck with just straight line fits. We’ll start with straight lines, then expand the concept.

Linear curve fitting (linear regression)

Given the general form of a straight line

  

How can we pick the coefficients that best fits the line to the data?

First question: What makes a particular straight line a ‘good’ fit?

Why does the blue line appear to us to fit the trend better?

•   Consider the distance between the data and points on the line   

•   Add up the length of all the red and blue verticle lines

•   This is an expression of the ‘error’ between data and fitted line

•   The one line that provides a minimum error is then the ‘best’
straight line

time

height of
dropped
object

Oxygen in
     soil

temperature

soil depth

pore 
pressure Profit

paid labor hours
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FIG. 2: Examples of data sets that can be fit to an as yet unknown function f(x).

that f(x) fits the data well? This is a very sub-

jective remark and lacks the quantitative rigor

we expect to bring to a principled approach to

curve fitting. We will sharpen the meaning of

this term in due course and cast it in quantita-

tive terms shortly.

Let us start by considering some other ex-

amples of arbitrary data sets that we can fit a

function to in fig. 2. Presumably, each of these

data sets was an experimental measurement. Is

a straight line suitable for each of these cases?

Certainly Not. But we are not stuck with just

straight line fits. We will start with straight lines

and then expand the concept to work our way

towards an extended class of functional forms.

In fig. 2, we have some idea of the expected

functional form for say, the height of a dropped

object versus the time as shown in fig 2a. Ele-

mentary mechanics teaches us this curve follows

a parabolic form h = −1
2gt

2 where the nega-

tive sign denotes we have chosen the height as

positive upwards and negative going downwards,

g = 9.8m/s2 is the acceleration due to gravity,

h is the height from which the object is dropped

and t is the time for the said object to hit the

ground. But for other measurements (fig 2b-d),

we may or may not have a prior idea of what

functional form to expect for the data, although

by looking at the plots themselves we can form a

subjective opinion of what that functional form

might look like. For instance, the pore pressure

seems to increase linearly with soil depth, where

as the oxygen content in soil seems to decrease

approximately linearly with temperature, I say

approximately because from the scatter in the

data, its difficult to tell whether its linear or not,

which doesn’t seem to be the case for pore pres-

sure. Finally for profit against paid labor hours
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its clearly nonlinear, the profits seem to increase

linearly early on and then either saturate or even

decrease marginally when the paid labor hours

increase beyond a certain point. Whereas this

does intuitively make sense – a company’s prof-

its cannot increase forever with the number of

hours they pay a laborer to work because the la-

borer’s physical exertion takes a toll after some

hours, there are human limits to how long a per-

son can continuously work.

LINEAR CURVE FITTING (LINEAR

REGRESSION)

Given the general form of a straight line

f(x) = ax+ b (1)

how can we pick the coefficients “a” and “b” that

best fits the line to the data? First question:

What makes a particular straight line “good”

fit? You see, we run smack into the question we

asked above about the subjective nature of the

word “well.” Let us consider the two plots in

fig. 3

In fig. 3a we have two solid lines, one blue

and one red, which provide putative linear fits

to the scattered data points (black circles). In-

tuitively, it seems as though the blue line fits the

data better than the red line. Can we set this

intuition of ours on a quantitative basis?

1) Consider the distance between the data and

points on the line as we do in fig. 3b, the vertical

(a)

(b)

FIG. 3: (a) Two potential linear fits (red and blue

solid lines) around a scattered set of data points

(black circles) and (b) the distance from each data

point to each of the linear fits

lines from the fit to each data point.

2) Add up the length of all the red and blue ver-

tical lines.

3) The sum of these vertical lines is an expres-

sion of the “error” between data and fitted line.

The shorter the distance between the black cir-

cles and fit lines, the smaller the value of the

sum.

4) The one fit line that provides a minimum er-

ror is then the “best” straight line fit.

But there’s a hitch with our procedure. A data

point that is above or below a fit line has a ver-
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FIG. 4:

tical line denoting the error, but if we adopt an

ad hoc principle that the vertical line above fit

line is positive and below is negative, the sum

of vertical lines can again be small, or even sum

to zero. But the error remains even though our

method would suggest its zero. Let us improve

on our first attempt.

Quantifying error in a curve fit

Assumptions:

1) Positive or negative error (data point above

or below the line) has the same sign.

2) Weight greater errors more heavily.

Both requirements can be achieved by squar-

ing the distance.

1) Denote the data point by values (x, y).

2) Denote points on the fitted line as (x, f(x)).

3) Then we define the error as:

ε =
∑

(di)
2 =(y1 − f(x1))

2 + (y2 − f(x2))
2

+ (y3 − f(x3))
2 + (y4 + f(x4))

2

(2)

4) Our fit is a straight line, so now substitute

f(x) = ax+ b

ε =
N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

(y1 − (axi + b))2 (3)

where N is the total number of data points.

5) Using this method, we notice the “best” line

has minimum error between the fitted line and

the data points.

This is known as the least squares approach,

since we minimize the square of the error:

Minimize ε =

N∑
i=1

(y1 − (axi + b))2 (4)

Its calculus time now, to find the minimum

of a function. We know a derivative describes

a slope and zero slope is an extremum. To as-

sure ourselves the extremum is in fact a mini-

mum, we must calculate the second order deriva-

tive, which, if positive, tells us its a minimum.

We won’t worry with the second-order derivative

here for sake of simplicity and simply assume the

existence of an extremum (1st order derivative)

as being a minimum. In truth, the maximum is

often, but not always, unbounded in these error

estimations.

Let us take the derivative of the error with

respect to a and b, set each to zero

∂ε

∂a
= −2

N∑
i=1

xi(yi − axi − b) = 0

∂ε

∂b
= −2

N∑
i=1

(yi − axi − b) = 0

(5)

Solve for the a and b such that the pair of equa-

tions in Eq. 5 both equal zero.
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TABLE I: Least squares fit sample dataset.

i 1 2 3 4 5 6

x 0 0.5 1.0 1.5 2.0 2.5

y 0 1.5 3.0 4.5 6.0 7.5

Re-write these two equations as

a
∑

x2i + b
∑

xi =
∑

(xiyi)

a
∑

xi + b×N =
∑

yi

(6)

put these in matrix form N
∑
xi∑

xi
∑
x2i

b
a

 =

 ∑
yi∑

(xiyi)

 (7)

What is unknown? We have the data points

(xi, yi) for i = 1, ...N , so we have al lthe summa-

tion terms in the matrix. So the unknowns are

a and b. Good news! We already know how to

solve this problem. Remember Gaussian elimi-

nation or Row reduction in matrix algebra?

A =

 N
∑
xi∑

xi
∑
x2i

 , X =

b
a

 , B =

 ∑
yi∑

(xiyi)


(8)

so AX = B. By inverting this matrix, the coef-

ficients a and b are solved for, i.e. X = A−1B.

Please note that A,B and X are not the same

as a, b and x.

Let us test this with an example using the

dataset presented in Table I First we find values

for all the summation terms N = 6.
∑
xi =

7.4,
∑
yi = 22.5,

∑
x2i = 13.75,

∑
xiyi = 41.25.

Now plugging into the matrix form gives us:

FIG. 5:

 6 7.5

7.5 13.75

b
a

 =

 22.5

41.25

 (9)

Please note we are using
∑
x2i and not (

∑
xi)

2.

b
a

 = Inv

 6 7.5

7.5 13.75

 22.5

41.25

 (10)

or use Gaussian elimination. The solution isb
a

 =

0

3

 =⇒ f(x) = 3x+ 0.

This fits the data exactly, i.e. the error is

zero. Usually this is not the outcome, instead

we normally have data that does not exactly fit

a straight line. Here’s an example with some

“noisy” data.

x = [0 0.5 1 1.5 2 2.5],

y = [−0.4326 0.1656 3.1253 4.7877 4.8535 8.6909] 6 7.5

7.5 13.75

b
a

 =

20.8593

41.6584

,b
a

 = Inv

 6 7.5

7.5 13.75

20.8593

41.6584
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FIG. 6: Case of linear fit poorly describing data.

b
a

 =

−0.975

3.561

 so our fit is f(x) =

3.561x− 0.975. The plot is shown in fig. 5.

Thus far, we have looked at data sets that

do fit a straight line. What do we do when

a straight line is not suitable for a data set as

shown in fig. 6? The straight line linear fit will

not predict the diminishing returns in profits

with increasing paid labor hours shown by the

data.

We started the linear curve fit by choosing a

generic form of the straight line f(x) = ax + b.

This is just one kind of a function. There are an

infinite number of generic forms we could choose

from for almost any shape we want. Let us start

with a simple extension of the linear regression

concept and recall the examples of sampled data

from fig. 2.

Is a straight line suitable for each of these

cases? We already concluded it is not. Top left

and bottom right don’t look linear in trend, so

why fit a straight line? There is no logical rea-

son to do so. Let us then consider other options.

There are a lot of functions with lots of differ-

ent shapes that depend on coefficients. We can

choose a form based on experience and trial &

error. Let us develop a few options for nonlinear

curve fitting. We will start with a simple ex-

tension to linear regression by moving to higher

order polynomials.

POLYNOMIAL CURVE FITTING

Consider the general form for a polynomial

of order j

f(x) = a0+a1x+a2x
2+a3x

3+ ...ajx
j+

j∑
k=1

akx
k

(11)

Just as was the case for linear regression, we ask

how can we pick the coefficients that best fits the

curve to the data? We can use the same idea:

The curve fit that gives minimum error between

data y and the fit f(x) is the “best” fit.

Quantify the error for the two second order

curves shown in fig. 7.

(1) Add up the length of all the red and blue

vertical lines.

(2) Pick the curve with minimum total error.

Error - Least squares approach

The general expression for any error using the

least squares approach is

ε =
∑

(di)
2 = (y1−f(x))2+(y2−f(x2))

2+(y3−f(x3))
2+(y4−f(x)4))4

(12)

where we want to minimize this error. Now sub-

stitute the form of our Eq. 10 into the general
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FIG. 7:

least squares error Eq. 12.

ε =

N∑
i=1

(
yi −

(
a0 + a1xi + a2x

2
i + a3x

3
i + ...ajx

j
i

))
(13)

where N is the number of data points given, i

is the current data point being summer and j is

the polynomial order. Re-writing Eq. 13

ε =

N∑
i=1

(
yi −

(
a0 −

j∑
k=1

akx
k

))
(14)

find the best line = minimize the error (squared

distance) between line and data points. Find

the set of coefficients ak, A0 so we can minimize

Eq. 14.

To minimize Eq. 14, we take the derivative

with respect to each coefficient a0, ak k = 1, ..., j

set each to zero.

∂ε
∂a0

= −2
∑N

i=1

(
yi −

(
a0 +

∑j
k=1 akx

k
))

= 0

∂ε
∂a1

= −2
∑N

i=1

(
yi −

(
a0 +

∑j
k=1 akx

k
))

x = 0

∂ε
∂a1

= −2
∑N

i=1

(
yi −

(
a0 +

∑j
k=1 akx

k
))

x2 =

0

.

.

∂ε
∂aj

= −2
∑N

i=1

(
yi −

(
a0 +

∑j
k=1 akx

k
))

xj =

0

re-writing these j + 1 equations, and putting

them in matrix form yields

n
∑
xi

∑
x2i ...

∑
xji∑

xi
∑
x2i

∑
x3i ...

∑
xj+1
i∑

x2i
∑
x3i

∑
x4i ...

∑
xj+2
i

: : : : :∑
xji
∑
xj+1
i

∑
xj+2
i ...

∑
xj+ji


where all

summations above are over i = 1, ..., N . What

is unknown? We have the data points (xi, yi) for

i = 1, ..., N . We want a0, ak k = 1, ..., j. But

we already know how to solve this problem.

A =



n
∑
xi

∑
x2i ...

∑
xji∑

xi
∑
x2i

∑
x3i ...

∑
xj+1
i∑

x2i
∑
x3i

∑
x4i ...

∑
xj+2
i

: : : : :∑
xji
∑
xj+1
i

∑
xj+2
i ...

∑
xj+ji


,

X =



a0

a1

a2

:

aj


, B =



∑
yi∑

(xiyi)∑
(x2i yi)

:∑
(xjiyi)


, where all sum-

mations are over i = 1, ..., N data points.

Please note that no matter what the order j,

we always get equations LINEAR with respect

to the coefficients. This means we can use the

previous solution method AX = B which we

then invert to solve the coefficients X = A−1B.

Example 1

Fit a second order polynomial to the data

presented in Table II.
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TABLE II: Least squares fit sample dataset.

i 1 2 3 4 5 6

x 0 0.5 1.0 1.5 2.0 2.5

y 0 0.25 1.0 2.25 4.0 6.25

Since the order is 2 (j = 2), the matrix form

to solve is
n

∑
xi
∑
x2i∑

xi
∑
x2i
∑
x3i∑

x2i
∑
x3i
∑
x4i



a0

a1

a2

 =


∑
yi∑
xiyi∑
x2i yi

.

Now plug in the data from Table II. The an-

swers we expect for the coefficients after look-

ing at the data are:
∑
xi = 7.5,

∑
yi =

13.75,
∑
x2i 13.75,

∑
xiyi = 28.125,

∑
x3i =

28.125,
∑
x+i2yi = 61.1875,

∑
x4i = 61.1875.

6 7.5 13.75

7.5 13.75 28.125

13.75 28.125 61.1875



a0

a1

a2

 =


13.75

28.125

61.1875

 or

you could use Gaussian elimination to obtain the

solution to the coefficients.
a0

a1

a2

 =


0

0

1

 =⇒ f(x) = 0 + 0x+ 1x2.

This fits the data exactly, i.e. f(x) = y since

y = x2.

Example 2

Now let us try some noisy data.

x = [0 0.5 1 1.5 2 2.5], y =

[0.0674 0.9156 1.6253 3.0377 3.3535 7.9409].

The resulting system to solve is
a0

a1

a2

 = Inv


6 7.5 13.75

7.5 13.75 28.125

13.75 28.125 61.1875




15.1093

32.2834

71.276

.

FIG. 8:

So our fitted second-order function is f(x) =

−0.1812− 0.3221x+ 1.3537x2.

Example 3: Data with three different fits.

In this example we are not sure which order

will fit the data well, so we try three different

polynomial orders. Note that linear regression or

first order curve fitting is just the general polyno-

mial form we just discussed, where we use j = 1.

The results are presented in fig. 9, and we notice

the second and sixth order fits look similar, but

the sixth order fit has a ‘squiggle’ in it. We may

not want that. This brings us to the question of

overfitting or underfitting a curve.

OVERFIT/UNDERFIT

You might naively assume the higher the fit

order, the more accurate the fit. This is not so.

Indeed, as we saw in the third example in the

previous section, the second order polynomial
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FIG. 9:

gave a better fit than the sixth order polyno-

mial. Let us explore this a bit further to better

understand the nuance here.

Overfit:

Overdoing the requirement for the fit to

‘match’ the data trend (order too hight). Poly-

nomials become more ‘squiggly’ as their order

increases. A ‘squiggly’ appearance comes from

inflections in the function.

Consideration 1:

third order: 1 inflection point.

fourth order: 2 inflection points.

nth order: n− 2 inflection points.

Consideration 2:

2 data points: linear touches each point.

3 data points: second order touches each point.

n data points: (n− 1) order polynomial touches

FIG. 10:

each point.

So picking an order too high will always over-

fit the data, see for example the data in fig. 10..

As a general rule, pick a polynomial form at least

several orders lower than the number of data

points. Start with linear and add order until

trends are matched.

Underfit

This occurs if the order is too low to capture

obvious trends in the data, as we saw in fog. 6

where a linear fit clearly does not capture trends

in the data.

As a general rule, view the data first, then

select an order that reflects the inflections, etc.

For the example in fig. 6, the data trend is obvi-

ously nonlinear, so the order of the polynomial

fit has to be greater than 1. Secondly, we ob-

serve no obvious inflection points, so order less

than 3 is recommended. Ergo, we ought to use
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a second order polynomial fit.

SUMMARY

Let us conclude here, but this does not mean

you’ve learned everything there is to learn about

curve fitting. You’ve just scratched the sur-

face. Let me leave you with an example. Will

a polynomial of any order necessarily fit any

set of data? The answer is unambiguously, No.

Many phenomena do not follow a polynomial

form. They may be, for example, exponential,

or stretched exponential etc. For such cases you

still need nonlinear curve fitting strategies but

not polynomial fit. You should exercise your

judgment and apply an appropriate curve fitting

strategy. A simple way to get started is to apply

the following consideration:

Plot the data in linear-linear, log-linear,

linear-log, and log-log forms.

1) linear-linear plot denotes both X and Y axes

are plotted in linear scale: a linear trend be-

comes obvious from this plot. If not linear, then

count the inflection points in the data trend and

weight against the total number of data points

to determine whether a polynomial fit suffices.

2) Log-linear plot denotes Y axis in log scale and

X axis in linear scale: An exponential function

shows as a straight line in this plot.

3) Log-log plot denotes both X and Y axes in

logarithmic scale: A power law function shows a

straight line in this plot.

4) Linear-log plot denotes X axis in logarithmic

and Y axis in linear scale: A logarithmic func-

tion shows a straight line in this plot.

Finally, many a time we are interested in the

exponents of functions we fit the data to. For

instance, if your data exhibits power-law behav-

ior, of the form f(x) = Axα, plotting it in log-log

scale is tantamount to saying, you took a loga-

rithm on both sides log [f(x) = log A+ αlog x.

Notice that this looks similar to the equation of

a line y = mx + c. Just as we determine the

slope m by taking a derivative, we take a log

derivative of the power-law dlog [f(x)]
dlog x = α. But

remember, derivatives are inherently noisy, so

there are in fact a range of strategies to deter-

mine the exponent of a power-law. Similar rules

apply for stretched exponentials etc. So, you can

see there’s plenty more to be learned.
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