
Molecule replication vs cell reproduction
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Intracellular dynamics

Adaptation

Cell-Tissue

Differentiation, Development
Genotype Phenotype

Evolution

Diversity, Symbiosis

Gene-expression/metabolic
networks

Molecule

Cell

Multicellular
organism

Ecosystem

Consistency between hierarchical levels (+collapse)
Extract general basic 
properties of life, based on 
this consistency principle

Consistency with such 
distinct spatiotemporal 
scales?



• Grand Challenge:

Cell --- very high-dimensional dynamical 
systems ( ~5000 proteins for bacteria etc.)

• Can we understand it?

• Recall thermodynamics :  huge-dimensional 
molecular dynamics, but described by few 
degrees   restricting to equilibrium

• From high-dimensional dynamics of cell, 
surprisingly low-dimensional structure is 
extracted, with deep linearity restricting to 
steady-growth states:   Valid after evolution, not 
any high-dim dynamical systems



steady-growth universal constraint
many components (few thousand proteins,,) in a cell 

steady -> all the components have to be roughly 
doubled before division)

Ni(i=1,…,M)  M components (proteins etc)
dNi/dt= μi Ni  exp(μi t);    all μi are equal;
(M-1) conditions  1-dimensional line

Adaptation on an iso-μi-line
Xi log-concentration, its 
change δXi,   + Linearization 
at the original state  



Restriction to steady growth (here) vs to equilibrium (in 
thermodynamics): Transient state can involve many degrees 

Thermal
equilibrium

Steady growth



Concentration xi=Ni/V:  (dV/dt)/V= μ             （volume V)
Temporal change of concentration x

Response under different stress strength E

dilution

Theory for steady growth: a constraint

fi includes all reactions,
Synthesis, degradation,..



In the linear regime

 Susceptibility to stress 

Steady-growth sustaining all components +Linear

Linearization around original statew.r.t  X(=log x) 

Common proportionality for log-
expression change δXj for all 
components j

KK, Furusawa Yomo.
Phys Rev X(2015)

＝ indep’t of j



A: low vs medium osmo
B low vs medium heat
C low vs medium starvation 

δX^E、δX^E’
over few thousand genes

Data from
Matsumoto
etal
BMC Evol Biol
l2013

KK,Furusawa,Yomo,
Phys Rev X (2015)

The Slope agrees 
with the growth 
rate change
δμ’/δμ

Put E Coli under different strength of stress 
conditions;           Measure gene  expressions



Assuming that cellular states are stationary (growth-
rates of all components are balanced)

“quasi-stationary-processe

On the average the growth rates are balanced
(if oscillatory, take temporal average)
＋ No Bifurcation to different branches of solution in 
F(X)
＋ Linearization  in X （ｌｏｇ x）

Compare between Original state O and the states at stresses 
E or E’



O: no stress
E,E’：osmotic pressure, 
heat, starvation
Low, medium high

Comparison across different 
stress conditions;                                                     

expressions

Transcriptome 
expreiment



γi depends on stress type (a,b,..)

α depends on stress type (a,b,..)

Compare Different types of stresses:

X



Across Different types of stresses:  
γi(a) depends on type a so correlation might not be 
expected, but…

osmotic / heat   starve/osmotic starve/heat

Still highly correlated



Confirmed also protein expression changes 
across different environmental conditions
(based on the data by Heinemann)
20 different conditions on E Coli

Furusawa, KK  bioRxiv 2017



Non-trivial point: Emergent macroscopic Linearity

• (1)  Large Linear Regime?
• (2) Validity across different environmental 

condition?

Q： achieved in an evolved system(to macro regime)?

before addressing it..

Is this universal relationship extended to 
evolution-environmental relationship?  LATER



How is recursive production of a cell sustained？
each cell complex reaction network

with diversity of chemicals;
The number of molecules of each species

not so large
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Fluctuations

Naiive Physicist View

Not Assuming Molecule Replication (Replicators)



Ｔｏｙ Cell Model with Catalytic Reaction Network 
‘Crude but whole cell model’    

（nutrient）

reaction

catalyze

cell

medium

diffusion

ｋ species of chemicals 、Xo…Xｋ－１
number ---n０ 、n１… nｋ－１

some chemicals are penetrable

through the membrane with the 
diffusion coefficient D

resource chemicals are thus 
transformed into impenetrable 
chemicals, leading to the growth in

Ｎ＝Σni,   when it exceeds Nmax

the cell divides into two

random catalytic reaction network

with the path rate p

for the reaction    Ｘi＋Ｘj－＞Ｘk+Xj

model

C.Furusawa & KK、PRL2003

・・・ K >>1 species

dX1/dt ∝ X0X4;   rate equation;
Stochastic model here

(Cf. KK&Yomo 94,97)



☆Simulation procedure

１：Pick up randomly 2 molecules at each time step, if the pair 
reactions, change the substratre molecule into productt (with 
the probability of the reaction rate) otherwise leave as it is

2 With a certain rate per time step (（≈１／Ｄ）, exchange a 
molecule of inside in the cell by that in an enviromenment. If 
the molecule is impermeable, it stays 

３：If the total number of molecules N goes beyodn Nmax cells are 
divided into two, eahc of which consists of molecules chosen 
randomly



In continuum description, the following rate eqn., but 
we mostly use stochastic simulation



☆Growth speed and fidelity in replication 
are maximum at Dc
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Zipf’s Law is oberved at D = Dc

ni (number of molecules）

rank

Furusawa &KK,2003,PRL

Average number of each chemical ∝ 1/(its rank)

(distribution of x：ρ（ｘ）∝ｘ ）
-2

number rank
X1 300     5
X2 8000   1
X3 5000    2
X4 700      4
X5  2000    3
…….. (for example)
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Confirmed by gene expression data



Mouse ES cell

C. elegans

Mouse Fibroblast Cell

Yeast
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Later confirmed by several other groups



Formation of cascade catalytic reaction

Rank of ni 

Catalyze 
chemicals of 
higher rank
mainly
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栄養から直接生成される成分の数
を多くなるようパラメータを変えて、
階層構造が判りやすくした例

１
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１：minority molecules

２：catalyzed by 1, synthesized by resource

３：catalyzed by 2

：

★

ni

With conservation law,
The exponent -1 is explained

Mean-field theory in phase transition  (self-consistent) calc.)



• Simple laws hold in real biological organisms

• The abundance-ranking inverse law is often observed

frequency of words （the and of…)  Zipf’s law
ranking of income

Successive ordering in mltual 
catalytic reactions

Scale invariance,
Phase transition

Rank of ni 

Catalyze chemicals 
of higher rank 
mainly



Fluctuation of each chemical
Abundance;
 long-tail to abundant size
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e.g.
cell1 X1   10000
cell2           8000
cell3         15000
cell4        20000

…..
histograrm



So  far average quantity of all components;

Next question: fluctuation by cells:
distribution of each Ni by cells

Each color 
gives
different 
chemical
species

LOG SCALE

Furusawa,..
KK,
Biophysics2005

Log normal distribution !

e.g.
cell1 X1   10000
cell2           8000
cell3         15000
cell4        20000

…..
histograrm



☆Heuristic explanation of log-normal distribution
Consider the case that a component X is catalyzed by 
other component A, and replicate; the number --NX、NA

d NX /dt = NX NA

then

d log( NX )/dt = NA

If、 NA   fluctuates around its mean < NA＞, with fluct. η（ｔ）

d log( NX )/dt = ＜NA＞＋η（ｔ）

log( NX ) shows Brownian motion  NX log-normal distribution

too, simplified, since no direct self-replication exists here

But with cascade catalytic reactions, fluctuations are 
successively multiplied, (cf addition in central limit 
theorem.);Hence after logarithm, central limit th.  applied



☆Cascade leads to multiplicative propagation of 
noise (at  critical region)

ｄNx/dt=Ny Nｚ

with cascade catalytic reactions, fluctuations are 
successively multiplied, 
(cf addition in central limit theorem.);
Hence after logarithm, central limit th.  applied

☆Heuristic explanation of log-normal distribution



☆Cascade leads to multiplicative propagation of 
noise (at  critical region)

Ａ Ｂ Ｃ Ｄ Ｅ

Propagation of fluctuation, feedback to 
itself, leading to log-normal distribution 
tail.

Cf.  If parallel,

Ａ

Fluctuations come in parallel:

Usual central limit theorem is valid; 

normal distribution.

Cf??

weight – log-normal
height -- normal



Figure 1

Concentration Concentration

A B

Fluctuations in a Cell;  Cell Volume Growth effect

Stochastic gene 
expression  that are
current concern of many

Consequence of
Cell volume growth 
fluctuation tha we are
interested

Tsuru,Ichinose,Kashiwagi,Ying,KK,Yomo

Growth Fluctuation induces log-normal-type distrb.



Origin of Log-tailed phenotypic fluctuation

• protein concentration x
• dx/dt=f(x)-(μ+η）ｘ

dilution term by cell volume growth
μ －－ growth rate
η －－ fluctuation (noise)
multiplicative noise  log-tailed distribution

(exp； Tsuru ｅｔａｌ）

Growth rate μ is a result of an ensemble of gene 
expression μ(x1,x2,x3,…) --(consistency)?
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Statistics in gene expression in the present cell

Log-normal like distribution at each Doxycycline concentration

Tsuru,Ichinose,Kashiwagi,KK, Yomo
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Growth rate μ does not change so much by Doxy conc.
From the distribution, and temporal course estimate k,Dv,Dｇ
P(x) is also fitted well       Dg is also estimated by stochastic
gene expression analysis  by Poissonian molecular process

But CV2 is almost constant
then contribution by Dg is
small
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Negative Feedback: higher growth --- higher dilution for all proteins
--- lower cellular activity  ---lower growth

RFP-GFP concentration correlation
(Just from gene network, negative correlation is expected,

but clearly positive correlation is observed)

in the presence of doxycycline of various concentrations, 16.7 nM (A)
, 22.5 nM (B), 33.7 nM (C), 45 nM (D) and 113 nM (E). 



xk
dt

dx 

k

x 



d

k
dx

2


 dPdxxP )()( 
 
























 













 


2

2

0

22

2

2
0

2

2

2
exp

2

1

2
exp

2

1
)()(


















x

k

x

k

kdx

d
PxP

Large fluctuation in growth rate (30-50%)
Question::   Source for growth fluctuation?
Furthermore, Time Scale for the growth fluctuation is 
rather slow (far from white noise, order of cell division):

(the stationary distribution is not much affected)
(Ichinose et al)



Fluctuation in growth rates

Page 37

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

0 100 200 300 400
2

3

4

5
6

Cell growth rate (h-1)
C

e
lls

Time (min)

C
e

ll 
le

n
g

th
 

(u
m

)

0.4
7

0.5
4

0.5
5

CV=13%

Correlation time ～１ cell generation (nonwhite)

h-
1


