Discrete-time Stochastic Simulaton of
Chemical Reaction Networks

based on Furusawa & Kaneko’s model in PR1. 90.088102

Tuan Pham

=¥ Niels Bohr Institute
COPENHAGENT Biocomplexity Department

LO
o
1

Q)
T o R e AT W m
se|nos|ow JO Jaquinu
a
QA
2 - O
| | | | & T
| | | |
Y™¥ (\] ™ v
oo
Ham s
|l —
- Sl N xxm — [)
3 M% | N
£
X }
x” ._.
\\vm \E i T
x” of : ¢
/ I _
/ I _ o
4- | T | VM | —- [R -B | m —._- | T m
< (p) QA AT O
o - - - -
A ¥ A CH: N K S [D) Y
~~
a So|Nnos|oW JO Jaquinu
B ——

rank

k=5%x10°N=5x%x10p =0.022

Algorithm

= () Creating a vector of k components, denoted by x and assign to each of its component a random integer € [1,/V] . Let’s keep the
k

total number of molecules less than equal 2N before anything happens, i.e. Z x.(intial time) = aN, a € (0,2), note that this is not
=
important as a constraint as long as the initial condition, if set close to 2N, i.e a close to 2, will reach step 4 FASTER.

+ 1) Generating the chemical reaction network G with k species (nodes) and a probability p for i and j being connected and
producing [as specified by i + j — [+ j, note p is independent from the pair i and j

= 2) At every trial, choose a pair of species i and j at random with probability proportional to the product of their current
abundancesandifi+j —> [+jx, > x,— 1l and x; — x; + 1

= 3) After every D of such trials, let a fixed nutrient come in with probability 1 and go out with probability proportional to its

concentration inside the cell. For simplicity, incoming makes x,, — X.urient T 1, Whereas outgoing makes

=

utrient

X

nutrient — X

nutrient

k
. 4) Cell division happens if Z x; = 2N, use x = (1 — p)x'V + px®, where p = rand(), keep one among the two x') and x'*
=

= Once step 4 is completed, go back to 2 and keep repeating this cycle 2-3-4-2 (for the same G that is generated at step 1) for a total
number of cell div

1) Generating the chemical reaction network G with k species (nodes) and a
probability p for i and j being connected and producing [that is chosen as a

random integer to specify the reactioni+j — [+ .

Note p is independent of the pair i and j

Xo(nutrlent) cell

reaction

Catalyze
diffugion
- K >>1 species

medium

1) Generating the chemical reaction network G with & species (nodes) and a
probability p for i and] being connected and producing [as spec1f1ed by

tEi o 4] A = & = prodt andom inteoe =4

import numpy as np

import matplotlib.pyplot as plt
import random

from tqgdm.auto import tqgdm

def random reaction ne "k(rho, k):
”“”Generates a random reaction network with k nodes and density rho."""
Create an array of nodes 1indices

nodes = np.arange(k)

Keep generating edge degrees until the sum 1s even

while
edge_degrees = np.random.poisson(rho * k, size=k)
if 1(edge_degrees) % 2 == 0:
break

_ # Repeat each node index by 1ts edge degree to get the list of edges
K >>1 species edges = np.repeat(nodes, edge_degrees)

medium # Shuffle the edges and reshape into a 2D array
np.random.shuffle(edges)
Is, Js = edges.reshape((2, -1))

Assign a random reaction product to each edge and store in a dictionary
= {(i, j): np.random.randint(k) for i, j in zip(Is, Js)}
return G

+ Reaction « 2) At every trial, choose a pair of species i and j at random with probability
proportional to the product of their current abundances and ifi +j — [+ J,
Xi—=xr—landxy > x4+ |

= 3) After every D of such trials, let a fixed nutrient come in with probability 1
and go out with probability proportional to its concentration inside the cell. For
+ 1, whereas outgoing makes

+ Diffusion

simplicity, incoming makes x, =5 X
Xnutrient =1

utrient

— Xputrient

k
= Cell division. 4) Cell division happens if Z x;=2N,usex = (1 — p)IxD + px@ where
i=1
p = rand(), keep one among the two x and x®

@,

»* Reaction

< Diffusion

+ Cell division

-
=
(D
S

1 (list(G.keys()))
[:,0]] * x[r[:,1]]
P.sum()

—o |l

U X S
N I

for division in m(ra (celldivision)):

If the total number of molecules exceeds 2N, divi
t('Division count: ', division)
while np.sum(x) < 2 % N:

Choose two random nodes
index = np.random. c e (r), p=P)
i, j = tuple(r[index])

If they are connected by a reaction and both

if ((i, j) in G) and (x[i] > @) and (x[j] > 0):
time += 1
x[i] =1
x[1l] += 1

Every D iterations, add a nutrient molecu
if time % D == 0O:
x[0] += 1
leaking_out = x[0] / np.sum(x)
if np.random.random() < leaking_out:
x[0] —=

x[r[:,0]] * x[r[:,1]]
P/ P.sum()
. random. randint(2, 10)

Frequency

— final division
over cells

Ranking
k=10°,N=10%p =0.11

