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abscissa shows the rank determined by ni. As shown in
the figure, the slope in the rank-ordered number distribu-
tion increases with an increase of the diffusion coefficient
D. We found that at the critical point D ! Dc, the dis-
tribution converges to a power law with an exponent "1.

The power-law distribution is maintained by a hier-
archical organization of catalytic reactions, where the
synthesis of higher ranking chemicals is catalyzed by
lower ranking chemicals. For example, major chemical
species (with, e.g., ni > 1000) are directly synthesized
from nutrients and catalyzed by chemicals that are
slightly less abundant (e.g., ni # 200). The latter chemi-
cals are mostly synthesized from nutrients (or other major
chemicals) and catalyzed by chemicals that are much less
abundant. In turn these chemicals are catalyzed by chemi-
cals that are even less abundant, and this hierarchy of
catalytic reactions continues until it reaches the minor
chemical species (with, e.g., ni < 5) [13].

Based on this catalytic hierarchy, the observed expo-
nent "1 can be explained using a mean-field approxima-
tion. First, we replace the concentration ni=N of each
chemical i, except the nutrient chemicals, by a single
average concentration (mean-field) x, while the concen-
trations of nutrient chemicals S is given by the average
concentration S ! 1" k$x, where k$ is the number of
non-nutrient chemical species. From this mean-field
equation, we obtain S ! DS0

D%!" with S0 !
P

j nj=V. With
linear stability analysis, the solution with S ! 1 is stable

if D< !"
S0"1 & Dc. Indeed, this critical value does not

differ much from numerical observation.
Next, we study how the concentrations of non-nutrient

chemicals differentiate. Suppose that chemicals fi0g are
synthesized directly from nutrients through catalyzation
by chemicals j. As the next step of the mean-field ap-
proximation we assume the concentrations of the chemi-
cals fi0g are larger than the others. Now we represent the
dynamics by two mean-field concentrations. The concen-
tration of fi0g chemicals, x0, and the concentration of the
others, x1, are represented by the following equations:

dx0=dt ! !xS% !"k$'x2 " xx0( " x0D'S0 " S(;
dx1=dt ! !"k$'x2 " xx1( " x1D'S0 " S(;

where the average concentration of non-nutrient chemi-
cals x is given by x ! "x0 % '1" "(x1. The last terms of
the above equations represent the dilution effect by the
increase of the cell volume. The solution with x0 ! x1
satisfies x0 ) x1=" at the critical point Dc. Since the frac-
tion of the fi0g chemicals among the non-nutrient chemi-
cals is ", the relative abundance of the chemicals fi0g is
inversely proportional to this fraction. Similarly, one can
compute the relative abundances of the chemicals of the
next layer synthesized from i0. At D ) Dc, this hierarchy
of the catalytic network is continued. Chemicals at a
given layer of the hierarchy are synthesized from the
nutrients catalyzed by the layer one step down in the
hierarchy. The abundance of chemical species in a given
layer is 1=" times larger than chemicals in the layer one
step down. Then, in the same way as this hierarchical
organization of chemicals, the increase of chemical abun-
dances and the decrease of the number of chemical spe-
cies are given by factors of 1=" and ", respectively. This is
the reason for the emergence of a power law with an
exponent "1 in the rank-ordered distribution [14].

In general, as the flow of nutrients from the environ-
ment increases, the hierarchical catalyzation network
pops up from random reaction networks. This hierarchy
continues until it covers all chemicals, at D ! Dc " 0.
Hence, the emergence of a power-law distribution of
chemical abundances near the critical point does not
rely on the details of our model, such as the network con-
figuration or the kinetic rules of the reactions. Instead it is
a universal property of a cell with an intracellular reac-
tion network to grow, by taking in nutrients, at the criti-
cal state, as has been confirmed from a variety of models.

There are two reasons to assume that such a critical
state of the reaction dynamics is adopted in existing
cellular systems. First, as shown in Fig. 3, the growth
speed of a cell is maximal at D ! Dc. This suggests that a
cell whose reaction dynamics are in the critical state
should be selected by natural selection. Second, at the
critical point, the similarity of chemical compositions
between the mother and daughter cell is maximal as
shown in Fig. 3. Indeed, for k > N, the chemical compo-
sitions differ significantly from generation to generation
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FIG. 2. Rank-ordered number distributions of chemical spe-
cies. (a) Distributions with different diffusion coefficients D
are overlaid. The parameters were set as k ! 5* 106, Nmax !
5* 105, and " ! 0:022. 30% of the chemical species are
penetrating the membrane, and the others are not. Within the
penetrable chemicals, ten chemical species are continuously
supplied to the environment, as nutrients. In this figure, the
numbers of nutrient chemicals in a cell are not plotted. With
these parameters, Dc is approximately 0.1. (b) Distributions at
the critical points with a different total number of chemicals k
are overlaid. The numbers of chemicals were set as k ! 5*
104, k ! 5* 105, and k ! 5* 106, respectively. Other pa-
rameters were set the same as those in (a).
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Algorithm
❖ 0) Creating a vector of  components, denoted by  and assign to each of its component a random integer  . Let’s keep the 

total number of molecules less than equal 2N before anything happens, i.e. , note that this is not 

important as a constraint as long as the initial condition, if set close to 2N, i.e  close to 2, will reach step 4 FASTER.

❖ 1) Generating the chemical reaction network  with  species (nodes) and a probability  for  and  being connected and 
producing  as specified by , note  is independent from the pair  and 

❖ 2) At every trial, choose a pair of species  and  at random with probability proportional to the product of their current 
abundances and if ,  and 

❖ 3) After every  of such trials, let a fixed nutrient come in with probability 1 and go out with probability proportional to its 
concentration inside the cell. For simplicity, incoming makes , whereas outgoing makes 

,

❖
4) Cell division happens if , use , where , keep one among the two  and 

❖ Once step 4 is completed, go back to 2 and keep repeating this cycle 2-3-4-2 (for the same  that is generated at step 1) for a total 
number of cell_div

k x ∈ [1,N]
k

∑
i=1

xi(intial time) = αN, α ∈ (0,2)

α

G k ρ i j
l i + j → l + j ρ i j

i j
i + j → l + j xi → xi − 1 xl → xl + 1

D
xnutrient → xnutrient + 1

xnutrient → xnutrient − 1
k

∑
i=1

xi = 2N x = (1 − p)x(1) + px(2) p = rand() x(1) x(2)

G



Ｔｏｙ Cell Model with Catalytic Reaction Network 
‘Crude but whole cell model’    

（nutrient）

reaction

catalyze

cell

medium

diffusion

ｋ species of chemicals 、Xo…Xｋ－１

number ---n０ 、n１ … nｋ－１

some chemicals are penetrable
through the membrane with the 
diffusion coefficient D

resource chemicals are thus 
transformed into impenetrable 
chemicals, leading to the growth in
Ｎ＝Σni,   when it exceeds Nmax

the cell divides into two

random catalytic reaction network
with the path rate p
for the reaction    Ｘi＋Ｘj－＞Ｘk+Xj

model
C.Furusawa & KK、PRL2003

・・・ K >>1 species

dX1/dt ∝ X0X4;   rate equation;
Stochastic model here

(Cf. KK&Yomo 94,97)

❖ 1) Generating the chemical reaction network  with  species (nodes) and a 
probability  for  and  being connected and producing  that is chosen as a 
random integer  to specify the reaction . 

❖ Note  is independent of the pair  and 

G k
ρ i j l

i + j → l + j

ρ i j
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❖ 1) Generating the chemical reaction network  with  species (nodes) and a 
probability  for  and  being connected and producing  as specified by 

 . A_{ij} = 0, 1 D_{ij} = product , random integer. G_{ij}=A_{ij}D_{ij}

G k
ρ i j l

i + j → l + j



❖ Reaction

❖ Diffusion

❖ Cell division

❖ 2) At every trial, choose a pair of species  and  at random with probability 
proportional to the product of their current abundances and if , 

 and 

❖ 3) After every  of such trials, let a fixed nutrient come in with probability 1 
and go out with probability proportional to its concentration inside the cell. For 
simplicity, incoming makes , whereas outgoing makes 

,

❖
4) Cell division happens if , use , where 

, keep one among the two  and 

i j
i + j → l + j

xi → xi − 1 xl → xl + 1

D

xnutrient → xnutrient + 1
xnutrient → xnutrient − 1

k

∑
i=1

xi = 2N x = (1 − p)x(1) + px(2)

p = rand() x(1) x(2)



❖ Reaction

❖ Diffusion

❖ Cell division



k = 103, N = 104, ρ = 0.11


