Cell Differentiation
Waddington’s Image

Waddington's Canalization
(stability of each cell type)1958

How genes guide this process? = = e
(cf. reconstflicted landscape
From experimental data,
Dynamical System’s View? KK,Sato, with Asashima’s group)

(attractor) (cf Kauffman mid60’s)




Waddington, The strategy of genes, 1957

Ficuee 4

Prt of an Epigenctic Landscape. The path followed by the ball, s
it rolls down towards the specrator, corresponds to the develop-
mental history of a parocular part of the egg. There is first an
alternative, towards the right or the left. Along the former path,
a second alternative is offered; slong the path to the left, the
main channel continues lefiwards, but there is an alernative path
which, however, can only be reached over a threshold.

Epgienetic Landscépé

EGD

4 -
. -
i
g _oouid
"
sl
ADULT

Ficiune 3
,.ipia.qm_;{m;- digpram of development. The time axis runs p:fp.'ml-i-
cular to the paper, from the plane PQRS at the time of fertilsation
to P'Q'R'S" in the adult, The other two dimensions represent
the compagition of the system. The composition of the various
parts of the egg (which in this case varies continuously, in a
"gradient’ manner) originally lie within the area A, One region
of the egg, with compuesition B, dewelops along a series of trajec-
tories which converge towands the adult rissue B'. Another
region, with composition C'y -4 Cy also |.1l.1;'m: o l.lr."-'l.'iﬂp along a
converging sct of trajectories. At some seage during development,
physical contact (heavy double arrow) occurs between the B

A ph ase-space d iag ra m Of develo pmelﬁ wl €y a reaction oceurs by which the Cy trajectories are

diverted so a3 to converize on C'4: this represents an induction,




The complex system of interactions wnderlying the epipenetic landscape.
The peps in the ground represent genes; the strings leading from
them the chemical tendencies which the genes . The
modelling of the epigenetic landscape, which slopes dowm from
above ane's head towards the distance, is controlled by the pull Ka n e ko ,YO m O 97

of these numerous guy-ropes which are ultimately anchored to
the genes.

Tae complex system of interaction underlying the epigenetic
landscape



- Dynamical Systems’s View

Cellular state as a point
In N—dimensional space
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Problems in ‘multiple
attractor’ view of
1-cell dynamics

How initial conditions for
multiple attractors are
chosen?

Just by noise?

too random?

Sui Huang Bioessay 2008

? Stability of differentiation process;Homeorhesis
?Stability of cell number ratio; ensemble level
?Irreversible Loss of Pluripotency

(embryonic stem cell can produce any types, and...)
(‘time’s arrow’?)
Relevance of cell-cell interaction?



< Each valley along X-direction
attractor (=>homeostasis) ¢ \\,

But..... Landscape changes along Y-axis !?
‘Homeorhesis’  Y-direction

(rhesis, to flow -2>similar flow) Waddington p32
robustness in path.. Developmental process itself,
l.e, landscape itself
but, what this landscape means?



Epigenetic Landscape and Homeorhesis???

1) X,Y,Z axis ? =
X: collect on variable? NS
collective expression variable M\'

Z: plasticity (changeability) ? W\\'\f\/
inverse of P (X)), cell # ratio \' //\./\\'f\., Z

Y: slow change in gene
expression dynamics? A

2) Y developmental time vs time for X7
--Attraction into valley (attractor) in state- space :Fast
-- What is the Slow change in Y direction(depth)?
a)Slow developmental change (e.g.,in cell number)
-> and according cell-cell interaction

b)Fast expression + Slow epigenetic(?) change?

>




*Possibility (1)
Y-axis: increase In cell number = cell-cell
Interaction (KK,Yomo1997,Furusawa-KK 1998,2001,...)

Protein A

i d = N A /\\ acd

o A Dynamical-Systems View of Stem Cell Biology
SClence Chikara Furusawa and Kunihiko Kaneko
Science 338, 215 (2012),

Original: Furusawa, Kaneko 1999,2001




Possibility (2)
Y as the slow change in epigenetic modification?
(Matsushita, KK,2020, Phys Rev Res)

‘Epigenetic-Modification’?
< Histon Modification & \\/\
Methylation,,,, o§$ M

“Coarse-grained” model \ /\\ ._

5 \'Ao I\,
Slow variable representing

feasibility that a gene is expressed X

(by chromatin change)



Inter-Intra dynamics

Catalytic reaction dynamics & _ ., > ) [ 0

- Growth of a cell dt

- Cell division <

- Cell-cell interaction cot s

- Differentiation?? @;f OWTH

Fic. |. Schematic representation of our model. See the
appendix for the specific cquation of cach process.

Coupled Dynamical Systems
with growth in dimension

melabaliles

(In the division, state Xi is
transferred (with small noise))

(all-to-all diffusion coupling (no spatial pattern)

- irreversible and robust developmental process?

<based on the study of coupled dynamical systems
(cf, KK 84-90’s)



synchronous division: Instability of homogeneous state
no differentiation thraugh.cell-cell interaction

j Assuming oscillatory st

Concentration of Chemical 2

Concentration of Chemical 2

Assuming oscillat6ry ‘dynamics as a single cell

Concentration of Chemical 3

|AS

' Concentration of Chemical 2
W formation of discrete types
s WItH- different chemical
compositions:

recursive production

oncentration of Chemn

stabilize each other Kaneko, Yomo1997



Hierarchical differentiation from
'stem cell’;by taking initially
dynamics with instability (e.g.,
chaotic)

(higher order catalysis)

conc=nraicn

(1) if initial states show
chaotic oscillation

concenration
concenralion
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Hierarchical differentiation

In|t|aIIy chaotic dynamics
( chaos;

irregular oscillation
produce stochasticity
spontaneously

Furusawa & KK 98 - Still stable (attractor)




Stable HierarchicalDifferentiation

A

\ Ratio A decreased then
“ Differentiation ration A
S 2Ais increased

Stable ratio among cell types R
Hypothesis r—\
(Furusawa, KK 2001) _, :
Gene Expression dynamics Intra-cellular Number distribution
g . .., | dynamics of cell types
in stem cell = Oscillatory with' - -

itinerancy of several states U

—>cell-cell differentiation—> modification of

>robust differentiation RS
| occs of Plurinotencv==1 oc<c of ciich dvnamices

type-A2 4




Such chaotic dynamics are rather rare.
From a huge number of random networks; only some
fraction of them show chaotic dynamics & differentiation

; 0015 T T T 1
€
However, when g 001 |} Oscillatory (chaos)
differentiated, growth of §
an ensemble of cells is 3 o | |
not decreased % Fixell point
such networks willbe & ﬁﬁaﬁgw v
0
selected through 3 L
o 0 0.1 0.15

evolution
Consistency between

cell reproduction and
multicellular growth Furusawa,KK 2001PRL

growth spood of a single cell (a.u.)



* Loss of pluripotency is characterized by
(i) Decrease in the diversity of expressed genes
initially diverse expressions — later specified in

"dlfferentlatec.j cells - (Chambers
(i) Decrease in cell-cell variation et al
(exp. Heterogeneity confirmed) MRl NatureQ7)

(ilf) Loss of temporal variation in eac

Oscillation in gene expression in stem cell:
el - Oscillation of Hes1

¢ | pee T g

- é‘fiﬂi' AW % . 111 expression~4hr for ES

P VR iﬂj . EE !y 1 Lost when differentiated

N [ g L LA i A ) Kobayashi et al. Genes
e - Development 2009

Gene expression dynamics Itinerancy over several states

Chang et al (Nature 08)
To recover Pluripotency = increase in degrees of freedom
(Furusawa,kk 01) €?-> Yamanaka's iPS by expressing 4 genes



Heterogeneity in stem cell population

Stella expression

v'a marker of pluripotency and germ cells
Hayashi et. al, Cell Stem Cell (2008)

ABTELLA margsd+ AP

Nanog expression

v" considered as a core element of the

pluripotent transcriptional network
Chambers et_ al, Mature{2007)

Octd/Nanog/GFP

Hes1 expression

v" a member of the bHLH transcriptional
repressors that regulate cell proliferation

and differentiation in embryogenesis
Qctd Hes1 Kobayashi et. al, Genes & Development {2009)




Hes1 oscillation in ES cells

[_Hesipromoter, 5 -UTR__}{ Ub-NLS -Luciferase g -UTH]
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Expression of Hes1 exhibit an oscillatory behavior
with a period of 3-5 hours.

This oscillation is Lost in differentiated cells!
Kobavashi et al. Genes Development 2009



To recover Stemness - increase in degrees of
freedom (Furusawa,KK 2001) <7
Yamanaka's iPS (2006)by expressing 4 genes

J. theor. Biol. (2001) 209, 395-416

Theory of Robustness of Irreversible Differentiation in a Stem Cell System:
Chaos Hypothesis

CHIKARA Furusawa*® anD KuUNIHIKO KANEKO

8. Predictions

We believe that our results are universal in
a class of dynamical systems satisfying minimal
requirements of the developmental process.
Although some of these universal features are
not yet examined experimentally, we make some
predictions here as general features commonly
satistied in real stem—cell systems. To conclude
our paper, we summarize the predictions we can
make using our model, and discuss the possibility
of experimental verification.

84. IRREVERSIBLE LOSS OF MULTIPOTENCY
CHARACTERIZED BY DECREASE OF COMPLEXITY
IN CELLULAR DYNAMICS

While during the normal course of develop-
ment, this loss of multipotency is irreversible, it is
possible to recover the multipotency of a differen-
tiated cell through perturbation, by changing the
diversity of chemicals or the complexity of the

dynamics._For example. by expressing a variety
of genes compulsively in differentiated cells, the

original multipofency may De regained. INoie

that, according to our model simulations, the
basin of attraction of the stem cell is much larger
than that of differentiated cells. This implies that
by adding a large perturbation that results in the
presence of a variety of chemicals in a cell, the cell
de-differentiates back into a stem cell.




* Revisit by Gene regulation Network Model
1 diversification of cell types
2 Loss of Pluripotency (‘time’s arrow’?)
3 Robustness in cell types andTheir distribution
» Stem Cell
Proliferation ---- Robust Differentiation --- Plastic
 How are these two opposing tendencies compatible?

(Cf. Similar Question: Evolution, Brain, ....)
 Cell-cell interaction + Cell number increase



A simple model of multicellular development

activation
= = O repression
N Paa / _— .
= = Screening of regulatory networks
V\ . .
= = that can generate cell-type diversity.

® 4
o> ®
Uﬁu/yé Extract general features independent
—7 —@ of details of modeling.

cell-cell interaction
(diffusion of proteins)

¢
<

[1] N. Suzuki, C. Furusawa, and K. Kaneko, PLoS One, 6(11), 27232, 2011
[2] C. Furusawa and K. Kaneko, Science, 338(6104), 215-7, 2012



A cell model with on/off switching expression dynamics

MRNA expression levels my,my,---,m

n

Cellular State{
protein expression levels DPisPors s P,

Dynamics of mRNA expressions
P,

activamm

am, _ (p,)' .
— S —m, H: Hill coef. (=2
i-th gene — dt 1+ (pj)” e ill coet. (=2)
P,
repression dm . 1
> ﬁ i —m
i-th gene 1+ (pj )H "
p.
J \/ Pk )
repression ‘/activation dml. _ 1 (pk ) _
— ﬁ - i
i-th gene dt I+ (pj )H I+ (pk )H

/ ‘
. . : degradation
Or we adopted thershold function model tanh(3.Jij pj) ~ synthesis



A cell model with on/off switching expression dynamics

Dynamics of protein expressions

Cl’p—i=a°mi — P, +Di(15i_p")

dt . :
/ _ N\ _ . diffution through p;. protem
synthesis degradation the membrane concentration in

environment

. constant

For example: —
dm, _ (pz)H —m
a 1+(p,)"
dm, _ 1 (pz)H

it 1+(p3)H 1+(p2)H o

ﬁ dm; _ (pl)H —m
= da  1+(p)"

dp,
dt

=am; — p, +D1(]71—p1)




Screening regulatory networks

Screening regulatory networks that can maintain
multiple cell types by simulating all possible regulatory
networks (~1.4 X 108 networks)

v 5 genes, 10 regulatory paths

A cell-cell interaction
(diffusion of proteins)

¢
@@ €¢
ceecceoecCe

[1] N. Suzuki, C. Furusawa, and K. Kaneko, PLoS One, 6(11), 27232, 2011
[2] C. Furusawa and K. Kaneko, Science, 338(6104), 215-7, 2012



Further confirmation of our chaotic itinerancy hypothesis

YeDynamics of i-th mRNA abundance in k-th cell:

flz)
n’m 1
- H:.r —?H 1l x) = bt |I
f{z p.,") B WLl f( ) l_i_e—;i-: :: ,'I
synthesis of MRNA degradation el
Y Dynamics of i-th protein abundance in k-th cell:
df;T — ¢ - }” _ p 4+ D (P J.U: ) /,_, generegxlatorynetwor? ——
T RS et throush (R )| =
synthesis degradation “_ _ - e ﬁ/ genet
tne memoprane ge“e\Q/ \_l—_’/ L
cell division Diffusion of
Increase in the cell number by division ® | Some protein
In division put some noise in m,p e © [
between cells e @ :
o/
. . . . . @ @ ¥
Cell-cell interactions: diffusion of some protein W
V@ | cellcel
) ¥ interactior

C.Furusawa. N.Suzuki



\Simulations of all GRN with 5 gene and 10 paths
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TypeA: Turing ( diffusion of inhibitor + activator)

Adiffusive

[W

-diffusive
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No cells that satisfy both prolifereation and differentiation gteriy



typeB =Stem-cell=Proliferation+differentiation
more than single differentiations observed with the

iIncrease of cell number

[ Type B-1( phase of oscillations differentiated—>
, instability—> the Werenciate)
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TimeO

Videos available at youtube
. ( Suzuki,Furusawa,Kaneko)
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Differentiation by bifurcation with effective
parameter change'in coupled dynamical systems

1 =
Proton 4
04 O
protein 3 |
N B
v O AT
N
7
protein 2

protein 1

Cell-cell interaction - changes effective bifurcation parameter -
lead to distinct cellular states - distribution of different states
leads to consistent parameter changes

Cell number increase—> Selection of states



- Dynamical Qystems Mechanism

Cell number Mutuaally stabilize

£

Protan 3

* Oscillatory Dynamics
~>Desynchronized irregular oscillation &Nz

by cell-cell interaction i ]
- some cells switch to a novel state SRS
(bifurcation & stabilized by interaction) ral)

When desynchronized oscillation remains,
differentiation continues.

Rate of differentiation or self-renewal depends on the
number ratio of each cell tvype = its requlation



e Common Network Structure for ‘Stemness’
--Combination of ‘Oscillation & ‘Switch Modules’

Oscillation: (Plural) negative feedback loops
O N
Switch: Positive

Gy & Gp TeNEEr o
= ™ \ / \H / __

8:;’00 ':’
(Turing type) .

D

Simplest 2-gene model (Goto,kk)--~ e
8 i V]
| od ose Interaction -
w 05} - , o5t _~1 o - .
|—’(:) Mm "L 3::: Coar \ Oscillatory to
l 0; o 098 56592054096 098 1.00 . .
(Similar for @.—_'( ) 5710013 507 0% 55 o5 o L : ) Fixed pOIﬂt




Simplest=2, but in a rather
small parameter regime

(cannot keep stemlr])ess after _

few times)
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One can E——— cell states| C

generate S ¥
complex, @ (‘5) B |
hierarchical —) At | hos &4
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Summary:
Itinerant (chaotic) Dynamics - Pluripotency

Alternative view;
multistable 1-cell dynamics + switch by noise

(indeed commonly found if higher noise) but
()robustness in number-ratio of cell-types: difficult
(i) needs fine tuning of noise amplitude (especially for
differentiation to several types)
Ours: (i) spontaneous cell number ratio regulation
(i) Diversification with hierarchic differentiation easy
(i)Evolvability: Chaotic Dynamics have higher

potentiality for evolution to diversification
(iv) Experimental support (?)
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Theory of coupled dynamical systems ( to be omitted)

drm
B ) + DX~ )
de ™m m m

7.6 Dynamaical systems model of cell differentiation through cell-cell interac

the environment occur immediately, adiabatic elimination with dX"™ /¢
gives X™ = (»_, x7")/N, where N is the number of cells. Therefore, w
tain

dx™ .
£L; — m(x—%)_FDm( J J —:13;”)

dt ! N
fm(as) + 1",

where
2.5
N

Here, I" represents the effect of cell-cell interactions that the #-th c«
ceives, and M™ represents the mean field “interaction” that all cells

"= D"( —x")=M"— D™z 1



-

I: Stability of uniform state

If all cell states are identical, satistying 27" = z7", then the interaction term
I is 0. Therefore, the uniform state in which all cells take the identical state
and change commonly by dz"/dt = f™(z;) is always the solution to this
equation. Is this solution stable? For this purpose, let us see whether a small
difference between the states of two cells 6™ will increase over time. Using
the Jacobi matrix J,,p = 0f™/0xy, the change in " can be represented as

follows:

do™ ¢ m sm

b ZE:Jmm — DMmy™. (7.12)
The stability of the uniform state can be evaluated by the eigenvalues of the
matrix consisting of the Jacobian matrix minus D™ in the diagonal compo-
nents. If the real parts of the eigenvalues are all negative, then its uniform
state is stable. If D™ is constant for all components, this eigenvalue is simply
a subtraction of D™ from the eigenvalue of the original Jacobian matrix, so
the uniform state is always stable if the original fixed point is stable (all real



</

For simplicity, we first consider the case in which two types of cells arise,
whose numbers are N1 = p1 N and Ny = po N, respectively. Then, we obtain

gt
TL = fm () + D" pa(ef — o) (7.13)
WL = (@) + Do} — o). (7.14)

In this model, if 27" # x4, then the effect of the interaction works in the
opposite direction in type 1 and type 2 cells. For example, consider the case
in which each cell type falls to a fixed point, {z]**} and {z5"*}, and the
cells with different states stabilize each other. Then, in addition to the in-
tracellular dynamics of single cells, type 1 and type 2 cells are affected by
interactions I7" = D™ po(x8** — %) and I3* = D™ pq (T — x5¥*), respec-
tively. If we consider the interaction term [ as a bifurcation parameter, the
fixed point is destabilized in the uniform state with I = 0, and a stable



Example 7.1: Turing instability: In a two-component system, consider
the case where the fixation point is stable in a single cell, where D? = D > 0
is given for the second component and D! = 0 for the first component. If

the Jacobi matrix at a fixed point is J = ( CCL Z ), the eigenvalue A\ is

the solution of A2 — (a + d)\ + (ad — be) = 0. Since this real part must be
negative because it is a stable fixed point, its conditions are a + d < 0 and
(ad — bc) > 0. On the other hand, the eigenvalue of the matrix J — D§? is
the solution of A2 — (a+d — D)\ + (a(d— D) —bc) = 0, because we only need
to make d above d — D. For the interaction to destabilize the uniform state,
the real part of this eigenvalue must be positive. Since now a+d < 0, D > 0,
and then a +d — D < 0. Then, destabilization requires a(d — D) — be < 0,
that is, aD > (ad — bc) > 0. Consequently a > 0, and since a + d < 0, then
we would get d < 0. Because bc < ad, we obtain bc < 0. If b > 0, then
it is necessary that a is positive, ¢ and d are negative, and D needs to be

(a) (c)

x0_5m

0 25 50 75 100 125
X time

Figure 7.5 Differentiation process by Turing instability in a two-gene model
(a) Example of a network exhibiting instability. (b) Nullcline of expression
dynamics in one cell. (c) Time series of expression levels of gene . As the
number of cells increases through mitosis, two different stable states emerge
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(a) (b) (c)

X 05

0 25 50 75 100 125
time

Figure 7.6 Differentiation from a limit cycle to fixed points in the two-
gene model (a) Example of a network showing differentiation from a limit
cycle to a fixed point. (b) Nullcline of expression dynamics in one cell. (c)
Time series of the gene expression levels x. The parameters (D, 0,,0,) =
(1,—0.1,0.15) were used, and the other parameters were the same as those

Exercise 7.3: Following the case of class I, we draw a change in the null-
clines and understand how two fixed points appear self-consistently.

(a) (c)

x 05

Figure 7.7 Differentiation processes that leave oscillating dynamics in the
two-gene model. (a) An example network showing a differentiation pro-
cess in which the oscillating dynamics remain. (b) Nullcline of expression
dynamics in one cell. (¢) Time series of the gene expression levels z. The
parameters (D, 8,,6,) = (0.2,—-0.1,0.2) were used, and the other parame-

trva srrava Aha davrna ac a3 T 7R



An Alternative Picture:
Y as the slow change in epigenetic modification?
(Matsushita, KK,2020, Phys Rev Res)

‘Epigenetic-Modification’? g;
<Histon Modification & \/_\
§

Methylation,,,,

S
“Coarse-grained” model \/\/\\\f

9
Slow variable representiaeg

feasibility that a gene is expressed
(by chromatin change)



Y as slow epigenetic modification change

Question:epigenetic landscape of A =

Waddington’s type emerges? S ©
C Vi g \\';/\’\\./\f/\\:ﬁ.,

>

1)Landscape( depth and positions of valleyjs) IS
robust to perturbations/initial conditions
1")Multilevel-robustness?: The number ratio of

each cell type is robust

2)Homeorhesis?: stability of branching process
and timing

3)Hierarchical branching ?



Cell model (GRN + epigenetic modification)
0<x, X%5<0

xi ((=12,..,N) xi + expressed (max 1)On_~— —
Gene expression - Repressed Off )
dx; :
E —_ tanhﬂ( Z JUJCJ + 91) - xl %_ (9 -
-9, Threshold for expression e
Gene regulatory nelt\éyork (GFI_\I)
. . . . regulation matrix
¢; - Variable for epigenetic J S
modification ’ -inhibit
+Positive feedback from Expression (o] O /_’(79;)
A
1 v
— =v(ax; — 6. ~
dt (ax; = 6) _
If expressed, easier to
be expressed: If repressed, , ~
harder to be expressed Cf: Furusawa !;<K y _ Lo
PLoS One 2093)*

a: strength of feedback V: rate of epigenetic feedback



W

Fixed point analysis Oﬂaﬂﬁy
dx
——tanhﬂ(ZJij+9) X = T @ >

dt
do,
— =v(ax,-6)=0 WW \/\/

dt
x* Fixed point satisfies CLAA) A1)

tanhﬂ(ZJ x*+axk)—x*=0 lag e

small U=
For large a, all xi=2 71are fixed point attractorsﬁadtabdfc)
Q: Initially 01 is set to 0 (no epigenetic-modif.)
Then, which attractors are selected?
V = OO (orlarge)
All of 9Nstates reached, just following initial expression x
v = 0 (or small) &Slow Epigenetic Modification case

Only a part of initial fixed-pt attractor of x (with 6=0 )
Is stabilized



If attractors of initial ( 8i=0) dynamics are N7 NE

oty
fixed points =>they are fixed with 6 T (il
depending on the initial condition \/&\/
Multiple types possible, but
—>1)For each basin, only one type of fixed pt is qu” U\
generated = no robustness against (e 'Q]%‘C)

changes In the initial expression
= 1" )number ratio of each type non—robust

(i.e., no homeorhesis)
—>2)No robustness in time—course,

—>3)No hierarchical splitting in time

- Cannot support Waddington landscape



When initially oscillatory state (limit-cycle for 8i= 0 )

First, limit-cycle attractors are converged

Then with the change in 0i (i.e. by slow epigenetics),

a few fixed-point attractors are generated.

Generally observed for most networks with large N (say 210)

will show—>

1)Robustness against changes in the initial expression
1" ) number ratio of each type is robust

2) Robustness in time—course, number ratio of each type
(i.e., no homeorhesis)

3) Hierarchical splitting in time

& Interference between fast oscillation & slow fixation



1)2) Minimal model; 2-gene :
Limit-cycle globally reached, then fixation with 6 change

dx do
— = tanh f1p%, + ¢ +6)) = xi, — - = v(ax, — 6)

dx do
—= = tanhﬂ(JZle + Cy . 92) — X, —2 = V(ax2 - 92)
dt | dt
v=10""

it

-1 0 1

X1 Xl

Dynamics for fixed 6= 0 Ji =031, Jo = — 023 ¢, =0.16, ¢, = — 0.15



Slow change in 8i (by reinforcement)

(c) Y1 't
(i) e — 0
1 \ | / -1 " -— -  m—
\ -1 0 1 -1 0 1
X209 = (i) (iii)
-1 = \ o ‘ ! | 1
-1 0 1 | _'-1 B
X1 o o
Trajectory B

Differentiation occurs at same timing, over different
initial conditions. In their vicinity, different fixed points
are generated, with certain proportion -



2)3) Hierarchical splitting with homeorhesis
Simplest example N=3 Fixed from one branch

| Two fixed
points from

\ the other
Splitinto two ~ Pranch

sub-limitcycles

time

Branching occurs at the same timing (indep’t of initial conditions)



Hierarchy of trajectory vl Hierarchical Branct

Traveling over phase space with oscillation
— Hierarchical trajectory separation



Hierarchical attractor-generation from limit-cycle (HAGL)
satisfies Homeorhesis

500 cells with different initial conditions: X (PCA from xi)

HAGL

Initial condition 1

mpling many orbits from 3 initial distributions + noise

Initial condition 2

Initial condition 3

N=10 genes

onditen 1 _ HAGL
— | Distribution,
S Z’u 1 time-course
[ = robust
Developmental time  *
Fixed point case
Initial condition 1 Initial condition 2 s Initial condition 3
o V' Not robust
§ ‘fw \

.......

- Initial randomness or by perturbation is

P



Homeorhesis -- distribution of final P(X)(under noise)

—indep of initial conditions Fixed Pt case
HAGL, from oscillatory state Dependenton-initial
P(X) Distribution of X 300 - Initial condition 2
m= iniia conditon 2 -
20 0 1 N ' . S —
N B 0 F:’LCAl 2 ’ )
X, PCA1 of % posii—
g KL | Fixed-pt case

Difference in distributions over
many Initial conditions --
Measured by KL divergence

G

— Mon-monotonic case (HAGL)

KL divergence

Monoltonic case

o 16e 1= 1o

\: eoiqenvetic feedback r:



Epigenetic Landscape generated from Limit-cycle state
hierarchical branching M homeorhesis

Sampling from an ensemble
of initial expression
patterns

(or under noise)

High

59
(@]
Q
—
©
=

—2PCA X
-2 Distribution P(X)

—log(p)

Y- axis: Time for slow epigenetic change
Z- axis : log(1/P(X)): P prob distrb



Il. Reprogramming

induced Pluripotent Stem cells Takahashi&Yamanaka 2006
Developmental Reverse irreversible

potential differentiation!

Zygote. \“ P  Epigenetic Modification

Progresses with time

Pluripotent
ICM/ES cells, EG cells,
EC cells, mGS cells

elpr, By overexpressing

just 4 genes, initial
pIuripotent states
- are recovered

Multipotent R e N ¥
Adult stem cells it
(partially 3
reprogrammed cells")

Difforenti .\5“‘\:; & . _‘
P;::;emiated - ' b'\\"“lt'” *l"::!ﬁ M d\l\hni\lu':ml :: h:llill'!lli{:lfr"'u;i Iﬁwl;t{nfj‘“h I;!!;II":|||IT/J:R‘?\;¢}$;

How cells can return to “unstable” pluripotent state?
How only four genes can erase most of epigenetic memories?



Questions

1. How can the pluripotent state be regained
only by overexpression of few genes (without
operation of epigenetic modification)?

2. How can such common simple operation
bring different cells back to the same
pluripotent state?

3. How can reprogramming robustly make the
cells head toward such an “unstable”
(saddle?) state?

By Oscillations in gene expression &
Slow epigenetic modification



Differential equations with

gene regulatory network + epigenetics

x;: 1 -th gene expression level

8;: i -th epigenetic modification level

dx i —
I F(QJijxj +0; + I;{
\ 0; threshold
d/ 1
7r = 7 &= 0)

| 4

Epigenetic modification dynamics
- reinforcement of gene expression

(expressed genes become more expressed)

+0 —0

1« #
N
+
U
£3
-1
-0.5 0.5

0
i
Positive 6; value

- feasible expression
(otherwize)

Reprogramming manipulation
(external input to gene expression)

T : timescale of epigenetic modification (7 > 1)

=1/v



Reprogramming Works in our Model!

Take any of differentiated states ( x~0 fixed to ~1 or ~0)
Apply inputs li to few genes i for some time span
— X regains oscillation, 6 approaches 0

Regains pluripotency! -—>differentiation progresses
An example with N=10

Differentiation — overexpression just 3 — stop manipulation

r"r" ( "
i “ \\ |\' i

|||\|.| VIV




eEach of differentiated states H, i p}‘ i
NI FLYY TR R
\lf |"f|" ' 'lu‘ R ')" [ |
+0-4 Xi I'r). |II.j :II" 'ﬁ ,‘-'l‘ "}NI": |
I Al { | . I |
X m ol & AR H ]
< UV R
O H*{ﬂ;Qiﬂ'ﬂxfﬂ
Q. _, INSROCSNTRNSN Y )
0.05
pluripotent Ve

state




How possible?
Simple Example: To understand the Mechanism
Repressilator genetic circuit

Minimal oscillatory genetic circuit

e
A'IOO ........... focancnanned fessassanana “issessssacshesssenrane besnanenafs o
() 7)) ‘ : ; :
2E a0 i f : :
® 3 R e L
B8 o) et o
5'_5 0L ... owo% ........... L e o e |
i ¢ e o
20 o .....99 "% aa
0 - i — i— — i — - - b — e
0 100 200 300 400 500 600

Time (min
Elowitz and Leibler, Nature, 2000




Both cellular differentiation and reprogramming

are achieved by oscillation and epigenetics
Cellular reprograming

Cellular differentiation

6, =0
X]__

0
No epigenetic modification

-1
0.050 0.051
—1- I
1.

91 |
° {91:02703} =
{1,1,-1},{1,-1,1},{~1,1, 1}

Three differentiated states

—71
0 1
t (x10%) Xi=0i

I
I
I
]
]
-1
0

t (x10%)




Dynamics after reprogramming manipulation
— x-oscillation leads to attractive pathway towards 6~0

Overexpress] it § . 5
0 tr¥ectory X orbits tor given
o 3 4I
% :%\03 .
| ©

%\ ‘ \\Differentiation /OO
\ /

/ F_q
0.3 4 \/1
0.0 & X1 1 -1 X2
81 0.3 0.0

- Return to “unstable” state from any of fixed points
(erasing epigenetic memories) --how?



Epigenetic Dynamics:

Slow-0 limit: analyzed by d_ez — 7.(0.) — 0.
. . T ‘/EZ( ’L) (A
timeaverage x dynamics dt
> 0=0 saddle
§ 4Io 3
A TN N
‘ (f\f W D
% RN
[ 0.0
W\ 7
* 0.3
0.0 QY
81 0.3 0.0

Attracted globally towards the saddle in B-space, and move
slowly along its unstable manifold



Due to oscillation in x, instability along unstable-
manifold in O is suppressed do; — 7:(0;) — 0,

dt
" 1 O
Ou=0.0 ( £ 0.5] — déy(X)/dt
6,=0.1 O 4 --- Linear regime
N+
—— 6,=0.3 X ¢ 33
Y o <D
.05; = Stay here . | _--
" ] E ””””
-1 o ==~
—1\/1 = 0 .
X1 1-1 X2 2 0 0.5
U N
6.

— Stay in the vicinity of “unstable”manfiold
over a long time span




Epigenetic states from different cell types globally
converge towards Bu and change slowly along it

0,0.4 (0.25,0.4) (0.5,0.4
E D [] N
3
{0,0.2) (0.25,0.2) (0.5,0.2) 1.03
-
(,) 0.250 0.5,0 0.5<
: L 0.0
N




Same mechanism works universally

Gene regulatory network extracted
from ES cells (Miyamoto et al., 2015)

Differentiation Reprogramming

Reprogramming is completed after overexpression of
Oct4,Nanog,Klf (Sox2)



Combining the interaction-induced differentiation +

epigeneitc change —2>Irreversible Fixation of

differentiation Miyamoto,Furusawa,KK PLosCB 2015
protein composition change (expression level) -

‘epigenetic’ change AR B = ,m
—_ - o ; -—a
ﬂ"'fi -,"/,;_'77--"7 ] ‘
“as if ball dee th o = ¢ Y
pen,s, © ._’ K K11 ;
valley of potential Ka | k., Ky&,ﬁ, e K,i Kes
d , , .—< .——1
pz Z Wiip;.05)) — b + Di(Pi — ;) “ "

D; = 0 only for few permeable components
f(z,0%) = 1/(exp(—B(z — 6F) + 1)

dor
dt

, , ¢ feedback rate
— (0 — 6F — aph) O, o, constant parameter




Speculation on Cancer State(?): (KK,Bioessays2011)
(1)Through evolution, robustness to

noise leads to robustness to mutation for _ . :2
normal cells g _ RY
“cancer” 2 : V
(2)When the GRN is complex there will D — 4 )
appear ‘aberrant’ attracting states >\;_/c\[ /ONL L
(depending on cell-cell interaction) - o

course

(3)(i)These states do not form stabilizing
relationship with other cells (‘selfish’)
(i) Since they are not an object for selection in
evolution, they are generally not robust to mutation
(iii) With mutations, more stable states could be generated,
thus mutations can be accumulated
(iv) Due to lack of robustness to noise, the phenotypes will be
heterogeneous (not in time but over cells)
Cancer: interaction-dependence + loss of mutational robustness



