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VOAs



History and applications

▶ Originally introduced (as vertex algebras) by Richard
Borcherds to study the Leech lattice in the mid ’80s.

▶ Expanded to vertex operator algebras later by Frenkel,
Lepowsky and Meurman with their work on the moonshine
module

▶ Closely related to in two dimensional conformal field theory
▶ Mathematical applications to monstrous moonshine,

representation theory of the Virasoro algebra, affine
Kac-Moody algebras. . .



VA definition

▶ Data
1. A vector space V , called the space of states.
2. An identity element in the space of states |0⟩ ∈ V
3. An endomorphism T : V → V called the “Translation.”
4. A linear map, the vertex operator map:

Y (•,x) : V → (EndV )
[[

x ,x−1]]
▶ Axioms

1. Vacuum property Y (|0⟩ ,x) = 1
2. Creation property Y (|a⟩ ,x) |0⟩= |a⟩
3. Translation covariance [T ,Y (|a⟩ ,z)] = ∂Y (|a⟩ ,z) and

T |0⟩= 0
4. Locality

∀v1, v2 ∈V , ∃N ∈N |∀n>N (z −w)n [Y (v1,z) ,Y (v2,w)]= 0



VOA definition

▶ Data
1. A vertex algebra (V , |0⟩ ,T ,Y ) with a Z graded vector

space:
V =

⊕
n∈Z

Vn

2. A distinguished vector ω, conformal vector
▶ Axioms

1. Virasoro modes Y (ω,x) = ∑n∈ZLnx−n−2,

[Ln,Lm] = (m−n)Ln+m +
1
12

m
(

m2 −1
)

δm+n,0cV

2. Conformal weight For v ∈ Vhv , L0v = hv v
3. Translation generator T = L−1



Example: Heisenberg VOA

For [αm,αn] = δm+n,0c, [c,c] = [c,αn] = [αn,c] = 0
▶ V := U (h)⊗U (h≥0) (C |0⟩)
▶ |0⟩
▶ T := 1

2 ∑n∈Z αnα−n−1

▶ Y
(
αj1αj2 · · ·αjn |0⟩ ,z

)
= α (z)j1

(
α (z)j2

(
. . .
(

α (z)jn IV
)))

▶ ω = α2
−1 |0⟩



VOA modules

Let V be a vertex algebra. A V -module is a vector space W
and a map YW : V → End(W )

[[
z,z−1]]

1. YW (|0⟩ ,z) = IW
2. The Jacobi identity holds:

z−1
0 δ

(
z1 −z2

z0

)
YW (a,z1)YW (b,z2)

−z−1
0 δ

(
z2 −z1

−z0

)
YW (b,z2)YW (a,z1)

= z−1
2 δ

(
z1 −z0

z2

)
YW (Y (a,z0)b,z2)



Log-VOAs and Log-CFTs



Log VOAs and Log CFTs

▶ CFTs with modules that are reducible but indecomposable
▶ First hints found by Rozansky and Saleur in 1992 while

studying the WZW U(1|1) model.
▶ Link between logarithmic singularities ↔

non-diagonalisability of the energy operator - Gurarie 1992
▶ Major advances in the computation of the fusion algebra -

Nahm, Gaberdiel, Kausch 1994



Cardy’s computation



Since then many applications have been found:

▶ Polymers
▶ Percolation (Limit of

Q-Potts, Q → 1)
▶ Self-avoiding walks (Limit

of O(n) model, n → 1)
▶ Dual to three dimensional

chiral gravity models
▶ Transitions and

incarnations of the
quantum Hall effect



Lattice VOAs

▶ g simply laced Lie algebra
▶ Λ root lattice, Λ∨ weight lattice
▶ m ∈ N
▶ ĥ rk(Λ) dimensional Heisenberg algebra
▶ A ⊆ 1√

mΛ∨

▶ VA =
⊕

ν∈A U
(
ĥ
)
⊗U (h≥0)C |ν⟩

▶ Vertex operators:
▶ a ∈ h, a(z) = Y (a,z) = ∑n∈Za(n)z−n−1 as before
▶ µ ∈ 1√

mΛ∨ Y (|µ⟩ ,z) := eµzµ0E− (−µ,z)E+ (−µ,z) where:
▶ eµ (a |ν⟩) = (µ,ν)a |µ +ν⟩
▶ zµ0 (a |ν⟩) = z(µ,ν)a |ν⟩

▶ ω = ∑
d
i=1 α i

−1α i
−1 |0⟩



Modules of Lattice VOAs

Let λ ∈ 1√
mΛ∨

▶ λ̄ is the representative of λ in 1√
mΛ∨/

√
mΛ∨ - fractional part

▶ λ̂ is the representative of 1√
m

(
λ − λ̄

)
in Λ∨/Λ - integral part

The irreducible modules V√
mQ+λ

are then labelled by:

λ ∈ Λ∗ =
{

λ =−
√

mλ̂ + λ̄ |λ̂ ∈ Λ̂, λ̄ ∈ Λ̂m

}
where:

Λ̄m =

{
l

∑
i=1

si√
m

ωi |0 ≤ si ≤ m−1

}
Λ̂ = {λ ∈ P+|(λ ,θ) = 1, θ = highest root}



W (m)Q algebra

For 1 ≤ i ≤ l define:

Fi ,0 =

∣∣∣∣− 1√
m

αi

〉
(0)

∈ HomC

(
V√

mΛ∨ ,V√
mΛ∨− 1√

m α

)
With these we have the triplet model W (p)Q:

W (m)Q =
l⋂

i=1

kerFi ,0|V√
mQ

and the singlet model:

W (m)Q =
l⋂

i=1

kerFi ,0|F0



Modules and Characters

As for the modules are parametrized by elements in Λ̂p. Let

∆
(

ξ⃗

)
:= ∑

w∈W
(−1)ℓ(w)e

〈
ξ⃗ ,w (⃗ρ)

〉

where z = eξ . The characters of the triplet algebra are given by:

χ⃗
λ ′(τ, ξ⃗ ) =

1
η rankΛ(τ)

1

∆(⃗ξ )

∑
⃗̃
λ −⃗λ∈Λ

q
1
2 |
√

m⃗̃λ+µ⃗+Q0ρ⃗|2
(

∑
w∈W

(−1)l(w)e⟨⃗ξ ,w (⃗ρ+
⃗̃
λ)⟩

)

For the singlet, take the z-constant terms.



Ẑ invariants



M theory point of view

Spacetime S1 × T ∗M3 × TN
∪ ∪

N M5-branes S1 × M3 × D2

6d N = (2,0) theory on M3 ×D2 ×τ S1

D2 ×τ S1

3d N = 2, T [M3,g]

M3

TQFT, 3d G Chern-Simons



(M3 ×) ∂D2 ×τ S1

H (T [M3,g] ;b,D2 ×τ S1) =
⊕
i ,j

H i ,j(M3,b)

▶ i , j U(1) charges of boundary of D2 and compactified time
▶ τ complex structure on T 2 = ∂D2 ×S1

▶ q := e2π iτ

▶ Boundary conditions b⃗ are labelled by Tor(H1(M3,Z))/Zn

Ẑ G
b⃗
(X ,τ) = ∑

i∈Z+∆a
j∈Z

qi (−1)j dimH i ,j(M3,b) ∈ Z[q]



Relation to WRT invariant

WRT : Z→ C, k 7→WRT(k)

Can we extend from Z to H ?

q-series radial limit−−−−−−→
q→e2π i/k

WRT(k), Ẑb
radial limit−−−−−−−−−→

summed over b
WRT

From the CS side, from resurgence:

Z CS
SU(2) (M3;k) = ∑

a∈M ab
flat(M3,SU(2))

e2π ikSCS(a)Za (k)

Za (k) ∝ ∑
b∈TorH1(M3)

SabẐb (q)

∣∣∣∣∣
q→e

2π i
k

.



Expectations of modularity

We have a 2D-3D coupled system: we expect the 2D CFT at
the boundary to have some modular properties.

T [M3] Ẑb(M3,τ)

trivial modular
trivial but gapped quantum modular

not gapped ???



The Ẑ invariant

Ẑ G
b⃗
(X ,τ) = q∆(a0 +a1q+a2q2 + . . .)

▶ Topological invariant for 3
manifolds

▶ Defined in physics from
BPS state counting of
M-theory compactifications

▶ Defined in mathematics
for: plumbed manifolds
and knot complements

▶ G - Gauge group
▶ b⃗ - Boundary condition
▶ X - 3 manifold
▶ τ - complex structure



Computation of Ẑ invariants



Seifert manifolds and plumbed manifolds

▶ Seifert manifolds are S1 fibered 2d orbifolds.
▶ Can be expressed as plumbing manifolds
▶ N exceptional fibers → N legs of a star graph

aC

a(1)
1

a(1)
n

a(2)
1 a(2)

n

a(3)
1

a(3)
n



What are Seifert manifolds

▶ We focus on 3 exceptional fibers
▶ The data is contained in plumbing/adjacency matrix

aC

a(1)
1

a(1)
2

a(2)
1

a(2)
2

a(3)
1

a(3)
2

M =



ac 1 0 1 0 1 0
1 a(1)1 1 0 0 0 0

0 1 a(1)2 0 0 0 0

1 0 0 a(2)1 1 0 0

0 0 0 1 a(2)2 0 0

1 0 0 0 0 a(3)1 1

0 0 0 0 0 1 a(3)2





Ẑ invariants for plumbed manifolds

Ẑ G
b⃗
(τ) := CG

Γ (q)
∮

C
d ξ⃗

(
∏
v∈V

∆(⃗ξv )
(2−deg(v))

)
×

∑
w∈W

∑
ℓ⃗∈ΓM,G+w (⃗b)

q− 1
2 ||ℓ||

2

(
∏

v ′∈V
e
〈⃗
ℓv ′ ,⃗ξv ′

〉)

Observations:
1. The contour integral means: pick out the z ∝ log(ξ )

constant terms
2. The sum is only interesting at the nodes where deg(v)≥ 3



Quantum modular forms



Modular group

Definition (Modular group)
The modular group SL(2,Z)is the group of 2×2 matrices on Z
with unit determinant:

SL(2,Z) :=
{

γ =

(
a b
c d

)
|a,b,c,d ∈ Z and ad −bc = 1

}
(1)

For τ ∈ H the action is given by:

γτ =
aτ +b
cτ +d

. (2)



Classical modular forms

Definition (Modular forms)
A holomorphic function f : H → C is a modular form if:

(f |k γ)(z) := (cz +d)−k f
(

az +b
cz +d

)
= f (z) (3)

for all z ∈ H and γ ∈ SL(2,Z). k is a fixed integer called the
weight of the quantum modular forms. For all γ, f |k γ must be
bounded for Im(z)→ ∞. We then write Mk (SL(2,Z)) for the
modular forms of weight k and

M (SL(2,Z)) =
⊕

k∈Z>0
Mk (SL(2,Z))



Examples

Definition (Modular forms)
For q = e2π iτ , τ ∈ H :

E4(q) := 1+240
∞

∑
n=1

n3qn

1−qn = 1+240q+2160q2 + . . . (4)

E6(q) := 1−504
∞

∑
n=1

n5qn

1−qn = 1−504q−16632q2 + . . . (5)



Classical modular forms are too easy

Theorem
The ring of modular forms is freely generated by E4 E6:

M (SL(2,Z)) = C[E4,E6].

Need for generalization:
▶ Vector valued functions
▶ Phase in the transformation
▶ Rational weight
▶ ...



A modular atlas

Modular Mock modular

Quantum modular

False θ

Unknown exotic modularity?



Where the generalizations lie

Some properties we relax:
▶ Domain: defined on Q∪{∞}\S ⊂ P1(Q), for finite S.
▶ Functions defined asymptotically.
▶ Different transformation behavior.



What can we ask?

We cannot further ask for:
▶ Analycity

▶ Topology of P1(Q) is more naturally the discrete topology
than that induced.

▶ Modular transformation properties: Γ-covariance
▶ SL(2,Z)) acts transitively on P(Q), trivial definition

Main idea
We do not require continuity/analycity or modularity but we
require that the failure of one precisely offsets the failure of the
other.



Definition of quantum modular forms

Definition (Weak/strong QMF)
A weak QMF is a function f :Q→ C for which the “error in
modularity” hγ(x) defined by:

hγ(x) := f (x)− (f |k γ)(x) (6)

extends to a real-analytic function of P1(R)\Sγ , where Sγ is a
finite set. A strong QMF is a function f :Q→ C[[ε]] if hγ extends
holomorphically to a neighborhood of P1(R)\Sγ ⊂ P1(C):

hγ(x) := lim
t→0+

(f − f |k γ)(x + it)



Why quantum?



Eichler integrals
Algorithmic procedure to construct quantum modular forms
from regular modular forms.

f (τ) = ∑
m≥1

cf (m)qm, k ∈ 1
2
Z, q = e2π iτ

f̃ (τ) := ∑
m≥1

cf (m)

mk−1 qm =
∫ i∞

τ

f (w)(w − τ)k−2dw

f̃ ∗(τ,τ) :=
∫ i∞

−τ

f (w)(w + τ)k−2dw

Example: False θ -function:

θ
1
m,r (τ) = ∑

k≡r(2m)

kq
k2
2m , w = 3/2

θ̃
1
m,r (τ) = ∑

k≡r(2m)

sgn(k)q
k2
2m



Example - Kontsevitch’s “strange function”

K (τ) := ∑
m≥0

m

∏
j=1

(
1−qj

)
= ∑

m≥0
(q;q)m

Sum of tails identity

∑
m≥0

(
η(τ)−q1/24(q;q)m

)
= η (τ)D (τ)+

1
2

η̃ (τ) .

τ → h
k
∈Q, η (τ) ,η (τ)D (τ)→ 0

K
(

e2π iτ
)∣∣∣

τ→ h
k

=− q−1/24

2
η̃ (τ)

∣∣∣∣∣
τ→ h

k

.



Definition (Higher depth quantum modular forms)
A function f : Q → C(Q ⊂Q) is called a quantum modular form
of depth N ∈ N, weight k ∈ 1

2Z, multiplier χ, and quantum set Q

for Γ if for M =

(
a b
c d

)
∈ Γ

f (τ)−χ(M)−1(cτ +d)−k f (Mτ) ∈
⊕

j

Q
Nj
kj
(Γ,χjO(R)), Nj < N.

Eichler integrals → double Eichler integrals

DE(m)[f1, f2](τ) = cw2(2
√

m)2(w2−1)×∫ i∞

−τ̄

∫ i∞

ξ1

dξ1dξ2
f1(ξ1)

(−i(ξ1 + τ))2−w1

f2(ξ2)

(−i(ξ2 + τ))2−w2



Example

Let f1, f2 be quantum modular forms of depth 1: fi ∈ Q1
ki
(Γi ,χi).

Then: f1f2 ∈Q2
k1+k2

(Γ1 ∩Γ2,χ1χ2).

Proof.

fi |γ − fi =Φi .

(f1f2)|γ = f1f2 + f1Φ2 + f2Φ1 +Φ1Φ2

(f1f2)|γ − f1f2 = f1Φ2 + f2Φ1 +Φ1Φ2



Ẑ invariants and characters of log-VOA



Proposition 4.2: a rewriting of the Ẑ invariant

Ẑ G
b⃗
(XΓ;τ) = CG

Γ (q)
∫

C
d ξ⃗

(
∏
v∈V

∆(⃗ξv )
2−degv

)

∑
w∈W

∑
ℓ⃗∈ΓM,G+w (⃗b)

q− 1
2 ||⃗ℓ||

2

(
∏

v ′∈V
e⟨⃗ℓv ′ ,⃗ξv ′ ⟩

)

Ẑ G
b⃗
(τ) = CG

Γ (q) ∑
ŵ∈W⊗N

(−1)ℓ(ŵ)
∫

C
d ξ⃗ χ̃ŵ ;⃗b(τ, ξ⃗ )

Either:
χŵ ;⃗b(τ, ξ⃗ ) = 0

or:

∃ κ⃗ŵ ;⃗b ∈ Λ/DΛ such that

ℓ⃗=
(

κ⃗ŵ ;⃗b + D⃗λ +ρ,−w1(ρ), ...,−wN(ρ),0, ...,0
)
∈ ΓMG +w (⃗b)



Spherical case:
|det(M)|= 1 =⇒ D = 1

Pseudo-spherical case:
|det(M)| ≥ 1, D = 1

Theorem 4.4:

q−δ

η rk(G)
χ̃ŵ ;⃗b(τ, ξ⃗ ) = χµ⃗ŵ

(τ, ξ⃗ )

Corollary 4.6: For SU(2) and SU(3):

CG
Γ (q)

−1 q−δ

η rankG Ẑ G
b⃗
(τ;XΓ)∈

{
∑
µ⃗

aµ⃗ χ
0
µ⃗

∣∣∣∣∣aµ⃗ ∈ Z

}
+finite polynomial in q



Higher rank, higher depth

Theorem
For spherical Seifert manifolds with 3 singular fibers and G = SU(3):

▶ Ẑ SU(3)
b (τ) sum of depth two quantum QMF

M =


−1 1 1 1

1 −2 0 0
1 0 −3 0
1 0 0 −9



Ẑ SU(2)
b →

(
θ

1
18,5

(
1

18
z2

)
+θ

1
18,13

(
1

18
z2

))
= θ

18+9
5

(
τ

18

)
Ẑ SU(3)

b (τ)→
(

θ
18+9
9

(
τ

6

)
−θ

18+9
3

(
τ

6

))
θ

18+9
1

(
τ

18

)
+
(

θ
18+9
1

(
τ

6

)
+θ

18+9
5

(
τ

6

)
−θ

18+9
7

(
τ

6

))
θ

18+9
5

(
τ

18

)



Open quesitons

▶ Z hat invariants for positive definite Seifert manifolds
▶ VOA[M3] as a manifold invariant
▶ Recursion relations between higher depth QMF
▶ Physical insights from recursion relation and new VOAs



Thanks for listening.
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