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VOAs



History and applications

» Originally introduced (as vertex algebras) by Richard
Borcherds to study the Leech lattice in the mid 80s.

» Expanded to vertex operator algebras later by Frenkel,
Lepowsky and Meurman with their work on the moonshine
module

» Closely related to in two dimensional conformal field theory

» Mathematical applications to monstrous moonshine,
representation theory of the Virasoro algebra, affine
Kac-Moody algebras. . .



VA definition

» Data
1. A vector space V, called the space of states.
2. An identity element in the space of states |0) € V
3. An endomorphism T : V — V called the “Translation.”
4. A linear map, the vertex operator map:
Y(e,x): V— (EndV)[[x,x]]
> Axioms
1. Vacuum property Y(|0),x) =1
2. Creation property Y(|a),x)|0) = |a)
3. Translation covariance [T, Y(|a),z)]|=0dY(]a),z) and
T|0)=0
4. Locality
Yvi, vo€ V, AINEN|VN> N (z—w)"[Y (v4,2),Y (vo,w)] =0



VOA definition

» Data
1. Avertex algebra (V,|0), T, Y) with a Z graded vector

space:
V - @ Vn
nez
2. Adistinguished vector w, conformal vector
> Axioms
1. Virasoro modes Y (®,x) =Y ez Lox "2,

]
(Lo, Lan) = (M= )L+ 55m (m2 . 1) SminoCy

2. Conformal weight For v e V}, , Lov = hyv
3. Translation generator 7T =L



Example: Heisenberg VOA

For [om, otn] = SmnoC, [C, €] = [C,an] = [an,c] =0
> V=% (h) @z (.,) (C|0))
> [0)
> T:=1Y ez Qn0 n 1
> Y (o0 0,|0),2) = a(2), (oc(z)j2 ( (oc(z)jn Iv)))

> o=a?0)



VOA modules

Let V be a vertex algebra. A V-module is a vector space W
and amap Yy : V — End(W) [[z,z71]]

1. Yw(|0),2) = Iw
2. The Jacobi identity holds:

Z1 — Z
26 (21222 ) Yir(az) Y (0.2

Zo—2Z2
—20‘16< 2 01> Yw(b,2) Yw(a,z)

2 —2z
222_15< 122 0> Yw(Y(a,20)b,2)



Log-VOAs and Log-CFTs



Log VOAs and Log CFTs

» CFTs with modules that are reducible but indecomposable

» First hints found by Rozansky and Saleur in 1992 while
studying the WZW U(1]1) model.

» Link between logarithmic singularities «»
non-diagonalisability of the energy operator - Gurarie 1992

» Major advances in the computation of the fusion algebra -
Nahm, Gaberdiel, Kausch 1994



Cardy’s computation
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Since then many applications have been found:

Polymers

Percolation (Limit of
Q-Potts, Q — 1)
Self-avoiding walks (Limit
of O(n) model, n— 1)
Dual to three dimensional
chiral gravity models
Transitions and

incarnations of the
quantum Hall effect




Lattice VOAs

g simply laced Lie algebra

A root lattice, A weight lattice

meN

b rk(A) dimensional Heisenberg algebra

1
AC LAY

V= @veA% (6) ®%(h20) C |V>

> Vertex operators:

> ach,a(z)=Y(az)=Ynzanz " as before

> uc ﬁAV Y(|u),z) :=e*zHE~ (—u,z) E* (—u,z) where:
> et (alv)) = (u,v)alu+v)
> zHo(alv)) =zWValv)

> o=y 0o o [0)

vVvYyyvyy

v



Modules of Lattice VOAs

;
Let A € ﬁ/\v

> 1 is the representative of A in %AV /+/mAY - fractional part

> 1 is the representative of —— ()L /l) in AV /A - integral part
The irreducible modules V\/EQJF,l are then labelled by:

le/\*:{k:—\/ﬁiJriMe/A\,ie/A\m}

where:

S
V/m
A={A e P.|(A,0)=1, 6 =highest root}

-

|0<s,<m—1}



# (m)q algebra

For 1 </ <[ define:

1
Fio=|—-—0q; eHome ( V =0, V =0y
N (R

With these we have the triplet model # (p):

/

W (m)q=(kerFiolv .,
i1

and the singlet model:

/
W(m)q=[kerFiolz

i=1



Modules and Characters

As for the modules are parametrized by elements in A,. Let

a(&)=y (1) g{EwF))

weW

where z = €. The characters of the triplet algebra are given by:

2 1 1
%50 ) = () a )

y AV i+ Qope ( y (_1)/(w)e<aw(ﬁ+i)>>
3 wew

For the singlet, take the z-constant terms.



Z invariants



M theory point of view

Spacetime S' x T*Mz x TN
U u
N M5-branes S' x M; x D?

6d .+ = (2,0) theory on Ms x D? x; S’

VRN

D2 Xz S1 M3

3d A =2, T[Ms,g] TQFT, 3d G Chern-Simons



(M3 x) oD? %, S

A (T [Ms,g]; b,D% x: S") = @@ 7" (M, b)
i

> ,j U(1) charges of boundary of D? and compactified time
> 7 complex structure on T2 = 9D? x S'

> q:= e27tI‘L'

» Boundary conditions b are labelled by Tor(H;(Ms,Z))/Zn

= Y o' (-1)dma(Ms,b) € Z[q]

i€Z+Ag
Jez



Relation to WRT invariant

WRT :Z — C, k — WRT(k)

Can we extend from Z to 57 ?

q series radial limit WRT(k) 2 radial limit WRT
- _— _—
g—e2ni/k ) “b summed over b

From the CS side, from resurgence:

Zgg(Z) (MB; k) = Z eZm’kSCS(a)Za (k)

ac. 435 (M5, SU(2))

Zy (k) o< Z Sab2b Q) _

beTorH; (M3) q_>e%7(ﬂ



Expectations of modularity

We have a 2D-3D coupled system: we expect the 2D CFT at
the boundary to have some modular properties.

T[Ms] Zp(Ms, 7)
trivial modular
trivial but gapped | quantum modular
not gapped 2?7




The Z invariant

Z8(X,1) = g™+ arq+aq° +...)

» Topological invariant for 3

manifolds

» Defined in physics from > 9 - Gauge group
BPS state counting of » b - Boundary condition
M-theory compactifications » X - 3 manifold

» Defined in mathematics » 7 - complex structure

for: plumbed manifolds
and knot complements



Computation of Z invariants



Seifert manifolds and plumbed manifolds

» Seifert manifolds are S’ fibered 2d orbifolds.
» Can be expressed as plumbing manifolds
» N exceptional fibers — N legs of a star graph

O

&

ac\:: ] @ Q

&



What are Seifert manifolds

» We focus on 3 exceptional fibers
» The data is contained in plumbing/adjacency matrix

(1)
= & 1 0 1 0
‘ 14" o 0
4" o 1 &Y o o
\ m=| 1 o o &P 1
ac o o o 1 &
£ ~ g 1 0 0 0 0
~ o 0 0o o 0

_.m,—\
- —-50 0 © o =

NG+ O O © oo

D



Z invariants for plumbed manifolds

28(1):= C(a) §, dé( e degw) x

Y Oy g (H RQ v/iv'>>

WeWier), G+w<b> vieV

Observations:

1. The contour integral means: pick out the z o< log(&)
constant terms

2. The sum is only interesting at the nodes where deg(v)

>3



Quantum modular forms



Modular group

Definition (Modular group)
The modular group SL(2,Z)is the group of 2 x 2 matrices on Z

with unit determinant:

SL(2,Z) := {y: ( i Z )\a,b,c,deZand ad—bc:1} (1)

For t € 2 the action is given by:

ar+b
= ) 2
v ct+d (2)




Classical modular forms

Definition (Modular forms)
A holomorphic function f: 2 — C is a modular form if:

_ az+b
f = o —f
()@ =zt (20) =1 @
forall ze€ 7 and y € SL(2,Z). k is a fixed integer called the
weight of the quantum modular forms. For all y, f|,y must be
bounded for Im(z) — . We then write .#(SL(2,7Z)) for the
modular forms of weight k and

A (SL(2,2)) = @rez., #k(SL(2,Z))



Examples

Definition (Modular forms)
For g=e?™t, t € -

oo

E«(q) _1+2402

(=

Es(q) _1—5042

nq"
'1-qg"
g’
'1-qg"

—1+240g+21600°+...  (4)

=1-5049—16632¢°+... (5)



Classical modular forms are too easy

Theorem
The ring of modular forms is freely generated by E4 Eg:

M (SL(2,Z)) = C[Es, Eg).

Need for generalization:
» Vector valued functions
» Phase in the transformation
» Rational weight
> ...



A modular atlas

Quantum modular Unknown exotic modularity?

Mock modular

False 6



Where the generalizations lie

Some properties we relax:
» Domain: defined on QU {e}\ S ¢ P'(Q), for finite S.
» Functions defined asymptotically.
» Different transformation behavior.



What can we ask?

We cannot further ask for:
» Analycity
» Topology of P'(Q) is more naturally the discrete topology
than that induced.
» Modular transformation properties: I'-covariance
» SL(2,7)) acts transitively on P(Q), trivial definition

Main idea
We do not require continuity/analycity or modularity but we
require that the failure of one precisely offsets the failure of the

other.



Definition of quantum modular forms

Definition (Weak/strong QMF)
A weak QMF is a function f : Q — C for which the “error in
modularity” hy(x) defined by:

hy(x) := £(x) = (flx7) () (6)

extends to a real-analytic function of P'(R)\ S,, where S, is a
finite set. A strong QMF is a function f : Q — C[[¢]] if h, extends
holomorphically to a neighborhood of P'(R)\ S, c P'(C):

hy(x) (f = flky)(x+ it)

= lim
t—0+



Why quantum?

Quantum Modular Forms
Don Zagier

To Alain Connes on his 60th birthday, in friendship and admiration

A classical modular form is a holomorphic function f in the complex upper
half-plane $ satisfying the transformation equation

In this note we want to discuss, in the simplest cases, another type of modular
object which, because it has the “feel” of the objects occurring in perturbative
quantum field theory and because several of the examples come from quantum
invariants of knots and 3-manifolds, we call quantum modular forms. These are
objects which live at the boundary of the space X, are defined only asymptotically,
rather than exactly, and have a transformation behavior of a quite different type



Eichler integrals
Algorithmic procedure to construct quantum modular forms
from regular modular forms.

1
=Y c(mq™, ke 5% 9= g2t

m>1

f(1) = / f(w)(w— 1)k 2dw

P (%) = / " ) (w -+ o) 2w

i

Example: False 6-function:
K2
op(0)= Y kgm, w=3/2
k=r(2m)

K2
Omr(1)= ) segn(k)gim
k=r(2m)



Example - Kontsevitch’s “strange function”

K(z):= Y ﬁ(1 fcﬂ') =Y (@:9)m

m>0j=1 m>0

Sum of tails identity

Y (1(9)-4"*(@:0)m) =1 (1) D(2) + 3 (1),

m>0

r—>£e(@, n(z),n(t)D(t)—0

K (eZn'ir)




Definition (Higher depth quantum modular forms)
A function f: 2 — C(2 C Q) is called a quantum modular form
of depth N € N, weight k %Z, multiplier x, and quantum set Q

forFifforM:(a b)er
c d

() — 2(M) " (ct+d) *H(Mz) € 2, (T, 50(R)), N; < N.
J

Eichler integrals — double Eichler integrals

DEM|f;, £](7) = cw,(2v/m)?"2=1 x

joo oo f1(51) 2(52)
J, e s i

<l

1



Example

Let f;, f> be quantum modular forms of depth 1: f; € 2} (I, %))
Then: fif, € Q§1+k2 (M NT2, x142)-
Proof.

fily—fi=®;.

(fy fg)’y =fh+HPo+HLd1+ D1,
(hk)ly—fifo=HPo+ Hhdy + 1P,



Z invariants and characters of log-VOA



Proposition 4.2: a rewriting of the Z invariant

2§(Xr; T) = Cre(Q)/%)dg (vlel/A(gv)?degv>

y Y q—5|22<ne<a/,5m
(b)

we WZGFMA,G‘FW b

28(1) = C(q) We)%w(—w“f” | GEzy5(2.8)
Either:
xw;b(fag) =0
or:

3 K;,.5 € N/DN such that

7= (Ryp+ DL+ p, Wi (p), . ~W(p),0,...,0) € gy + w(B)



Spherical case: Pseudo-spherical case:
|det(M)| =1 = D=1 |det(M)| >1, D=1

Theorem 4.4:

q° . .z z
nrk(G) XW;E(Tag) = Xﬁw(rag)

Corollary 4.6: For SU(2) and SU(3):

-5
Ci(q) ™" n?ankG Z5(1: Xr) € {Zanxg
u

a; € Z} +finite polynomial in q



Higher rank, higher depth

Theorem
For spherical Seifert manifolds with 3 singular fibers and G = SU(3):

> 259 U(S)(r) sum of depth two quantum QMF

1

1 1
0 O
0 -3 0
0 0 -9



Open quesitons

» Z hat invariants for positive definite Seifert manifolds

» VOA[Ms] as a manifold invariant

» Recursion relations between higher depth QMF

» Physical insights from recursion relation and new VOAs



Thanks for listening.
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