Rozansky-Witten theory and KZ-equations

Babak Haghighat

Tsinghua University

Based on work with: S. Gukov .

Babak Haghighat (Tsinghua University) Rozansky-Witten theory and KZ-equations



Outline

© Modular Tensor Categories

ua University) Rozansky-Witten theory and KZ-equations



Tensor Categories

Definition. A monoidal category (C,®,I) is a catcgory in which we have tensor product ® and
identity object I, such that

e © is associative up to a family of natural isomorphism maps, that is there exists a natural
isomorphism
axyz XY RZ)>(XQY)®Z.

e VX € C, we have natural isomorphisms for identity object

Ix: I® X3X, ry: X 913X.

Fix k to be a field. Then a monoidal category C is a tensor category over k if
@ its sets of morphisms are k-vector spaces

@ C has finite direct sum decomposition

@ compositions are k-linear
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Fusion Categories

A tensor category is semi-simple if there exists a subset of simple objects Z C C
such that any object in C is a direct sum of simple objects, and VX,Y € Z,

Kldx, X =Y

Hom(X,Y)—{ 0. XY

A fusion category is a semi-simple finite tensor category. For simple objects
X; € Z, define the coefficient

N,/ = dim (Hom(Xx, X; ® X;))

the multiplicity of decomposition of X; ® X; into single X, then the date N,’;’j

is the fusion rule of C, with the corresponding fusion algebra Z[Z]/ ~ as the free
Z-module generated by Z quotiented by the relation

X X~ > NIX,
k
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Modular Tensor Categories

A C is rigid if any object X € C has "duality” X* € C, with the following evaluation and

coevaluation map

evy: X' @ X =1,

evy : IT— X" @ X.
Example. A fusion category above is equivalent to an abelian category RepA for a finite dimen-
sional k-algebra A. Thus it’s not surprising that most examples of fusion category are representation
categories for algebraic objects, for instance, the representation category RepySLa, which consists
complex vector spaces for a representation of SLs to act on. The simple objects are highest weight
representations Vj, j € Z, with fusion rule as Clebsh-Gordan rule

itj
VieVi= > Vi (k=i+j mod2).

k=li—il
Remark. The difference between fusion category and modular tensor category is sufficiently the
"modularity” data, which comes from the following additional braiding structures of C:
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Braiding

Definition. A braiding in a tensor category is a family of natural isomorphisms:
cxy: XY 2 Y X
satisfying the following compatibility with tensor:
exyorz = (Idy ® cx z) (exy ®1dy),

cxev.z = (cx,z ®@Idy) (Idx ® cy,z),

that is the diagram(e.g., for cx ygz)

XY®Z
XRY Q@ Z -----=-mmmmmmn >YRZ®X
x Id
¢ z IdyXC
YeX®Z
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Modular Tensor Ca

A twist of braided tensor category is a family of natural isomorphisms:
Ox: X > X
such that it’s compatible with tensor as

Oxey =cyxocxy (Ox ®0y),

[4
XQY--- > XY
Ox @0y CT
XY ——F/——YoX
in additional with the compatibility of duality
Ox- =0x".
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Ribbon Category

A rigid tensor category with the compatible braiding and twist is called ribbon category. For a
morphism f € Hom(X, X) = End(X), define its trace in the following manner:

Tr(f) :=evx oCx x+o (Oxf@Idx+)oevx™

which is in End(I), hence a k-number.

Tr
I ! I
.Levx* evxT
XX —————— XX ——>X"0X

Oxof

In particular,
dim(X) = Tr(Idx).
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Modular Tensor Category

Finally, a modular tensor category is a semi-simple rigid ribbon category with an invertible
S-matrix:
Si; = Tr(ex; x; 0 cx,,x;)»
where X;,X; € Z. Let diagonal T-matrix as (note that x, € End(X;) is a k-number for simple
X;)
T; 5 = 0i40x,,

its easy to varify that matrices {5, T} form a projective representation of modular group SLs(Z),
hence the modularity.
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TQFT Interpretation

A topological quantum field theory (TQFT) in 2 4+ 1 dimensions is a functor Z
satisfying the following conditions:

@ To each compact oriented 2-dimensional smooth manifold without boundary
Y one associates a finite dimensional complex vector space Zy.

@ A compact oriented (2 + 1)-dimensional smooth manifold Y with 0Y = X
determines a vector Z(Y) € Zs.

Furthermore, Z (known as the partition function) has to satisfy the following
properties:

@ Denote by —Y the manifold £ with the orientation reversed. Then, we have
Z_s = Z5 where Z5 is the dual of Z_y as a complex vector space

For a disjoint union ¥; U ¥, we have Zs,us, = 75, ® Zs,.

For the composition of cobordisms 0Y; = (—=¥1) U X, and
8Y2 = (—22) U 22, we have Z(Yl U Y2) = Z(Y2) ] Z(Yl)

For an empty set () we have Z(()) = C.

00 o000

Let / denote the closed nit interval. Then, Z(X X /) is the identity map as a
linear transformation of Zs.
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The Rozansky-Witten TQFT

Let X be a hyper-Kahler manifold of real dimension 4n. The complexification of
the tangent bundle admits a decomposition

TXrC=V®S

where V is a rank 2n complex vector bundle with structure group Sp(n), and S is
a trivial rank two bundle. Denote local coordinates on 3-manifold M as x*,
=12 3. Define TQFT with fields:

@ bosons ®: M — X, ¢i(x*), i=1,...,4n
e fermions are scalar ' and a one-form XL with values in V
and action (9 is completely symmetric tensor)

S = /(LlJrLz)ﬁdsX,
M
1 S
L = Egijauéblau(bj + eux, V'’
11
L, = 2\[6’“/” <fIJX#vp+ QIJKLX#X;{X,’;T]L>
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Partition Function

The partition function of this theory can be evaluated via a Feynman diagram
expansion which takes the following general form

= 3 b OO (M)
r

where I denotes trivalent graphs. The quantities br(X) are known as weights and
vanish except when ' has 2n (= dimension of X) vertices. The invariants
IBW (M) solely depend on the 3-manifold M.

/é\
N

7>/

To evaluate diagrams I, assign structure constants cjj to inner vertices and a
symmetric tensor o to propagators.
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In case of Rozansky-Witten theory, we have the following correspondence:
¢ € Q¥Y(X,Sym®*T*)
Ge HY(X,N°T) « ol
One can also equip the 3-manifold M with a link £ composed of Wilson lines L;
labeled by elements of the category C. To each element a € C one assigns a
representation V, which label outer circles of I'. Each outer vertex carries then a

tensor (BQ)UZKE where J,, K, = 1,...,dimV,. For the chord diagram of the
half-circle one then gets for example

E L K _ij

iJ,K,L
For an m-component link, one chooses holomorphic vector bundles Ei, ..., E;,
over X, of ranks r1,..., r,. Let the curvatures of the corresponding connections

be
R, € Q" (EndE,),

One then has the correspondence

R, <+ B,
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Conformal Blocks

The “space of conformal blocks” on ¥ , is the Hilbert space in RW theory on
Yz m, where ¥, ,, denotes a genus-g surface with m punctures labeled by
holomorphic vector bundles E1, ..., E, over X.

We are mostly interested in the cases with g = 0. For m = 0, the Hilbert space is

Hrwix)(S?) = H**(X) = @,H"(Ox)

The corresponding Verlinde formula that gives the dimension of this space is
obtained by taking the (super-)trace, i.e. evaluating the invariant on
Mz = St x §2%:

sdimHrwpx(S?) = D _(—1) dim H%/(X)

A generalization of this Verlinde formula to m # 0 looks like :
sdimHrwx)(S% Ery oo Em) = X(E1 ® ... ® Epy)

and the corresponding Hilbert spaces are

HRW[X](52; E,..., Em) = @ Hg(X, E®...® Em)
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Braiding

We have seen that line operators correspond to sheaves on the manifold X. These
can be viewed as objects within the derived category of coherent sheaves on X,
denoted by D(X). Given two objects, A, B of D(X), let

Hap € Ext’(A® B,A® B) and Ca € Ext?(A, A) be two morphisms:

In terms of these, the braiding morphism 74 g may be described as
TAB = exp(HA,B/2) € EXt*(A ® B,B® A) = HomD(X)(A ®B,B® A)
The associator ®4 g ¢ is written as a polynomial in the non-commuting variables

X = HA,B®idC7 YEidA(X)HB’(_'.
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KZ-equation

In order to obtain it, one solves the KZ-equation

dG X Y
(e

This ODE is Fuchsian and there are two solutions of the form
Go(z) = P(2)2"%, Gi(z) = Q(1—2)(1—2)",

where P, Q are power series in z with value 1 in z = 0. This can be seen by
inserting the above ansatz into the equation and considering the resulting
equations for each power of z. Since Gy, G; are nonzero solutions of our ODE and
this is homogeneous, their ratio is independent of z,

Go(z) =: Gi(2)®(X, Y).

The ratio ® € C[[A]](X, Y) is the associator we are interested in. If G, a € [0,1],
is the unique solution of our ODE with G,(a) = 1, then one has

®(X,Y) = lim a " G,(1 - a)a"X.
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®(X, Y) can then be computed and is given by

ISC) 96) ) ,
OX,¥) = 1o o B X IR o2 s (X, Y1 YT = X DX VI I+ O (R

From Go(z) ~ z"X we see that it changes under a whole circle around zero by a
factor e"X. Hence the half-monodromy (braiding) around zero amounts to

BO = th/2.

Similarly, one gets from Gi(1 — z) ~ (1 — z)"Y for the monodromy around the
point z =1

By = (X, Y)Y/ 20(X, V).
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Computation for K3 surface

Let now S be a K3 surface. We next want to compute Ext?(A® B, A® B) for A
and B two line bundles of the form A = Os(C;) and B = Os((G,) with G and G
two curves in the K3. Thus, the task is to compute

Ext}(0s(C1) ® 0s(G), 0s(C1) @ 0s(C2))

Using
Ext2(&,F) = H"(S,&Y ® F),

we thus have to compute
H?(S, &Y ® €),

where £ = O5( (1) ® Os((C,). But we know
SV = 05(*C1) ® 05(7(:2),

and hence we get
H?(S,£Y ® £) = H*(S,05) = C,

generated by the holomorphic two-form of the K3 surface.
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Let us next do the computation for a general vector bundle E of rank r + 1. That
is, we want to compute

Ext3(E,E) = H*(S,E® EY).

The rank E ® EY is simply rk(E)? = (r + 1)2. Using that

c1(E) = ci(detE) = (L) for L = detE and

c(EY) = a((detE)”) = c1(LY) = —ci(L), we see that from the properties of the
Chern character we get

ch(E® EY) = ch(E)ch(EY)

(r+1+c(E)+chy(E)+...)(r+1—c(E)+chy(EY)+...)
= (r+1)> = c(E)* +2(r + 1)chy(E) +...
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Comparing this with

a(E®EY) —2a(E® EY)
5 +

h(E®EY)=(r+1°+a(E®EY)+
and noting that ¢;(E ® EV) = 0, wee see that
@(E®EY) = —2(r +1)chy(E) + c1(E)>.
Using c1(E)? = 2g — 2 and c(E) = degZ = d, this gives
o(E®EY)=—r(2g —2)+2(r+1)d.

Together with the Hirzebruch-Riemann-Roch formula for the Euler number of a
coherent sheaf F on a K3 surface,

X(F) = M + 2rk(F),

we finally obtain

X(E®EY)=2n(S,E®EY) —h(S,EQEY)=2-2(g - (r+1)(r —d +g)).
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Example sheaves

As a test of this formula, let us assume that E is a line bundle L. Then r = 0 and
d = 0 as the second Chern class vanishes. In this case our formula gives

X(L®L)=x(0s)=2-2(g - (0-0+g)) =2,
which agrees with the fact that on a K3 surface h°(S,Os) = h*(S,0s) = 1 and
h'(S,Os) = 0 giving X(S, Os) = h°(S,O0s) — h'(S,0s) + h*(S,0s) = 2. As a
further example, let us consider the tangent bundle E = 7s. Then EY =T = Ts
and moreover H°(S,S™Ts) = 0. We compute
EQE =Ts@Ts=5Ts @ Os,

and hence h%(S,Ts @ Ts) = h3(S, Ts ®Ts) =1. Asfor E=Ts, r=1,g=1 (as
ci(7s) =0) and d = &»(Ts) = 24, thus

X(Ts @ Ts) =2—2(1—2(1 —24+1)) = —88.

This finally gives h'(S,Ts ® Ts) = 90.
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Physics Interpretation: 6d LSTs

e Consider N small, coincident SO(32) instantons in the heterotic string
— 6d Little String Theory (LST) with A" = (1,0) SUSY and gauge group
Sp(N)

e Taking N =1 gives gauge group SU(2)

— Compactification along T3 leads to classical Coulomb branch metric

2 deth 1 . g2 2 2
ds” = p (h™) d¢ad¢b+\/cm(d¢4—9 do,)?, a=1,2,3,
6

where gg : coupling constant, ¢, : Wilson lines of gauge field along cycles of
T3, ¢4 : dualized 3d U(1) gauge field.

—> metricon T#

e Modding out by Z; Weyl action of SU(2) leads to K3 surface as low-energy
Coulomb branch geometry!
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More generally, compactification of any LST on T3 leads to a sigma model with a
Hyperkahler target space X of dimension

dimr X = 4(I‘V + nT),

where ry is the total rank of the 6d gauge group while nr is the number of tensor
multiplets. — Topological twisting leads to RW-theory with target X: ¢, ¢ are
complex coordinates of X and we have the map

b Mz — X.
The fermionic fields y are section of Q}, ® ¢* T1°X and moreover ¥ € ¢* TO1X.
Wilson lines in the adjoint representation are given by (C C Ms)

Wc(Tl’OX) = TrP exp/ A, where AJ': = —d¢kr'/‘<j + VTXkaikj'
c

Wilson lines in the fundamental representation arise from holomorphic vector
bundles E — X on X. Their explicit form is

WelE) =P eXp/ A, where A= —d¢* A + 7" Fy.
C
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Wilson lines from 1-form symmetry of LST

So we are looking for line defects with a K3 moduli space. Indeed there are such
objects in our 6d LST!

6d gauge theories give rise to 1-form continuous global U(1) symmetries
associated to the 2-form instanton current,

J? 4Ty (f(2> A f(2>) .

— Integration over a 4-manifold ¥, defines a conserved charge operator,
Q(Z4) = —i/ xJ@.
p

Acting with such a codimension 2 operator on the vacuum gives rise to a line
defect carrying charge Q € Z and linked with the surface 4. Coupling to a
2-form background gauge field B(® gives rise to an additional term in the action,

/ BO) A £ )@,

and conservation of the current requires invariance under background gauge
transformations B® — B 4+ dA(),
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Physics Interpretation

The degrees of freedom (moduli) of our line defect £ are moduli spaces of
instantons on X4. Since in our case 3 directions of ¥4 are already compactified on
T3 and the defect is extended along a line within the perpendicular 3-manifold
Ms, the only 4-cycles which links this line is composed of a circle linking £ within
M3 together with T3. Thus we see ¥, = T*.

— moduli space M is the moduli space of SU(2)-instantons on T*.

— For a single SU(2) instanton we get M, = K3.
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Summary

@ Modular Tensor Categories describe the structure of a 2+ 1d TQFT in terms
of braiding morphisms and modular S- and T-matrices.

@ The Rozansky-Witten TQFT assigns a modular tensor category to a
Hyperkahler manifold X from its derived category of coherent sheaves.

@ Anyons (simple objects) are given in terms of sheaves on X and the TQFT
Hilbert space is the space of sections of tensor products of sheaves.

@ Braiding is defined in terms of the KZ-equations which encodes the
T-morphisms exchanging the order in the tensor product of two sheaves.

@ The associator is the connection matrix of the KZ-equation connecting
solutions at two different points in moduli space.

@ In the case of X = K3, we find that the Associator is trivial and the
T-morphism satisfies the Yang-Baxter equation.

@ Physically, we can identify our RW-theories with compactifications of little
string theories along T3 together with a topological twist.
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Summary

Thank you!
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