Lattice cohomology and q-series invariants of plumbed 3-manifolds

Slava Krushkal Joint work with R. Akhmechet and P. Johnson

ICTP, March 2, 2023

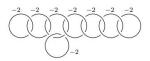
Outline:

- ullet The \widehat{Z} invariant
- Lattice cohomology
- ullet A new invariant unifying lattice cohomology and \widehat{Z}
- Details and properties
- Questions

Quantum invariants and the \widehat{Z} invariant of 3-manifolds

 $Z_K(M)$: the $\mathrm{SU}(2)$ Witten-Reshetikhin-Turaev invariant of a compact connected orientable 3-manifold M at $\zeta_K=e^{2\pi i/K}$.

Consider the Poincaré homology sphere $\Sigma(2,3,5)$,



and let $W(\zeta_K)$ denote its renormalized WRT invariant

$$W(\zeta_K) = \zeta_K (\zeta_K - 1) Z_K(\Sigma(2, 3, 5)).$$

R. Lawrence and D. Zagier, 1999: For |q| < 1 consider

$$A(q) = \sum_{n=1}^{\infty} \chi_{+}(n)q^{(n^{2}-1)/120} = 1 + q + q^{3} + q^{7} - q^{8} - q^{14} - q^{20} - \dots$$

where $\chi_+ \colon \mathbb{Z} \longrightarrow \{-1,0,1\}$

Theorem (Lawrence-Zagier) Let ξ be a root of unity. Then the radial limit of $1-\frac{1}{2}A(q)$ as q tends to ξ equals $W(\xi)$, the renormalized WRT-invariant of the Poincaré homology sphere.

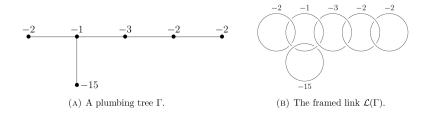
$$A(q) = \sum_{n=1}^{\infty} \chi_{+}(n)q^{(n^{2}-1)/120} = 1 + q + q^{3} + q^{7} - q^{8} - q^{14} - q^{20} - \dots$$

Theorem (Lawrence-Zagier, 1999) Let ξ be a root of unity. Then the radial limit of $1 - \frac{1}{2}A(q)$ as q tends to ξ equals $W(\xi)$, the renormalized WRT-invariant of the Poincaré homology sphere.

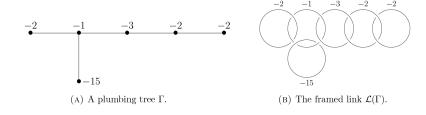
- ▶ More generally, Lawrence-Zagier stated the analogous result for three-fibred Seifert integer homology spheres.
- One of Zagier's motivating examples of quantum modular forms.
- ▶ Gukov-Pei-Putrov-Vafa (2020): The \widehat{Z} -invariant for a more much more general class class of 3-manifolds (discussed next), based on the theory of BPS states.

Plumbed 3-manifolds

A negative definite plumbing Γ and its associated framed link $\mathcal{L}(\Gamma)$. The 3-manifold $Y(\Gamma)$ is the Brieskorn sphere $\Sigma(2,7,15)$:



Weights (framings) $m \colon \mathcal{V}(\Gamma) \longrightarrow \mathbb{Z}$.

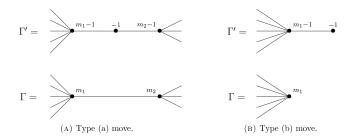


Weights (framings) $m \colon \mathcal{V}(\Gamma) \longrightarrow \mathbb{Z}$.

The plumbing tree is negative definite if the associated symmetric matrix $M=M(\Gamma)$ is negative definite:

$$M_{i,j} = \begin{cases} m_i & \text{if } i = j, \\ 1 & \text{if } i \neq j, \text{ and } v_i \text{ and } v_j \text{ are connected by an edge,} \\ 0 & \text{otherwise.} \end{cases}$$

Two negative definite plumbing trees represent diffeomorphic 3-manifolds if and only if they are related by a finite sequence of type (a) and (b) Neumann moves:



The \widehat{Z} invariant

Gukov-Pei-Putrov-Vafa (2020): Given a negative definite plumbed 3-manifold Y with a $\mathrm{spin}^{\mathrm{c}}$ structure a, consider

$$\begin{split} \widehat{Z}_{Y,a}(q) &= q^{-\frac{3s + \sum_v m_v}{4}} \cdot v.p. \oint_{|z_v| = 1} \prod_{v \in \mathcal{V}(\Gamma)} \frac{dz_v}{2\pi i z_v} \left(z_v - \frac{1}{z_v} \right)^{2 - \delta_v} \cdot \Theta_a^{-M}(z), \\ \text{where } \Theta_a^{-M}(z) &:= \sum_{\ell \in a + 2M \, \mathbb{Z}^s} q^{-\frac{\ell^t M^{-1}\ell}{4}} \prod_{v \in \mathcal{V}(\Gamma)} z_v^{\ell_v}. \end{split}$$

The \widehat{Z} invariant of 3-manifolds

- For three-fibred Seifert integer homology spheres (unique spin^c structure), the \widehat{Z} -invariant recovers the q-series of Lawrence-Zagier.
- ▶ GPPV conjecture that a certain linear combination over spin^c-structures has radial limits equal to WRT invariants (generalizing the result of Lawrence-Zagier).

Conjecture Let Y be a closed 3-manifold with $b_1(Y) = 0$. Set

$$T := \operatorname{Spin}^c(Y) / \mathbb{Z}_2$$
.

There exist invariants

$$\widehat{Z}_a(q) \in 2^{-c} q^{\Delta_a} \mathbb{Z}[[q]],$$

with $\widehat{Z}_a(q)$ converging in the unit disk $\{|q|<1\}$, such that

$$Z_{\text{CS}}(Y;k) = (i\sqrt{2k})^{-1} \sum_{a,b \in T} e^{2\pi i k \cdot \text{lk(a,a)}} |W_b|^{-1} S_{ab} \widehat{Z}_b(q)|_{q \to e^{2\pi i/k}}$$

where

$$S_{ab} = \frac{e^{2\pi i \operatorname{lk}(\mathbf{a},\mathbf{b})} + e^{-2\pi i \operatorname{lk}(\mathbf{a},\mathbf{b})}}{|W_a| \cdot \sqrt{|H_1(Y;\mathbb{Z})|}},$$

(A proof for negative definite plumbed 3-manifolds announced by Yuya Murakami in February 2023)

The \widehat{Z} invariant of 3-manifolds

- For three-fibred Seifert integer homology spheres (unique spin^c structure), the \widehat{Z} -invariant recovers the q-series of Lawrence-Zagier.
- ▶ GPPV conjecture that a certain linear combination over spin^c-structures has radial limits equal to WRT invariants (generalizing the result of Lawrence-Zagier).
- lacktriangle Conjecturally \widehat{Z} admits a categorification:

$$\widehat{Z}_{Y,a}(q) = \sum_{i,j} (-1)^i q^j \operatorname{rk} \mathcal{H}_{\mathrm{BPS}}^{i,j}(Y,a)$$

Lattice cohomology (Némethi, 2008)

▶ Given a negative definite plumbed 3-manifold with a spin^c structure s,

$$\mathbb{H}^*(\Gamma, \mathfrak{s}) = \bigoplus_{i=0}^{\infty} \mathbb{H}^i(\Gamma, \mathfrak{s})$$

is a $(2\mathbb{Z})$ -graded $\mathbb{Z}[U]$ module.

It gives a combinatorial formulation of Heegaard Floer homology HF⁺ for a class plumbing trees, by work of Némethi, Ozsváth-Stipsicz-Szabó, Zemke.

For example, if Γ is almost rational, then as graded $\mathbb{Z}[U]\text{-modules,}$

$$\mathbb{H}^{i}(\Gamma, [k]) [\text{grading shift}] \cong \begin{cases} HF^{+}(-Y(\Gamma), [k]) & \text{if } i = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Lattice cohomology (Némethi, 2008)

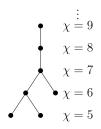
■ Given a negative definite plumbed 3-manifold with a spin^c structure s,

$$\mathbb{H}^*(\Gamma, \mathfrak{s}) = \bigoplus_{i=0}^{\infty} \mathbb{H}^i(\Gamma, \mathfrak{s})$$

is a $(2\mathbb{Z})$ -graded $\mathbb{Z}[U]$ module.

- It gives a combinatorial formulation of Heegaard Floer homology HF^+ for a class plumbing trees, by work of Némethi, Ozsváth-Stipsicz-Szabó, Zemke.
- ▶ $\mathbb{H}^0(Y, \mathfrak{s})$ is encoded by the graded root, which was shown by Némethi to be an invariant of (Y, \mathfrak{s}) .

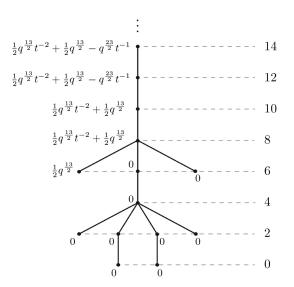
The 0-th lattice cohomology $\mathbb{H}^0(Y,\mathfrak{s})$ is encoded by the graded root, an (infinite) tree which is an invariant of (Y,\mathfrak{s})



On the other hand, the \widehat{Z} -invariant is a q-series.

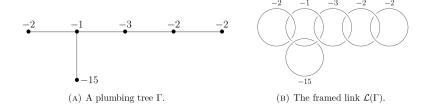
Our new invariant unifying lattice cohomology and \widehat{Z} takes the form of a

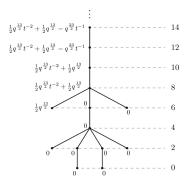
graded root weighted by 2-variable Laurent polynomials



The weighted graded root associated to the Brieskorn homology sphere $\Sigma(2,7,15)$

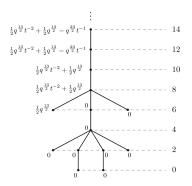
The Brieskorn homology sphere $\Sigma(2,7,15)$





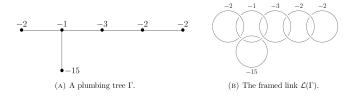
Theorem 1. (Akhmechet-Johnson-K., 2021)
The weighted graded root is an invariant of a 3-manifold equipped with a spin^c structure.

(Lattice cohomology is recovered by the unlabeled tree.)



Theorem 2. (Akhmechet-Johnson-K.)

- The sequence of Laurent polynomial weights stabilizes, yielding a 2-variable series $\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t)$.
- ▶ The 2-variable series $\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t)$ is an invariant of the 3-manifold Y with a spin^c structure \mathfrak{s} , and its specialization at t=1 equals $\widehat{Z}_{Y,\mathfrak{s}}(q)$.



Weights (framings) $m : \mathcal{V}(\Gamma) \longrightarrow \mathbb{Z}$.

 $M\colon \mathbb{Z}^s \longrightarrow \mathbb{Z}^s, \ s =$ number of vertices of the plumbing graph.

$$\operatorname{spin}^{\operatorname{c}}(Y) \cong \frac{m+2\,\mathbb{Z}^s}{2M\,\mathbb{Z}^s}.$$

Consider a spin^c representative $k \in m + 2 \mathbb{Z}^s$.

Weights (framings) $m \colon \mathcal{V}(\Gamma) \longrightarrow \mathbb{Z}$.

 $M\colon \mathbb{Z}^s \longrightarrow \mathbb{Z}^s, \ s =$ number of vertices of the plumbing graph.

$$\operatorname{spin}^{\operatorname{c}}(Y) \cong \frac{m + 2 \mathbb{Z}^s}{2M \mathbb{Z}^s}.$$

Consider a spin^c representative $k \in m + 2\mathbb{Z}^s$.

Define a quadratic function $\chi_k: \mathbb{Z}^s \to \mathbb{Z}$

$$\chi_k(x) = -(k \cdot x + \langle x, x \rangle)/2$$
, where $\langle -, - \rangle : \mathbb{Z}^s \times \mathbb{Z}^s \to \mathbb{Z}$

is the bilinear form associated with M, $\langle x,y\rangle=x^tMy$.

$$\chi_k : \mathbb{Z}^s \to \mathbb{Z}, \quad \chi_k(x) = -(k \cdot x + \langle x, x \rangle)/2$$

Consider the standard cubulation of \mathbb{R}^s (with vertices in \mathbb{Z}^s), and extend χ_k to a function on cells (cubes) \square of any dimension:

$$\chi_k(\square) := \max\{\chi_k(v) \mid v \text{ is a 0-cell of } \square\}$$

Let $S_j \subset \mathbb{R}^s$ denote the sublevel set $\chi_k \leq j$:

 S_j is a (compact) subcomplex of the cubulation consisting of cells \square such that $\chi_k(\square) \leq j$.

(Recall that the intersection form $\langle -, - \rangle$ is negative definite!)

Definition of the graded root (R_k, χ_k) , following Némethi:

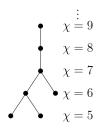
Consider the connected components of each sublevel set:

$$S_j = C_{j,1} \sqcup \cdots \sqcup C_{j,n_j}$$

The vertices of the graded root R_k consist of connected components among all the S_j .

The grading χ_k is given by $\chi_k(C_{j,\ell}) = j$.

Edges of R_k correspond to inclusions of connected components: there is an edge connecting $C_{j,\ell}$ and $C_{j+1,\ell'}$ if $C_{j,\ell} \subseteq C_{j+1,\ell'}$.



Némethi, 2008:

The graded root is an invariant of (Y,[k]), and encodes the structure of $\mathbb{H}^0(Y,[k])$.

Next: the new invariant, weighted graded root

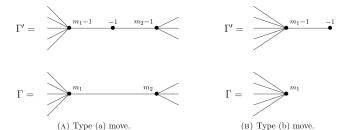
A rough idea: given a function

$$F_{\Gamma,k}: \mathbb{Z}^s \to \mathcal{R}$$

valued in some ring \mathcal{R} , each vertex v in the graded root (R_k, χ_k) can be given a *weight* by taking the sum of $F_{\Gamma,k}$ over lattice points in the connected component C representing v:

$$F_{\Gamma,k}(C) := \sum_{x \in C \cap \mathbb{Z}^s} F_{\Gamma,k}(x).$$

Subtlety: find a function $F_{\Gamma,k}$ so the weights of the graded root are invariant under Neumann's moves on the plumbing trees.



Fix a commutative ring \mathcal{R} . A family of functions $F = \{F_n : \mathbb{Z} \to \mathcal{R}\}_{n \geq 0}$ is *admissible* if

- 1. $F_2(0) = 1$ and $F_2(r) = 0$ for all $r \neq 0$.
- 2. For all $n \geq 1$ and $r \in \mathbb{Z}$,

$$F_n(r+1) - F_n(r-1) = F_{n-1}(r).$$

Note that not only F_2 , but also F_0 and F_1 are uniquely determined by conditions 1 and 2:

$$F_1(r) = \begin{cases} 1 & \text{if } r = -1, \\ -1 & \text{if } r = 1, \\ 0 & \text{otherwise.} \end{cases} \qquad F_0(r) = \begin{cases} 1 & \text{if } r = \pm 2, \\ -2 & \text{if } r = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Fix a commutative ring $\mathcal{R}.$ A family of functions

$$F = \{F_n : \mathbb{Z} \to \mathcal{R}\}_{n \geq 0}$$
 is admissible if

- 1. $F_2(0) = 1$ and $F_2(r) = 0$ for all $r \neq 0$.
- 2. For all $n \geq 1$ and $r \in \mathbb{Z}$,

$$F_n(r+1) - F_n(r-1) = F_{n-1}(r).$$

A key example $(n \ge 3)$:

$$\widehat{F}_n(r) = \begin{cases} \frac{1}{2} \operatorname{sgn}(r)^n \begin{pmatrix} \frac{n+|r|}{2} - 2 \\ n - 3 \end{pmatrix} & \text{if } |r| \ge n - 2 \text{ and } r \equiv n \bmod 2 \\ 0 & \text{otherwise.} \end{cases}$$

Fix a commutative ring \mathcal{R} . A family of functions $F = \{F_n : \mathbb{Z} \to \mathcal{R}\}_{n \geq 0}$ is admissible if

- 1. $F_2(0) = 1$ and $F_2(r) = 0$ for all $r \neq 0$.
- 2. For all $n \geq 1$ and $r \in \mathbb{Z}$,

$$F_n(r+1) - F_n(r-1) = F_{n-1}(r).$$

A characterization of admissible families $Adm(\mathcal{R})$:

There is a bijection $\mathrm{Adm}(\mathcal{R})\cong (\mathcal{R}\times\mathcal{R})^{\mathbb{N}}$

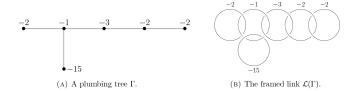
(the set of all sequences with entries in $\mathcal{R} \times \mathcal{R}$.)

 $F \mapsto (F_{n+2}(0), F_{n+2}(1))_{n \ge 1}$ is a bijection.

For an admissible family $F = \{F_n\}_{n \geq 0}$, define $F_{\Gamma,k} : \mathbb{Z}^s \to \mathcal{R}$ by

$$F_{\Gamma,k}(x) = \prod_{i=1}^{s} F_{\delta_i} \left((2Mx + k - m - \delta)_i \right),$$

where δ is the degree vector of the plumbing graph, and $(-)_i$ denotes the i-th component.



 $M \colon \mathbb{Z}^s \longrightarrow \mathbb{Z}^s, \ s =$ number of vertices of the plumbing graph.

For an admissible family $F = \{F_n\}_{n \geq 0}$, define $F_{\Gamma,k} : \mathbb{Z}^s \to \mathcal{R}$ by

$$F_{\Gamma,k}(x) = \prod_{i=1}^{s} F_{\delta_i} \left((2Mx + k - m - \delta)_i \right),$$

where δ is the degree vector of the plumbing graph, and $(-)_i$ denotes the i-th component.

Lemma: The graded root with vertex weights

$$F_{\Gamma,k}(C) := \sum_{x \in L(C)} F_{\Gamma,k}(x)$$

is an invariant of (Y, [k]).

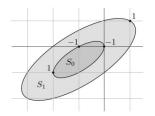
Example of the weights $F_{\Gamma,k}$. To have a 2-d illustration, consider the plumbing representation Γ for S^3 :

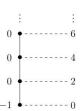
$$-1$$
 -2

Pick the $\mathrm{spin}^{\mathrm{c}}$ representative k=(-1,0). For $(x,y)\in\mathbb{Z}^2$,

$$\chi_k(x,y) = (x^2 + 2y^2 - 2xy + x)/2,$$

$$F_{\Gamma,k}(x,y) = F_1(-2x+2y-1)F_1(2x-4y+1).$$





Finally, a formulation of the new invariant:

For an admissible family $F = \{F_n\}_{n \geq 0}$, define $F_{\Gamma,k} : \mathbb{Z}^s \to \mathcal{R}$ by

$$F_{\Gamma,k}(x) = \prod_{i=1}^{s} F_{\delta_i} \left((2Mx + k - m - \delta)_i \right),$$

To each $x \in \mathbb{Z}^s$ assign a Laurent polynomial weight

$$F_{\Gamma,k}(x)q^{\varepsilon_k(x)}t^{\theta_k(x)}$$

where
$$\varepsilon_k(x) = \Delta_k + 2\chi_k(x) + \langle x, u \rangle$$
, $\theta_k(x) = \Theta_k + \langle x, u \rangle$.

Here Δ_k is an overall normalization used to eliminate dependence on the choice of $\mathrm{spin^c}$ representative, similar in form to the d-invariant from Heegaard Floer homology.

 Θ_k is also an overall normalization.

Finally, a formulation of the new invariant:

For an admissible family $F = \{F_n\}_{n \geq 0}$, define $F_{\Gamma,k} : \mathbb{Z}^s \to \mathcal{R}$ by

$$F_{\Gamma,k}(x) = \prod_{i=1}^{s} F_{\delta_i} \left((2Mx + k - m - \delta)_i \right),$$

Theorem: The graded root with vertex weights

$$P_{F,k}(C) = \sum_{x \in L(C)} F_{\Gamma,k}(x) q^{\varepsilon_k(x)} t^{\theta_k(x)},$$

is an invariant of (Y, [k]).

Theorem: The graded root with vertex weights

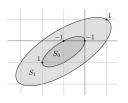
$$P_{F,k}(C) = \sum_{x \in L(C)} F_{\Gamma,k}(x) q^{\varepsilon_k(x)} t^{\langle x, u \rangle},$$

is an invariant of (Y, [k]).

The above weights can be interpreted geometrically as follows.

For $n\in\mathbb{Z}$, the coefficient of t^n in $P_k(C)$ is given by summing $F_{\Gamma,k}(x)q^{\Delta_k+2\chi_k(x)+n}$ over all $x\in\mathbb{Z}^s$ which lie on the intersection of C with the hyperplane $\{y\in\mathbb{R}^s\mid\Theta_k+\langle y,u\rangle=n\}$.

Recall the S^3 example:



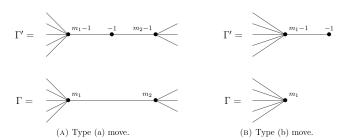
The invariant:

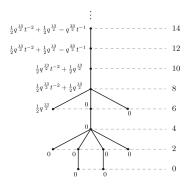
Theorem: The graded root with vertex weights

$$P_{F,k}(C) = \sum_{x \in L(C)} F_{\Gamma,k}(x) q^{\varepsilon_k(x)} t^{\langle x, u \rangle},$$

is an invariant of (Y, [k]).

The proof shows invariance under the Neumann moves:





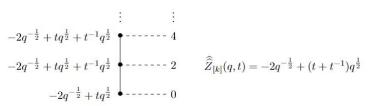
Theorem 2. (Akhmechet-Johnson-K.)

- The sequence of Laurent polynomial weights stabilizes, yielding a 2-variable series $\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t)$.
- ▶ The 2-variable series $\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t)$ is an invariant of the 3-manifold Y with a spin^c structure \mathfrak{s} , and its specialization at t=1 equals $\widehat{Z}_{Y,\mathfrak{s}}(q)$.

A formula for the 2-variable series:

$$\widehat{\widehat{Z}}_{Y,[k]}(q,t) = \sum_{x \in \mathbb{Z}^s} \widehat{F}_{\Gamma,k}(x) q^{\varepsilon_k(x)} t^{\theta_k(x)}, \tag{1}$$

For example, for S^3 :



More generally, for any admissible family F, setting t=1 gives a well-defined Laurent q-series invariant of $(Y(\Gamma, [k]).$

A new feature: behavior under conjugation of spin^c structures:

Theorem 3. (Akhmechet-Johnson-K.)

$$\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t) = \widehat{\widehat{Z}}_{Y,\overline{\mathfrak{s}}}(q,t^{-1}).$$

In contrast, both lattice cohomology and the \widehat{Z} q-series are known to be invariant under conjugation of the $\mathrm{spin}^{\mathrm{c}}$ structure.

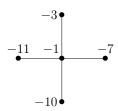
In fact, in some examples conjugate ${\rm spin}^{\rm c}$ structures may be distinguished by their weighted graded roots.

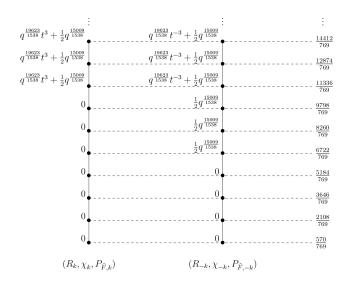
A new feature: behavior under conjugation of spin^c structures:

Theorem 3. (Akhmechet-Johnson-K.)

$$\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t) = \widehat{\widehat{Z}}_{Y,\overline{\mathfrak{s}}}(q,t^{-1}).$$

In contrast, both lattice cohomology and the \widehat{Z} q-series are known to be invariant under conjugation of the $\mathrm{spin}^{\mathrm{c}}$ structure.





P. Johnson: program for computing the weighted graded root

Summary

- A new connection between quantum topology and Floer theory: the weighted graded root unifies lattice cohomology and the \widehat{Z} invariant.
- lacksquare A 2-variable series $\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t)$ specializing to $\widehat{Z}_{Y,\mathfrak{s}}(q).$
- **Polynomial** invariants of (Y, \mathfrak{s}) approximating the power series.
- ► A new feature: distinguishes conjugate spin^c structure.
- Our construction is more general than \widehat{Z} : a weighted graded root is built for any choice of admissible functions $F = \{F_n : \mathbb{Z} \to \mathcal{R}\}_{n \geq 0}$ where \mathcal{R} is a commutative ring.

More recent/ongoing work:

- L. Liles, E. McSpirit have done calculations of $\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t)$ for Brieskron spheres, and also established certain modularity properties for values of t other than 1.
- R. Akhmechet, P. Johnson, S. Park: Extension to the 2-variable series F_K of Gukov-Manolescu for knot complements and knot lattice homology.

Open problems

Categorification of quantum 3-manifolds invariants?

$$\widehat{Z}_{Y,a}(q) = \sum_{i,j} (-1)^i q^j \operatorname{rk} \mathcal{H}_{\mathrm{BPS}}^{i,j}(Y,a)$$

- Are there Laurent polynomial invariants (in t) obtained as radial limits of $\widehat{\widehat{Z}}_{Y,\mathfrak{s}}(q,t)$ as $q\longrightarrow$ roots of unity?
- Mhat are the invariants corresponding to admissible families of functions other than \widehat{F} ?
- ▶ Other homology spheres? $b_1 > 0$? Relation between the construction using affine Grassmanian and Rozansky-Witten invariants, and Heegaard Floer homology?