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Plan
PART 1 (Lectures 1-3)

• I. Disorder and localization

• disorder: diagrammatics, quantum interference, localization

• field theory: non-linear σ-model; quasi-1D geometry: exact solution

• II. Criticality and multifractality

• RG, metal-insulator transition, criticality

•Multifractality of wave functions

• III. Symmetries and topologies

• symmetry classification of disordered electronic systems

• topological insulators and superconductors; disordered Dirac fermions

PART 2 (Lectures 4-5)

• IV. Interaction

• electron-electron-interaction: dephasing and renormalization

• Interplay of disorder and interaction; superconductor-insulator transition

• V. Localization on tree-like graphs (Random Regular Graphs)

• VI. Many-body localization



PART 2



Electron-electron interaction effects

• Renormalization

Virtual processes, energy transfer & T ,

become stronger when T is lowered

• mutual renormalization of resistivity and interaction,

• zero-T phase diagram and quantum phase transitions

• effect of disorder on superconducting and magnetic instabilities

• Dephasing / Decay

Real inelastic scattering processes, energy transfer . T ,

become weaker when T is lowered

• dephasing of quantum interference

• decay of single-particle excitations

• finite-T broadening of localization quantum phase transitions

• T > 0 many-body delocalization



Superconductor-insulator transition (SIT) in 2D disordered films

experiment: TiN films
Baturina et al, PRL’07

Superconductivity vs Anderson localization

related talk on Tuesday by E. Andriyakhina



SIT in disordered 2D system with short-range interaction

Burmistrov, Gornyi, ADM, 2012 ... 2015

σ model with interaction — Finkelstein 1983 (Coulomb interaction)

short range interaction −→ RG for 4 coupling constants:

resistance t, interactions γs (singlet), γt (triplet), γc (Cooper)

weak interactions

d

dy
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 ;
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= t2

Eigenvalues of the linear problem (without BCS term γ2
c):

λ = 2t, λ′ = −t

2D system is “weakly critical” (on scales shorter than ξ)

The eigenvalues λ, λ′ are exactly multifractal exponents:

λ ≡ −∆2 > 0 (RG relevant), λ′ = −∆(1,1) < 0 (RG irrelevant)

−→ enhnacement of interaction, and consequently of superconductivity,

by multifractality



SIT in disordered 2D system

Tc ∼ exp
{
−1/|γc,0|

}
(BCS) , G0 & |γ0|−1

Tc ∼ exp {−2G0} , |γ0|−1/2 . G0 . |γ0|−1

insulator , G0 . |γ0|−1/2

γ0 = 1
6(−γs,0 + 3γt,0 + 2γc,0) < 0 – bare interaction

G0 – bare conductivity

Non-monotonic dependence

of Tc on disorder (G0)

Exponentially strong enhancement

of superconductivity by multifractality

in the intermediate disorder range,

|γ0|−1/2 . G0 . |γ0|−1
SuperconductorInsulator

G0

Tc



SIT in disordered 2D system
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Experiments: Superconductivity in disordered NbSe2

Zhao et al, Nature Physics 2019

Enhancement of Tc by disorder

in monolayer NbSe2 superconductor

explained as enhancement of superconductivity

due to multifractality

Related experiment with analogous result:

Rubio-Verdu et al, Nano Letters 2020



Dephasing at metal-insulator and quantum Hall transitions

e-e interaction −→ dephasing at finite T

−→ smearing of the transition

dephasing length Lφ ∝ T−1/zT , local. length ξ ∝ |n− nc|−ν

−→ transition width δn ∝ Tκ , κ = 1/νzT

Consider short-range e-e interaction,
which is an appropriate model in various situations:

• long-range Coulomb interaction negligible
because of large dielectric constant

• 2D: screening by metallic gate

• interacting neutral particles (e.g. cold atoms)



Temperature scaling of quantum Hall transition

Transition width exponent κ = 1/νzT = 0.42± 0.01

Wei, Tsui, Paalanen, Pruisken, PRL’88 ; Li et al., PRL’05, PRL’09



Interaction-induced dephasing
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Short-range interaction:

−→ dephasing rate τ−1
φ ∝ T p with p = 1 + 2∆(1,1)/d

∆(1,1) > 0 −→ dephasing suppressed by multifractality

dephasing length Lφ ∝ T−1/zT zT = d/p

Transition width exponent κ =
1

νzT
=

1 + 2∆(1,1)/d

νd

Lee, Wang, PRL 1996 ; Wang, Fisher, Girvin, Chalker, PRB 2000

Burmistrov, Bera, Evers, Gornyi, ADM, Annals Phys. 2011



Scaling at QH transition: Theory and experiment

• Theory (short-range interaction):

−→ dephasing rate τ−1
φ ∝ T p with p = 1 + 2∆(1,1)/d

dephasing length Lφ ∝ T−1/zT zT = d/p

Transition width exponent κ =
1

νzT
=

1 + 2∆(1,1)/d

νd

∆(1,1) ' 0.62 −→ p ' 1.62 −→ zT ' 1.23

ν ' 2.59 (Ohtsuki, Slevin ’09) −→ κ ' 0.314

• Experiment (long-range 1/r Coulomb interaction):

κ = 0.42± 0.01

Difference in κ fully consistent with short-range and

Coulomb (1/r) problems being in different universality classes



Delocalization by inelastic processes

Inelastic processes −→ dephasing of quantum interference

−→ cutoff for localization effects −→ finite conductivity

Low-T transport is via hopping over localized states

External bath with continuous spectrum (e.g., phonons)
−→ takes care about mismatch in energies of localized states

Problem of “many-body localization” (MBL):

assume that all single-particle states are localized
(e.g., 1D or quasi-1D, or 2D, or a tight-binding model of any d
with sufficiently strong disorder)

What happens at finite T in the absence of external bath?
Localization, conductivity, other observables – ?

Can the system serve as its own thermal bath?



MBL vs Ergodicity

Problem of many-body localization (MBL):

Can the system serve as its own thermal bath?

Closely related questions:

Ergodicity? Thermalization?

These questions can be posed also for a many-body quantum system
without any spatial structure: “quantum dot”.

In this case, one can speak about Fock-space MBL.



Ergodicity and MBL in excited states of many-body systems

Spatially extended systems with short-range interaction
Gornyi, Mirlin, Polyakov, PRL 95, 206603 (2005)
Basko, Aleiner, Altshuler, Ann Phys 321, 1126 (2006)
Oganesyan, Huse, PRB 75, 155111 (2007)

Quantum dots
Altshuler, Gefen, Kamenev, Levitov, PRL 78, 2803 (1997)
Mirlin, Fyodorov, PRB 56, 13393 (1997)
Jacquod, Shepelyansky, PRL 79, 1837 (1997)

Spatially extended systems with power-law interaction
Burin, arXiv:cond-mat/0611387; PRB 91, 094202 (2015)
Yao, Laumann, Gopalakrishnan, Knap, Müller, Demler, Lukin, PRL 2014
Gutman, Protopopov, Burin, Gornyi, Santos, Mirlin, PRB 93, 245427 (2016)

and many further papers

Questions that are addressed:

• MBL transition – ? Is the critical disorder independent on the system size L,
or else, how does it scale with L?
• Properties of the localized and delocalized phases? Transport; dynamics; statis-
tics of various observables; ...
• Can an intermediate “non-ergodic delocalized” phase emerge?
• Critical behavior at the transition? Properties of the critical regime?



Onset of quantum chaos in nuclei

Aberg ’90, ’92

Two-body random
interaction model,

highly excited states;

Level statistics:
crossover from
Poisson to Wigner-Dyson

Criterion conjectured on the basis of numerics:

∆ – interaction matrix element,

d2p2h – level spacing of Fock-space basis states
directly connected to the given one by interaction



Fock-space many-body localization in quantum dots

Altshuler, Gefen, Kamenev, Levitov ’97

Two-body random interaction model,

hot electron decay;

Fock space localization:
approximation by Cayley tree

MBL transition in quantum dots with increasing energy:
from Fock-space localized (no ergodicity, Poisson)
to delocalized (ergodicity, Wigner-Dyson) states

ADM, Fyodorov ’97

Jacquod, Shepelyansky ’97

. . .

Gornyi, ADM, Polyakov, Burin ’17

Monteiro, Micklitz, Tezuka, Altland ’20

Herre, Karcher, Tikhonov, ADM ’23

Relation to localization on tree-like graphs:
Random regular graphs (RRG)



Many-body quantum dot models

Fermionic quantum dot
(in the basis of exact eigenstates of the non-interacting problem):

Ĥ =
∑
i

εiĉ
†
i ĉi +

∑
ijkl

Vijkl

(
ĉ
†
i ĉ
†
jĉkĉl + h.c.

)
.

εi – random energies from [−W,W ]

Interaction matrix elements Vijkl — Gaussian random variables with zero mean

and variance unity

Consider n/2 fermions occupying n orbitals.

Spin quantum dot:

Ĥ =
n∑
i=1

εiŜ
z
i +

n∑
i,j=1

∑
α,β∈{x,y,z}

V
αβ
ij

(
Ŝαi Ŝ

β
j + h.c.

)
.

εi — random fields from [−W,W ]

interaction matrix elements V αβ
ij – gaussian random variables with zero mean

and variance unity



Anderson localization on random regular graphs (RRG)

Random regular graph – random graph with constant connectivity m+ 1

Locally tree-like (as Bethe lattice) but without boundary

Typical size of loops ∼ lnN

H =
∑
〈i,j〉

(
c+
i cj + c+

j ci

)
+
∑
i=1

εic
+
i ci

εi −→ disorder W

Relation to the MBL problem:

Hilbert space size N ∼ mL where L is “linear size”

Sites ←→ many-body basis states, links ←→ interaction matrix elements



Approaches to Anderson model on RRG

• Direct numerics: Exact diagonalization

• Field theory, Large N −→ saddle point

−→ self-consistency equation

• Analytical solution

• Numerical solution via pool method (population dynamics)



Anderson localization on random regular graphs (RRG):
Analytical solution

Tikhonov, ADM 2019

Supersymmetric field-theoretical approach

Saddle-point approximation controlled by large size N of the graph

−→ self-consistency equation for the distribution of local Green functions

(known from the problem on an infinite Cayley tree)

• highly accurate determination of Wc

• ergodicity of delocalized phase W < Wc N � Nξ(W )

Nξ – correlation volume, lnNξ ∝ (Wc −W )−1/2

• Wigner-Dyson level statistics

• Wave function statistics: Inverse participation ratio (IPR) P2 = 〈
∑

i |ψ(i)4|〉
P2 ' Nξ(W )/N

• wave function correlations in delocalized and localized phases, . . .

ADM, Fyodorov ’91 related results for sparse random matrix model
( ∼ RRG with fluctuating connectivity)



Anderson localization on RRG:
Analysis of numerics requires great care

Biroli, Ribeiro-Teixeira, Tarzia,

arXiv:1211.7334

apparent fractality of IPR

−→ non-ergodicity of delocalized phase ?!

De Luca, Altshuler, Kravtsov, Scardicchio, Phys Rev Lett ’14

“We conclude that the nonergodicity and multifractality persist

in the entire region of delocalized states 0 < W < Wc”



Ergodicity of delocalized phase on RRG

Tikhonov, ADM, Skvortsov, 2016

Level statistics:

mean adjacent
gap ratio r

rWD

rP

• r → rWD in the large-N limit in the delocalized phase

• crossing point W∗ drifts towards stronger disorder:

W∗ ' 14 (N = 512) −→ W∗ ' 16 (N = 65 536) −→ Wc (N =∞)

Equivalently: for given W non-monotonic dependence r(N)

Reason: critical point on tree-like structures (or at d→∞)

has quasi-localized character (Poisson statistics, IPR ∝ N0)



Ergodicity of delocalized phase on RRG: Eigenfunction statistics

IPR P2(W,N)

“flowing fractal exponent”

µ(W,N) = −∂ lnP2(W,N)/∂ lnN

• Ergodicity: µ→ 1 at N →∞
for W < Wc

• non-monotonic dependence µ(N)

insu
lato

r

good metal



RRG: Field-theoretical approach

〈O〉 =
∫ ∏

k[dΦk]e
−L(Φ)UO(Φ) Φi,s = (S

(1)
i,s , S

(2)
i,s , χi,s, χ

∗
i,s) – supervector

Doubling Φi = (Φi,1, Φi,2) for retarded (R) and advanced (A) Green functions

e−L(Φ) =

∫ ∏
i

dεiγ(εi)e
i
2Φ
†
i Λ̂(E−εi)Φi+iω

4 Φ
†
iΦi
∏
〈i,j〉

e−iΦ
†
iΦj Λ = diag(1,−1)RA

RRG, connectivity p = m+ 1, distributions of energies γ(ε) and hoppings h(t)

〈Z〉 =

∫ ∏
i

dΦi

dxi

2π
eipxi exp

{∑
i

[
i

2
Φ†iΛ̂(E − JiK̂)Φi +

i

2

(
ω

2
+ iη

)
Φ†iΦi

+ ln γ̃(
1

2
Φ†iΛ̂Φi)

]
+

p

2N

∑
i6=j

[
e−i(xi+xj)h̃(Φ†iΛ̂Φj)− 1

]
Functional generalization of Hubbard-Stratonovich transformation

−→ integral over functions g(Φ): 〈O〉 =
∫
Dg UO(g)e−NL(g)

L(g) = m+1
2

∫
dΨdΨ′g(Ψ)C(Ψ,Ψ′)g(Ψ′)− ln

∫
dΨ F (m+1)

g (Ψ)

F (s)
g (Ψ) = exp

{
i
2
EΨ†Λ̂Ψ + i

2

(
ω
2

+ iη
)

Ψ†Ψ
}
γ̃(1

2
Ψ†Λ̂Ψ)gs(Ψ)



Field theory for RRG model: Saddle-point treatment

〈O〉 =
∫
Dg UO(g)e−NL(g) Large N −→ saddle-point

treatment

IPR P2 =
1

πν
lim
η→0

η 〈GR(j, j)GA(j, j)〉 GR,A(j, j) = 〈j|(E −H± iη)−1|j〉

〈GR(j, j)GA(j, j)〉 =
∫
Dg U(g)e−NL(g)

U(g) =
∫

[dΨ] 1
16

(
Ψ†1K̂Ψ1

) (
Ψ†2K̂Ψ2

)
F (m+1)
g (Ψ)

g0(Ψ) =
∫
dΦ h̃(Φ†Λ̂Ψ)F

(m)
g0 (Φ) saddle-point equation

identical to the self-consistency equation for infinite Bethe lattice (BL) !

ADM, Fyodorov 1991

Symmetry −→ g0(Ψ) = g0(x, y); x = Ψ†Ψ, y = Ψ†Λ̂Ψ

Laplace (x) - Fourier (y) transf.: g0(x, y)←→ distribution of ImG and ReG

self-consistency equation in the form of Abou-Chacra, Thouless, Anderson 1973



Bethe lattice and self-consistency equation

Self-consistency eq. for the distribution of local Green functions

G(m) d
=

1

E + iη − ε− V 2
∑m
i=1G

(m)
i

G(m) = GR(0, 0;E) = 〈0|(E −H+ iη)−1|0〉
d
= – equality in distribution for random variables

η – infinitesimal positive



Field theory for RRG model: Inverse Participation Ratio

• W ≥Wc localized phase and critical point:

single saddle-point g0(Φ) = g0(x, y), characteristic x ∼ η−1

−→ U(g0) =
C

η
, C ∼ 1 −→ P2 =

C

πν
∼ 1

• W < Wc delocalized phase: spontaneous symmetry breaking

manifold of saddle points

g0(Ψ) −→ g0T (Ψ) = g0(T̂Ψ) = g0(Ψ
†T̂ T̂Ψ, Ψ†Λ̂Ψ) T̂ Λ̂T̂ = Λ̂

〈GR(j, j)GA(j, j)〉 =
∫
Dge−NL(g)U(g) =

∫
dµ(T̂ ) U(g0T ) e

−π2NηνStr
[
T̂ T̂

]

P2 = 1
πν

limη→0 η 〈GR(j, j)GA(j, j)〉 =
12

N

g
(m+1)
0,xx

π2ν2
=

3

N

〈
ν2
〉

BL

ν2
N � Nξ

Near the transition:
〈
ν2
〉

BL
/ν2 = Nξ � 1 — correlation volume P2 = 3

Nξ

N

Ergodicity! Exact relations between RRG and infinite BL problems.

Generalized to correlation functions at arbitrary distance r
and of different eigenstates (energy separation ω)



Critical behavior

Correlation volume Nξ −→ correlation length ξ

Critical behavior: ξ ∼ (Wc −W )−νdel critical index νdel =?

Self-consistency equation −→ mλβ = 1

λβ – largest eigenvalue of certain integral operator

λβ(W ) ' 1
2
− c1 (W −Wc) + c2

(
β − 1

2

)2
, has minimum at β = 1/2

Localized phase, W > Wc : β real

Critical point, W = Wc : mλ1/2 = 1 Abou-Chacra et al, 1973

Delocalized phase, W < Wc : spontaneous symmetry breaking

β becomes complex: β = 1
2
± iσ , σ '

√
c1
c2

(Wc −W )1/2

Correlation length lnNξ '
π

σ
−→ critical index νdel = 1/2

m = 2 −→ c1 ' 1.59, c2 ' 0.0154 −→ lnNξ ' 31.9 (Wc −W )−1/2

ADM, Fyodorov, 1991, Tikhonov, ADM, 2019



Critical behavior: Numerical confirmation of νdel = 1/2

Tikhonov, ADM, 2019

• accurate determination of Wc

from the equation mλ1/2 = 1

Wc = 18.17± 0.01 m = 2

• solve self-consistency eq. by pool method −→ determine Nξ

lnNξ ∼ (Wc −W )−νdel −→
∂ ln lnNξ

∂ ln τ
= νdel τ = − ln(1−W/Wc)

m = 2 −→ asymptotics lnNξ = 31.9 (Wc −W )−1/2 νdel = 1/2



Correlations of different wave functions on RRG

β (ω) =
〈
|ψk (j)ψl (j)|2

〉
, Ek = E + ω/2 , El = E − ω/2

Fourier transf. −→ return probability p(t) −→ quantum dynamics

• Delocalized phase, N � Nξ

N2β(ω) ∼


Nξ, ω < ωξ

1

ω ln3/2 ω−1
, ω > ωξ

ωξ ∼ N−1
ξ (with log correction)

10−7 10−6 10−5 10−4 10−3 10−2

ω

101

102

103

104

105

N
2
β

(0
,ω

)

8 10 12 13

N2β(ω → 0) =
N

3
P2 =

〈
ν2
〉

BL

ν2
Tikhonov, ADM, 2019

Outstanding agreement between exact diagonalization, analytical results,

and population dynamics.

A further manifestation of ergodicity of the delocalized phase



Wave functions correlations: Localized phase

Single particle problem in d dimensions, localized phase
Cuevas, Kravtsov, 2007

N2β(ω) ∼ ζd−d2 lnd−1(δζ/ω) , ω < δζ ≡ ζ−d

ζ – localization length

Logarithmic enhancement of correlations at d > 1 due to Mott resonances

What to expect in the localized phase on a tree-like graph (RRG)?

Tikhonov, ADM, 2019
A simplistic estimate:

Decay of an eigenstate |ψ2(r)| ∼ m−r exp{−r/ζ(W )}
This is an average but assume that all eigenstates decay in this way

−→ calculate probability of resonance at frequency ω −→

N2β(ω) ∼ ω−µ(W ) µ(W ) '
ζ lnm

ζ lnm+ 1

{
→ 1 , W →Wc + 0

∼ 1
ln(W/Wc)

, W �Wc

In fact, wave functions |ψ2(r)| strongly fluctuate.

But a more accurate analysis yields qualitatively the same result.



Eigenstate correlations on RRG: From ergodic to localized phase

Tikhonov, ADM, 2019

10−5 10−4 10−3 10−2

ω

101

102

103

N
2
β

(ω
)

10−5 10−4 10−3 10−2

ω

101

102

103

N
2
β

(ω
)

W = 10, 12, 14, 18, 24, 30, 42 Localized side: W = 18, 24, 30, 42

N2β(ω) ∼ ω−µ(W )

“Fractal” scaling at W > Wc

20 25 30 35 40

W

0.4

0.5

0.6

0.7

µ
(W

)



Correlation of adjacent wavefunctions on RRG

βnn =
〈
|ψk (j)ψk+1 (j)|2

〉
' β(ω ∼ ∆)

Ergodic, N � Nξ: N2βnn = Nξ

Localized: N2βnn ∼ Nµ(W )

µnn(W,N) =
∂ ln

(
N2βnn

)
∂ lnN

µnn(W,N)
N→∞−→

{
0, W < Wc

µ(W ), W > Wc

5 10 15 20 25 30

W

101
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104

N
2
β

n
n

(W
)

Wc
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W

0.0
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0.6
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µ
n

n
(W

)

Wc

N = 4096, 8192, 16384, 32768, 65536

Non-monotonic behavior of βnn(W ) and µnn(W ) around the transition

Maximum at Wpeak(N)

apparent N -dependent crit. point

Wpeak(N →∞) = Wc ' 18.17

log2N 12 13 14 15 16
Wpeak(N) 13.70 13.78 13.89 14.06 14.28
ν(N) 4.31 3.52 2.22 1.42 0.96



Quantum dots and random graphs

Spin quantum dot

Ĥ =
n∑
i=1

εiŜ
z
i +

n∑
i,j=1

∑
α,β∈{x,y,z}

V
αβ
ij

(
Ŝαi Ŝ

β
j + h.c.

)
n� 1 spins

εi — random fields from [−W,W ]

interaction V
αβ
ij – random with zero mean and variance unity

Fock-space coordination number: m ' n2/2

Similarly, for fermionic quantum dot

Ĥ =
∑
i

εiĉ
†
i ĉi +

∑
ijkl

Vijkl

(
ĉ
†
i ĉ
†
jĉkĉl + h.c.

)
Fock-space coordination number: m ' n4/64

−→ consider first RRG model with large m



RRG with large connectivity m� 1

Herre, Karcher, Tikhonov, ADM ’23
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νdel = 1/2

Population Dynamics
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Critical disorder: Wc = 4m ln
Wc

2
α(W ) = d ln(NP2)/d lnW

excellent agreement between
analytical predictions,
exact diagonalization,
and population dynamics

Critical regime Wc/2 < W < Wc and N � Nξ inaccessible
for exact diagonalization



Quantum dot critical disorder: Analytical expectations

How does the critical disorder Wc in quantum dots scale with n ?

RRG approximation −→ Wc ∼ m lnm

m – coordination number

m ≈ n2/2 for spin quantum dot; m ≈ n4/64 for fermionic quantum dot

But the RRG approximation neglects small-scale loops that might reduce Wc.

How important are they?

Gornyi, ADM, Polyakov, Burin ’17: Wc ∼ m lnµm with µ ≤ 1.



Fermionic quantum dot: Exact diagonalization

Herre, Karcher, Tikhonov, ADM ’23
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IPR and its log derivative α(W ) = d ln(NP2)/d lnW

Data consistent with MBL transition at Wc ∼ m lnm as on RRG.

m ≈ n4/64 – coordination number



Spin quantum dot: Exact diagonalization

Herre, Karcher, Tikhonov, ADM ’23

101 102 103

W

0.40

0.45

0.50

0.55

0.60

r

10−1 100 101

W/m lnm

10

12

14

16

level statistics (gap ratio)

101 102 103

W

101

102

103

104

P
2
N

101 102 103

W

0

2

4

6

8
α

(W
)

10−1 100 101

W/m lnm

0

2

4

6

8

α
(W

)

10

12

14

16

IPR and its log derivative α(W ) = d ln(NP2)/d lnW

Data consistent with MBL transition at Wc ∼ m lnm as on RRG.

m ≈ n2/2 – coordination number



Spin quantum dot vs RRG

Herre, Karcher, Tikhonov, ADM ’23
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For W > m, the data for spin quantum dot deviate from those for RRG
towards faster localization.

Critical regime for quantum dot models may be different from that on RRG.
Remains to be understood.



Fock-space MBL transition in quantum dots

Herre, Karcher, Tikhonov, ADM ’23

For finite n, there is a crossover from ergodicity to Fock-space MBL.

It becomes a sharp transition at n→∞ if ∆W/W ≈ ∆(lnW )→ 0

fermionic quantum dot spin quantum dot

∆(lnW ) ∼ n−κ −→ sharp Fock-space-MBL transition



From Fock- to real-space localization. Short-range interaction

Gornyi, ADM, Polyakov ’05

Single-particle excitation decay processes:

α β

γ
δ

α

γ

1

2

γ

βn

0

a) b)

β

βn

−

Lowest order process: e→ eeh

−→ Golden rule τ−1
φ ∼ V 2/∆

(3)
ξ

V ∼ α∆ξ – interaction matrix element, α - interaction strength,

∆ξ - single-particle level spacing in localization volume,

∆
(3)
ξ ∼ ∆2

ξ/T - three-particle level spacing in localization volume

But: for V < ∆
(3)
ξ , i.e. T < T3, where T3 ∼ ∆ξ/α

−→ no decay (no hybridization) to the lowest order



Localization transition

Gornyi, ADM, Polyakov ’05

Higher orders? −→ have to analyze V (n)/∆(2n+1)

V (n) =
∑

diagrams

∑
γ1,...γn−1

V1

n−1∏
i=1

Vi+1

Ei − εγi

−→ optimal processes (“ballistic”, “forward approximation”):

a “string” with a few excitations per localization volume
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ξ

V (n)

∆(2n+1)
∼
(
T

T3

)n
(logarithms omitted)

−→ Many-Body Localization transition at T = Tc ∼ T3



Mapping onto Bethe lattice

Gornyi, ADM, Polyakov ’05

Interacting problem in Fock space

−→ Anderson model on the Bethe lattice

−→ Metal-Insulator Transition at

∆/V = 4 lnK
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n=2

n=1

n=0

K: Coordination number K ∼
∆ξ

∆
(3)
ξ

∼
T

∆ξ

∆: Level spacing of n = 1 states: ∆ = ∆
(3)
ξ

V : hopping matrix element:
interaction matrix element V ∼ α∆ξ

−→ MBL transition temperature Tc =
∆ξ

α lnα−1

Basko, Aleiner, Altshuler ’06: analogous result from SCBA



Numerics for MBL transition in 1D. Analogies to RRG

MBL with short-range interaction: XXZ spin chain in random field

Luitz, Laflorencie, Alet, PRB (2015) Striking similarities to RRG

RRG

Tikhonov, ADM,
Skvortsov 2016

• strong drift of crossing point:

strong finite-size effects,

actual transition

at considerably stronger disorder,

as also implied by MPS-TDVP study

Doggen et al, PRB 98, 174202 (2018)

Wc ' 5.5− 6 rather than 3.7− 3.8

• critical point similar to localized phase



MBL transition in long Heisenberg chains via MPS-TDVP

Doggen et al 2018

L = 100

Initial Néel state.

Monitor imbalance I(t) between

total densities on even and odd sites.

Imbalance decay I(t) ∼ t−β

β(W ) = 0 for W > Wc

Drift from Wc ≈ 4 for L = 16

to Wc ' 5.5− 6 for L = 50 and 100



MBL transition in 1D. Analogies to RRG.

• ergodicity of the delocalized phase achieved for Hilbert space size N � Nξ

insu
lato

r

good metal

Macé, Alet, Laflorencie, PRL 2019

RRG

Tikhonov,
ADM,
Skvortsov
2016

• asymmetry of critical behavior:

νdel ' 0.45 and νloc ' 0.76

to be compared to

νdel = 1/2 and νloc = 1 (RRG)

Numerically found exponents for MBL are
close to those for RRG and strongly violate
Harris criterion

−→ MBL systems too small to exhibit
asymptotic critical behavior



Many-body localization transition: Role of rare regions

• An avalanche instability may destroy MBL: a thermal seed
(rare region of weak disorder) grows and “swallows” the whole system.

As a consequence, it was found
that the critical disorder Wc(L) grows with L in d > 1.

In particular, Wc(L) ∼ exp(c ln1/3L) in 2D.

• Slow, subdiffusive transport in 1D on the ergodic side of the transition
is attributed to Griffiths effects (rare regions of strong disorder).

• Phenomenological strong-randomness RG for the MBL transition
was proposed, which includes the above rare-region physics.
It leads to BKT-type transition.



MBL with long-range interaction and RRG

Random spin chain with 1/rα interaction, d < α < 2d

Mapping to RRG −→ Wc ∼ L2d−α lnL

Agreement with exact diagonalization

d = 1 , α = 3/2

• Scaling of transition point

• Delocalized side: Ergodicity

• Critical point −→ drift towards larger W∗ = W/L1/2 lnL

delocalized

localized

(b) (b)
9 10 11 12 13 14 15

L

0

1

2

3

4

5

W
∗(
L

)

extrapolation
to W∗c ' 4.3



Many-body localization transition: Experiments

Cold atoms in 1D and 2D optical lattices

Schreiber et al, Science 2015; Choi et al, Science 2016 (group of I. Bloch)



Experiment: MBL transition
in a system of coupled superconducting qubits

Roushan, ..., Martinis, Science 2017

Spectroscopy of a chain of 9 superconducting qubits

level statistics spatial IPR of eigenstates spatial correlations



Exp.: MBL transition in 2D superconducting quantum processor

Yao et al, arXiv:2211.05803

Observation of
Fock-space dynamics
in 6× 4 qubit array



Experiment: Indication of MBL transition near SIT

Insulating side of superconductor-insulator transition
in 2D films of InO

Ovadia et al ’15
(group of D. Shahar)

vicinity of SIT

−→ large localization length

−→ large dielectric constant

−→ strong screening
of Coulomb interaction

−→ room for finite-T
MBL transition regime?



Time crystals

spontaneous breaking of discrete time translation symmetry:

subharmonic oscillations in a Floquet driven MBL system

Else, Bauer, Nayak, PRL’16



Time crystals: Experiments

trapped atomic ions NV impurity spins in diamond

Zhang, Monroe, Nature’17 Choi, ..., Lukin, Nature’17



What we have discussed:

• I. Disorder and localization

• disorder: diagrammatics, quantum interference, localization

• field theory: non-linear σ-model; quasi-1D geometry: exact solution

• II. Criticality and multifractality

• RG, metal-insulator transition, criticality

•Multifractality of wave functions

• III. Symmetries and topologies

• symmetry classification of disordered electronic systems

• topological insulators and superconductors; disordered Dirac fermions

• IV. Interaction

• electron-electron-interaction: dephasing and renormalization

• Interplay of disorder and interaction; superconductor-insulator transition

• V. Localization on tree-like graphs (Random Regular Graphs)

• VI. Many-body localization

Thank you!


