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Solving classical equations for (r1,p1,...,ry, py) we'd need to
keep track of about N = 103" molecules (6N degrees of freedom)
to model air in this room. Intractable!
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Hydrodynamics is the effective field theory of thermalization. It
tells us that slow, macroscopic dynamics doesn’t care
about microscopic details.
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Solving classical equations for (r1,p1,...,ry, py) we'd need to
keep track of about N = 103" molecules (6N degrees of freedom)
to model air in this room. Intractable!
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Hydrodynamics is the effective field theory of thermalization. It
tells us that slow, macroscopic dynamics doesn’t care
about microscopic details.

Hydrodynamics makes sense on length scales L > ¢, the “mean
free path for collisions”.



This universality is observed:

conventional gases: conventional liquids:

cold atoms:

electrons in solids:




Sometimes, hydrodynamics is unstable to thermal fluctuations:

Op + O(pv;) = 0.
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This quadratic nonlinearity is a relevant operator (in the field
theoretic sense) below d = 2 spatial dimensions.



Sometimes, hydrodynamics is unstable to thermal fluctuations:
Orp + 815(/)1]1‘) =0.
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This quadratic nonlinearity is a relevant operator (in the field

theoretic sense) below d = 2 spatial dimensions.

In d = 1, we miraculously know the endpoint of the
hydrodynamic instability arising from these relevant
nonlinearities. The hydrodynamic sound mode disperses like

w = +ck —iak®? + ...

The resulting dynamical universality class is the
Kardar-Parisi-Zhang fixed point.



@ This fixed point can be readily seen in simulations of
hydrodynamics (classical interacting particles) in d = 1.
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[Das et al; 1404.7081]



@ Dipole-Conserving Hydrodynamics



What happens when the microscopic dynamics is subject to a
non-trivial constraint, such as dipole conservation in addition to

charge conservation?
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We say that such theories have fractons — elementary
excitations are immobile, and only move with other fractons.



@ If we only had charge conservation, we would have diffusion:

Oip = DIZp



@ If we only had charge conservation, we would have diffusion:

Oip = DO2p

Addlng dlpole conservation: [Gromov, Lucas, Nandkishore; 2003.09429]

dip = —Bp



@ If we only had charge conservation, we would have diffusion:

2
Op = DO;p
Addlng dlpole conservation: [Gromov, Lucas, Nandkishore; 2003.09429]
_ 4
Op = —BI,p

This result has been seen numerically:
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[Morningstar et al; 2004.00096], [Feldmeier et al; 2004.00635]



Why subdiffusion? We need (focus on d = 1):
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dep-x = —/dx o — /dem
so we should take J, = 0y Jzz.



Why subdiffusion? We need (focus on d = 1):

Since dipole is conserved,

d

0= —
dt

dep-x = —/dx o — /dem
so we should take J, = 0y Jzz.

If we tI'y to write [Gromov, Lucas, Nandkishore; 2003.09429]
2
Jxx:ap+B8wp+ )

then since J,, is time-reversal-odd while p is time-reversal-even,
we need a = 0 (assuming microscopic time-reversal symmetry).



What if we have microscopic dipole pairs? Do we get an extra
propagating degree of freedom?
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No, because the bound dipoles can be eaten up by the motion of
isolated charges:



What if we have microscopic dipole pairs? Do we get an extra
propagating degree of freedom?

No, because the bound dipoles can be eaten up by the motion of
isolated charges:

This is analogous to why there is no angular momentum density
in the Navier-Stokes equations.
[Glorioso et al; 2007 .13753]



@ The dipole-conserving subdiffusive universality class can arise
due to emergent constraints on dynamics, such as in a tilted
Fermi-Hubbard model:

H= =ty (eh oo+ el os + Fack er )43 Uehieaclyea,
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@ The dipole-conserving subdiffusive universality class can arise
due to emergent constraints on dynamics, such as in a tilted
Fermi-Hubbard model:

H= =ty (eh oo+ el os + Fack er )43 Uehieaclyea,
x

z,s

At long wavelengths, energy conservation is dominated by the
tilt term, which is proportional to “dipole moment”. One finds
that charge and energy diffusion morph into:

—iAF?  energy
w = .Ck*
—iy charge
as a consequence of energy conservation ultimately being
dominated by dipole conservation.



This tilted Fermi-Hubbard model has been experimentally
realized in a tilted optical lattice:
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[Guardado-Sanchez et al; 1909.05848]



@ Dipole and Momentum Conservation



What if we have dipole and momentum conservation?

The conserved quantities are

P = /dd:r T,
Q= / dz p,
D; = /ddx xip-



What if we have dipole and momentum conservation?

The conserved quantities are

The multipole algebra relating them is:
{P,Q} ={Di,Q} =0, {Dy,P;} = Q0.

This last Poisson bracket/commutator will make hydrodynamics
subtle!



We expect that hydrodynamic equations will take the form
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Op + 0;0;J;5 = 0,
Oy + 8jﬂj =0.

Since {D, P} = (), momentum transforms under dipole shift:
T; — T + Cip

Or, if we write
TG
Yi = —
p

the theory is invariant under ¢; — ¢; + ¢;. This includes
thermodynamics! [Grosvenor et al; 2105.01084], [Glorioso et al; 2105.13365]



We expect that hydrodynamic equations will take the form
&gp + (%(%’Jij = 0,
Oy + 8]'7%‘ =0.
Since {D, P} = (), momentum transforms under dipole shift:
T — T + Cp
Or, if we write
TG

Pi = —">»
1%

the theory is invariant under ¢; — ¢; + ¢;. This includes
thermodynamics! [Grosvenor et al; 2105.01084], [Glorioso et al; 2105.13365]

;’s shift symmetry suggests it is a Goldstone boson...



The hydrodynamics is complicated — see paper for details.
Schematically, the normal modes are:

w=+k>—ik* (p, )

W = —ik‘4 (ﬂ'L),

[Glorioso et al; 2105.13365]



The hydrodynamics is complicated — see paper for details.
Schematically, the normal modes are:

w=+k>—ik* (p, )

W = —ik‘4 (ﬂ'L),

[Glorioso et al; 2105.13365]

A scaling analysis reveals that in general there are relevant
perturbations below d = 4.

We find “fractonic KPZ” dynamical universality class in
d=1,23!



Consider the Hamiltonian system

~ ( p 15, 93,9
Z+1 Ppp— . e — 2 -_— 3 — 4 DY
H = Z; —— 4 V(zi—xi11), V= 5% +39: +493 +
3
Just like momentum conservation implies symmetry x; — x; + ¢,
dipole conservation implies p; — p; + c. [Glorioso et al; 2105.13365]



Consider the Hamiltonian system
1

pz+1 145 93 9 4
=1

Just like momentum conservation implies symmetry x; — x; + ¢,
dipole conservation implies p; — p; + c. [Glorioso et al; 2105.13365]

With random initial conditions, the typical wave number of
fluctuations should obey

kyp (1) ~ t71/%,

model A

1/k.

10° 10! 10? 10°
time [7]

Ind=1, when g =0, z &~ 4; but when g # 0, z ~ 2.5!



However, these nonlinearities will stay relevant in d = 2,3 as
well. Using simulations with 6 x 10° degrees of freedom, we
simulated d = 2 generalization and found that z =~ 3.

1/k.
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[Glorioso et al; 2105.13365]



We’ve developed a geometric effective field theory for this fluid
(couple to gauge fields, vielbein, spin connection...)
[Glorioso et al; 2301.02680]
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The effective field theory makes manifest that
Uy
pi = —
p

is the dipole phase field, which is a Goldstone boson.



We’ve developed a geometric effective field theory for this fluid
(couple to gauge fields, vielbein, spin connection...)
[Glorioso et al; 2301.02680]

The effective field theory makes manifest that

UL
pi = —
p

is the dipole phase field, which is a Goldstone boson.
Dipole symmetry is spontaneously broken in all dimensions. This

avoids the Mermin-Wagner theorem because the symmetry is not
compact (singlet states might not even exist in Hilbert space!)



Generalize to higher mutlipole conserving problems:

N N
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Generalize to higher mutlipole conserving problems:

N N
H) al b =<HD pjp=0,
j=1 j=1

take (m d= 1) [Osborne, Lucas, 2111.09323|
Dj Dj+1 = Pj+q
Negot 1 1 .1
H = g det Lio Ti+r ot Thtg
j=1 : ; ;
q-1 -1 q—1
.',U] J;j+1 :Uj+q

Resulting hydrodynamics will break down for spatial dimension
d < 2+ 2q: an infinite new family of dynamical universality
classes!
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statistical physics, condensed matter, high energy, and beyond!
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provide interesting generalizations of the KPZ fixed point (in
d = 1) in arbitrarily large d.



Hydrodynamics is seeing a broad resurgence of interest in
statistical physics, condensed matter, high energy, and beyond!

Constrained “fracton fluids” are a particularly rich area of recent
research which suggest the need for more sophisticated
understanding of hydrodynamics as a (non-thermal?) EFT.

[Guo, Glorioso, Lucas; 2204.06006]

We have discovered new dynamical fixed points that arise from
instabilities of hydrodynamics in constrained fluids. These
provide interesting generalizations of the KPZ fixed point (in
d = 1) in arbitrarily large d.

One can covariantly couple dipole-conserving fluids to classical
background gravity. Suggests a route to placing more general
fracton matter on curved space?
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