INTRODUCTION TO MACHINE LEARNING: DEEP LEARNING

MICHELLE KUCHERAJOINT ICTP-IAEA ADVANCED SCHOOL/WORKSHOP ON MACHINELEARNING IN CITIZEN SCIENCE
28 FEBRUARY 2023

DAVIDSON

$w_{1}=w_{1}+\eta * \frac{\partial f}{\partial q_{1}} \frac{\partial q_{1}}{\partial w_{1}}$

$J(w)=f-\hat{f}$

Jefferson Lab FRIB

Jefferson Lab

		t	$\underset{\text { glvon }}{\mathrm{g}}$	H
	2 shange	$\cdots \text { b }$	(γ photon	
1 \because e eleatron	μ	T tas	z	$\frac{5}{3}$
		$\therefore D_{0}$	$\because \frac{W}{W \text { woose }}$	\|卷

EXPERIMENTAL DATA

BRADT ET. AL., NUCLEAR INSTRUMENTS AND METHODS, 2017

0
$x+200$
$x+200$FRIB

Jefferson Lab

CLAS 12

CMS

EXPERIMENTAL DATA

FRIB

Jefferson Lab

CMS

GENERATIVE MODELING

REGRESSION

CLASSIFICATION

GENERATIVE MODELING

REGRESSION

CLASSIFICATION

5-day forecast

GENERATIVE MODELING

REGRESSION

CLASSIFICATION

NEURON

MATHEMATICS

	Neural Networks ume 4, Issue 2, 1991, Pages 251-25	
Approximation capabilities of multilayer feedforward networks		
Abstract		
We show that standard multila		
finite input environment measures μ, provided only that sufficiently manunits are available. If the activation function is continuous, bounded and		
units are available. If the activation function is continuous, bounded and nonconstant, then continuous mappings can be learned uniformly over cominput sets. We also give very general conditions ensuring that networks with		
input sets. We also give very general conditions ensuring that networks withsufficiently smooth activation functions are capable of arbitrarily accurate		
sufficiently smooth activation functions are capable of arb		

MATHEMATICS

COMPUTATIONAL GRAPH

MACHINE LEARNING

SUPERVISED LEARNING

REGRESSION

Loss function

$$
\hat{f}=x_{1} w_{1}+x_{2} w_{2} \quad J(w)=\hat{f}-f
$$

SUPERVISED LEARNING

Loss function

$$
\hat{f}=x_{1} w_{1}+x_{2} w_{2} \quad J(w)=\hat{f}-f
$$

$\partial_{J} \partial \hat{f} \partial q_{1} \quad$ BACKPROPAGATION

$$
w_{2}=w_{2}-\eta^{*} \frac{\partial J}{\partial \hat{f}} \frac{\partial \hat{f}}{\partial q_{2}} \frac{\partial q_{2}}{\partial w_{2}} \quad \begin{array}{lr}
\frac{\partial q_{2}}{\partial w_{2}}=x_{2} & \text { Loss function } \\
J(w)=\hat{f}-f
\end{array}
$$

LOGISTIC REGRESSION

LOGISTIC REGRESSION

BINARY CLASSIFICATION

LOGISTIC REGRESSION

Features
Summation

+ Nonlinearity
Output

$\partial_{J} \partial \hat{f} \partial q_{1} \quad$ BACKPROPAGATION

$$
w_{2}=w_{2}+\eta * \frac{\partial J}{\partial \hat{f}} \frac{\partial \hat{f}}{\partial q_{2}} \frac{\partial q_{2}}{\partial w_{2}}
$$

$$
\begin{array}{ll}
\frac{\partial q_{2}}{\partial w_{2}}=x_{2} & \text { Loss function } \\
J(w)=\hat{f}-f
\end{array}
$$

AUTOMATIC DIFFERENTIATION

TensorFlow

 Keras

© PyTorch

SESSION 2 TOPICS

-Convolutional Layers

- Classification
- Pre-trained models
- Unsupervised Methods
- Best practices
- Hot topics in ML research

```
MICHELLE KUCHERA DAVIDSON COLLEGE
JOINT ICTP-IAEA WORKSHOP ADVANCED SCHOOL ON COMPUTATIONAL NUCLEAR SCIENCE
```

23 MAY 2022

CONVOLUTIONAL NEURAL NETWORKS

CLASSIFICATION

CONVOLUTIONAL NEURAL NETWORKS

CONVOLUTIONAL NEURAL NETWORKS

DISCRETE CONVOLUTION

CONVOLUTIONAL NEURAL NETWORKS

-1	-1	-1	-1	-1
-1	-1	-1	-1	-1
5	5	5	5	5
-1	-1	-1	-1	-1
-1	-1	-1	-1	-1

-1	-1	5	-1	-1
-1	-1	5	-1	-1
-1	-1	5	-1	-1
-1	-1	5	-1	-1
-1	-1	5	-1	-1

CONVOLUTIONAL NEURAL NETWORKS

CONVOLUTIONAL NEURAL NETWORKS

MAX POOLING

1	1	2	4
5	6	9	3
3	2	4	4
1	2	0	7

max pool with 2×2 filters and stride 2

CONVOLUTIONAL NEURAL NETWORKS

"GoogLeNet network with all the bells and whistles"

CHOOSING AN ARCHITECTURE

```
            HOW MANY LAYERS?
    HOW MANY NODES PER LAYER?
    LEARNING RATE
                        DROPOUT?
WHAT ACTIVATION FUNCTION(S)?
HOW MANY CONVOLUTION LAYERS?
    FILTER SIZE?
    STRIDE?
    POOLING?
```


PRE-TRAINED MODELS

PRE-TRAINED MODELS

PRETRAINED MODELS

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE

Application 2: Can we use machine learning to accurately classify events in detectors?

Metrics

Detect Lung Cancer

99\% Accuracy

anamanamanamo adadandandandand andonananonana adadanamanaman andonananananay
 adanamanamanam

PREDICTED

PREDICTED

$$
\begin{gathered}
\text { accuracy }=\frac{T P+T N}{T P+F N+F P+T N} \\
\text { precision }=\frac{T P}{T P+F P} \\
\text { recall }=\frac{T P}{T P+F N} \\
\text { F1 }=\frac{2 \cdot \text { precision } \cdot \text { recall }}{\text { precision }+ \text { recall }}
\end{gathered}
$$

PREDICTED

PERFECT MODEL

Application: Can we use machine learning to accurately classify events in detectors?

ACTIVE-TARGET TIME PROJECTION CHAMBER (AT-TPC)

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE

EXPERIMENTAL DATA

HALL B

VGG16 ARCHITECTURE

PRE-TRAINED ON IMAGENET DATA!

AT-TPC

Experiment	Precision	Recall	F1	Precision	Recall	F1
Experimental \rightarrow Experimental	0.96	0.90	0.93	0.97	0.93	0.95
Simulated \rightarrow Simulated	1.00	1.00	1.00			
Simulated \rightarrow Experimental	0.90	0.60	0.72			

AT-TPC

HALL B

Experiment	Precision	Recall	F1	Precision	Recall	F1
Experimental \rightarrow Experimental	0.96	0.90	0.93	0.97	0.93	0.95
Simulated \rightarrow Simulated	1.00	1.00	1.00		6x faster!	
Simulated \rightarrow Experimental	0.90	0.60	0.72			

MACHINE LEARNING

UNSUPERVISED LEARNING

CONVOLUTIONAL NEURAL NETWORKS

CLUSTERING - KMEANS

Goal: minimize pairwise distances between points in same cluster

$$
\min \sum_{i=1}^{k} \frac{1}{2 N} \sum_{x, y, x \neq y}^{N}(\vec{x}-\vec{y})^{2}
$$

Goal: maximize pairwise distances between points in different clusters

CLUSTERING - KMEANS

Input	Output
10000000	10000000
01000000	01000000
00100000	00100000
00010000	00010000
00001000	00001000
00000100	00000100

Input	Output
10000000	10000000
01000000	01000000
00100000	00100000
00010000	00010000
00001000	00001000
00000100	00000100

Input	A1	A2	A3	Output
10000000	0.9911	0.9869	0.0093	10000000
01000000	0.9892	0.0095	0.0124	01000000
00100000	0.0094	0.0283	0.0122	00100000
00010000	0.9840	0.9836	0.9900	00010000
00001000	0.0139	0.9904	0.0186	00001000
00000100	0.0128	0.9805	0.9868	00000100

Learning of the encoding for input 00000010

GENERATIVE MODELS

MICHELLE KUCHERA DAVIDSON COLLEGE

ECT* TALENT SUMMER SCHOOL 02 JULY 2020

DECODER

DECODER

How do we know that we are providing a latent vector that represents those seen in training?

Variational Autoencoder

Sample similar points in latent space, decode, and compare with regularization

9999999999999939999388

https://blog.keras.io/building-autoencoders-in-keras.html

EXAMPLE WORKFLOW

EXAMPLE WORKFLOW

SELECT CURRENT HOT TOPICS IN AI*

* A SOMEWHAT ANECDOTAL PERSPECTIVE

SELECT HOT TOPICS

- Transformers
- Normalizing Flows
- Zero shot learning
- Ethics

TRANSFORMERS

- large language models
- "attention"
c

TRANSFORMERS

Problem Description

\# RATING: 1200

\# TAGS: sortings
CORRECT SOLutTON
\# It is the easy ve
It is the easy version of the problem. The only difference is that in this \# version $n=1$.
\# In the cinema seats can be represented as the table with n rows and columns.
\# The rows are numbered with integers from 1 to n. The seats in each row are \# numbered with consecutive integers from left to right: in the k-th row from m \# (k-1) + 1 to $m k$ for all rows $1 \leq k \leq n$.
\# 1| 2| \cdots | m-1| m
\# ---|---|---|---|---
$\# m+1|m+2| \cdots|2 m-1| 2 m$
$\# 2 m+1|2 m+2| \cdots|3 m-1| 3 m$
\# |vdots| |vdots| \ddots| |vdots| |vdots
\#m $(n-1)+1|m(n-1)+2| \cdots|n m-1| n m$
\# The table with seats indices
\# There are nm people who want to go to the cinema to watch a new film. They are \# person.
\# p
\# It is known, that in this cinema as lower seat index you have as better you \# can see everything happening on the screen. i-th person has the level of sight
\# a_i. Let's define s_i as the seat index, that will be given to i-th person. \# You want to give better places for people with lower sight levels, so for any \# two people i, j such that $a_{-} i<a_{-} j$ it should be satisfied that $s_{-} i<s_{-} j$. \#
\# After you will give seats to all people they will start coming to their In the
the order from 1 to nm , each person will enter the hall and sit in their \# seat. To get to their place, the person will go to their seat's row and start \# moving from the first seat in this row to theirs from left to right. While \# seated. The inconvenience of the person is equal to the number of occupied \# seats he or she will go through.

Solution

coding: utf-8 -*-

Created on Fri Jul 17 20:39:24 2020
@author: Dark Soul
@author
t=int(input(' $'$)
arr=[]
for i in range(t)
[n, m]=list(map(int, input().split()))
arr.append(list(map(int, input().split())))
for i in arr:
$\mathrm{s}=0$
arr=sorted(i)
$n 1=\operatorname{len}(i)$
for j in range(n 1):
$\mathrm{cnt}=0$
or k in range $(\mathrm{j}, \mathrm{n} 1$)
i[k]>i[j] cnt $=\mathrm{cnt}+1$.

$s=s+c$

print(s)

AlphaCode

```
is sentiment.ts
1 \#!/usr/bin/env ts-node
2
3 import \{ fetch \} from "fetch-h2";
5 // Determine whether the sentiment of text is positive
6 // Use a web service
7 async function isPositive(t
8
9
10
11
12
13
14
15
16
17
```

Powered by \star

What data has GitHub Copilot been trained on?

GitHub Copilot is powered by OpenAl Codex, a new AI system created by OpenAl. It has been trained on a selection of English language and source code from publicly available sources, including code in public repositories on GitHub.

DISTRIBUTIONS

GAN: minimax the classification error loss.

VAE: maximize ELBO.

Flow-based generative models: minimize the negative log-likelihood

ZERO SHOT LEARNING

DALL•E 2 can create original, realistic images and art from a text description. It can combine concepts, attributes, and styles.
text description
An astronaut Teddy bears A bowl of soup
mixing sparkling chemicals as mad scientists shopping for
groceries working on new AI
research
in the style of ukiyo-e as a one-line drawing in ancient Egypt

DALL-E 2

ETHICS

Large, pertained models

- power (cost and authority)
—bias
image models
language models

LARGE MODELS

Largest jumps in ability currently due to extremely large models being trained on our data

Leads to ethical considerations

NEW RESEARCH

Conference papers

NeurIPS: Neural Information Processing Systems

ICML: International Conference on Machine Learning

IJCAI: International Joint Conference on Artificial Intelligence

FAccT: Fairness, Accountability, and Transparency

MACHINE LEARNING HANDS-ON WORKSHOP

MICHELLE KUCHERA

JOINT ICTP-IAEA ADVANCED SCHOOL/WORKSHOP ON MACHINE LEARNING IN CITIZEN SCIENCE

DATA

NORMALIZATION

-Puts each feature on same scale

- Allows default hyperparamters to be a good starting point
- learning rate, initialization of weights, etc.
- Options depend on data distribution
-Standardization: mean: 0 stdev: 1
- Min-max: [0,1]

DATA

ENCODING

- Non-numeric data
- Class-based features:
- One-hot encoding: $2 \rightarrow$ [0 1]
- When classes do not have sequential meaning: \mathbf{V} cars vs dogs vs plants \mathbf{X} months

ACTIVITY DESCRIPTION

- Simulating e+p collisions
- Predicting particle-level invariant mass (regression)
-Advanced: try a generative model (e.g. autoencoders)

ACTIVITY DESCRIPTION

$$
m^{2}=E^{2}-\|p\|^{2}
$$

- Sigmoid activation for hidden layer and linear for output (regression model)
- How many "trainable parameters" in our model?

COMMUNITY

- Each of you arrived here with your own backgrounds, specialty, and path in life
- Your experience and expertise are valuable here, no matter what it is
-If the activity is within your background, help others!
-If you are totally (or a little) lost, ask for help!
- It is our shared goal to have each of us leave with some new skill/ knowledge/understanding

GETTING STARTED

- Navigate to https://github.com/alpha-davidson/ICTP-Citizen-Science-2023
-If you have access to a google login, click "open in collar"
- Otherwise, download and open in Deepnote or download onto your personal computer (with appropriate dependencies)

