
Compiler Design
for Quantum Hardware

Alessandra Di Pierro

Università di Verona

Stellenbosh, 21 April 2023
HPC for Sustainable Development

University of Verona Department of Computer Science

1 Introduction & Motivation

2 Programming Languages

3 Compilers

4 Quantum Programming on the Cloud

5 High-level Quantum Programming

6 Conclusions

2 / 21

University of Verona Department of Computer Science

Programming a Quantum Computer

Several laboratories in industry and academia around the world have
produced quantum devices that

operate on the circuit model of quantum computing

are small, noisy, and not as powerful as current classical
computers

steadily growing, and promising large computational power for
problems in chemistry, machine learning, optimization, finance

As we have learnt from the history of programming languages for
classical computers, it is inecessary to accompany the new hardware
with the appropriate software.
Although software in both domains shares many similarities, some key
differences drive many of the challenges in developing quantum
software tools.

3 / 21

University of Verona Department of Computer Science

The Early 1950s

1946 ENIAC, the first real multi-purpose computer was programmed
by flipping switches and moving wires.

1949 Assembly, the first method of writing programs for these
general-purpose machines. An assembly language simply
associates a human-readable name to each of the
computer-specific instructions.

1950’s Birth of the modern, i.e. machine-independent, programming
languages (FORTRAN, COBOL, and LISP and many others
followed).

1952, The first compiler was written by Grace Hopper for the A-0
programming language.

1957 The FORTRAN team led by John Backus at IBM is generally
credited as having introduced the first complete compiler.
COBOL was an early language to be compiled on multiple
architectures, in 1960.

4 / 21

University of Verona Department of Computer Science

Toolchain
Set of programming tools for complex software development1

To counter the rise of proprietary software, in 1983 Richard
Stallman at MIT announced the GNU project (”GNU’s not
Unix!”).

The GNU Project is a free-software, mass-collaboration project:
users are free to run the software, share it (copy and distribute),
study it, and modify it.

Main components of a toolchain:

the assembler, that turns assembly code (generated by GCC) to
binary;
the compiler; the only realistic solution today is GCC, the GNU
Compiler Collection. Nowadays, as input, it not only supports C,
but also C++, Java, Fortran, Objective-C and Ada. As output, it
supports a very wide range of architectures.

1A software toolchain tpically also includes: Linker - merges multiple files into a
single program Library - a collection of code, such as prebuilt functions or other
resources Debugger - an optional tool that can help fix bugs

5 / 21

University of Verona Department of Computer Science

Compilers

A machine language consists of very simple commands.

Writing a program in this language is a very tedious and
error-prone.

It is much easier to use instead high-level programming language.

But, before a program can be run, it first must be translated by
a compiler.

Advantages:

notation is more intuitive and closer to human language

compilers can spot some obvious programming mistakes

programs are shorter than their equivalent written in machine
language, and

the same high-level program can be run on different machines,
previous translation/compiling.

6 / 21

University of Verona Department of Computer Science

From Source to Machine Code

source program
↓

Compiler

↓
target program

input
↓

Target Program

↓
output

source
program input

↓ ↓
Interpreter

↓
output

Compilation results in a lower-level language program, e.g.,
machine code, which can be run on various inputs.

Interpretation directly executes one by one the operations
specified in the source program on the input supplied by the
user, by using the facilities of its implementation language.

7 / 21

University of Verona Department of Computer Science

From Source to Machine Code

source program
↓

Compiler

↓
target program

input
↓

Target Program

↓
output

source
program input

↓ ↓
Interpreter

↓
output

Compilation results in a lower-level language program, e.g.,
machine code, which can be run on various inputs.

Interpretation directly executes one by one the operations
specified in the source program on the input supplied by the
user, by using the facilities of its implementation language.

7 / 21

The Structure of a Modern Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code

The Structure of a Modern Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine

Code

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

T_While
T_LeftParen
T_Identifier y
T_Less
T_Identifier z
T_RightParen
T_OpenBrace
T_Int
T_Identifier x
T_Assign
T_Identifier a
T_Plus
T_Identifier b
T_Semicolon
T_Identifier y
T_PlusAssign
T_Identifier x
T_Semicolon
T_CloseBrace

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

T_While
T_LeftParen
T_Identifier y
T_Less
T_Identifier z
T_RightParen
T_OpenBrace
T_Int
T_Identifier x
T_Assign
T_Identifier a
T_Plus
T_Identifier b
T_Semicolon
T_Identifier y
T_PlusAssign
T_Identifier x
T_Semicolon
T_CloseBrace

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}
While

<

Sequence

=

x +

a b

=

y +

y x

y z

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}
While

Sequence

=

x +

a b

=

y +

y x

<

y z

Lexical Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}
While

Sequence

=

x +

a b

=

y +

y x

int

int int

int

int
int

int

int int

int

void

void

Semantic Analysis

<

y z

int int

bool

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}
While

Sequence

=

x +

a b

=

y +

y x

int

int int

int

int
int

int

int int

int

void

void

<

y z

int int

bool

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

Loop: x = a + b
 y = x + y
 _t1 = y < z
 if _t1 goto Loop

IR Generation

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

Loop: x = a + b
 y = x + y
 _t1 = y < z
 if _t1 goto Loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

 x = a + b
Loop: y = x + y
 _t1 = y < z
 if _t1 goto Loop

IR Optimization

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

 x = a + b
Loop: y = x + y
 _t1 = y < z
 if _t1 goto Loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

 add $1, $2, $3
Loop: add $4, $1, $4
 slt $6, $1, $5
 beq $6, loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

 add $1, $2, $3
Loop: add $4, $1, $4
 slt $6, $1, $5
 beq $6, loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

 int x = a + b;

 y += x;

}

 add $1, $2, $3
Loop: add $4, $1, $4
 blt $1, $5, loop

University of Verona Department of Computer Science

Compiler Phases

Pseudo-SML Code

val result = let val x = 10 :: 20 :: 0x30 :: []
in List.map (fn a → 2 * 2 * a) x
end

Discuss:

what does the code do?

what would be the necessary steps to translate the source code
to machine code?

8 / 21

University of Verona Department of Computer Science
Università di Verona Dipartimento di Informatica

Translation from Source to C to Machine Code

Equivalent C Code

initialize the array

map translated to a loop

possible optimization:
2*2=4 at compile time,
result reuses the space of x.

int x[3] = {10, 20, 0x30};
int i = 0;

for (int i = 0; i < 3; i++) {
x[i] = 4*x[i];

}

Pseudo MIPS assembly code

three-address-like code

registers instead of variables

explicit load and store ops

shift instead of multiplication

load_imm $2, 0 # $2 counter

load_addr $3, x_addr # $3 address of x

load_imm $5, 3 # $5 stores ct 3

loop:

branch_ge $2, $5, end

load_word $4, 0($3) # $4 holds x[i]

shift_left $4, $4, 2 # multiply by 4

store_word $4, 0($3) # store in x[i]

add_imm $3, $3, 4 # next x addr

add_imm $2, $2, 4 # i = i + 1

jmp loop

end:10 / 15

9 / 21

University of Verona Department of Computer Science

10 / 21

University of Verona Department of Computer Science

Challenges

How can we program a quantum computer?

What are the basic structures that a language should support?

How can a compiler help a user develop abstract/high-level
reasoning about algorithms?

How to compile and optimize quantum programs?

How do we test and verify quantum programs?

11 / 21

University of Verona Department of Computer Science

Comparison

Fig.: Toolchain for
computing in the
1950’s

Fig.: Toolchain for classical and quantum
computing today

12 / 21

University of Verona Department of Computer Science

Main Differences

REVIEWINSIGHT

1 8 2 | N A T U R E | V O L 5 4 9 | 1 4 S E P T E M B E R 2 0 1 7

All proposed QC systems are suffer from fragility of state. QC hard-
ware performs computations based on manipulating ‘state’ associated with
quantum bits or qubits. Although technologies vary, common operations
include applying an operation to a single qubit where the qubit resides
(usually in the form of electromagnetic pulses) or moving qubits (or their
state) around the system because multi-qubit gates require the qubits to be
physically adjacent. Qubit states are fragile and susceptible to decohering
(that is, collapsing their complex state into a simple 1 or 0) caused either by
the passage of (very little) time or logical operations. Particular technolo-
gies have different characteristics in terms of holding state and performing
operations, ultimately influencing the execution of a quantum algorithm.

The combination of state fragility and the no cloning theorem makes
error correction much more important in QC than in classical computing.
A copy of the state cannot be kept, to restore a qubit’s value easily. Thus, to
design QC systems properly, characteristics such as the timing of differ-
ent operations, likely error patterns, and quantum error correction code
coverage are all hardware-level attributes that must be shared upwards
through all the layers of software.

Although errors make communication and holding state costly, the
vast parallelism in computing resources help to mitigate this problem. In
classical computing, computing resources are dominated by the storage
available. Data are communicated from various storage areas to the
microprocessor to perform calculations. In many proposed QC hardware
implementations30–36, on the other hand, communication is necessary
only to place interacting qubits next to each other; they are not moved to
computing resources. This means that the amount of parallelism available
is potentially the same as the number of qubits. In addition, owing to the
low-level nature of quantum instructions, this parallelism is available at
each cycle without extra resources such as classical computation con-
structs like threads and nodes.

Finally, just as in classical computation, the low-level physical design
will have an impact on characteristics that are relevant to the architecture
level (such as the relative speed of computing versus memory versus qubit
motion, or such as the size limits on different hardware structures) that
are important for compiler optimizations. In today’s classical computers,
we often have methods for ‘virtualizing’ hardware resources—such as
abstracting how much physical memory storage is available in a particu-
lar hardware implementation. Given the tight constraints on QC imple-
mentations, such virtualization cannot yet be accommodated. Below, we
discuss how low-level physical information can best inform higher-level
compilation while maintaining abstraction.

Supporting algorithm analysis and debugging
As QC hardware prototypes become more useful, QC algorithms that
could previously only be analysed theoretically should now be more
pragmatically mappable onto real hardware. QC algorithms are fun-
damentally different from classical algorithms because a single qubit
stores not just a 1 or 0, but the superposition of both states. Furthermore,
n qubits can form a superposition of 2n states (through entanglement). As
a result of this exponentially complex state, only the smallest of quantum
programs can be executed on a physical machine or even simulated on
a classical machine. QC software toolchains do not perform full system
simulation. Instead, they perform tasks such as estimating the time and

number of quantum bits larger programs will require. With these resource
estimates as a metric, the quantum toolchain enables the development
and evaluation of algorithms, compiler optimizations, error correction
codes, layout schemes for quantum data, communication methods and
architectural designs.

In addition to the nuts and bolts requirements of translating an algo-
rithm to an orchestrated execution (for example, a QC assembly code
program) the software toolflow can also carry additional information
downwards to assist with analysis or debugging. For example, by anno-
tating programs with information about which qubits are believed to
be entangled (operations on one can affect state in the other) with each
other, lower levels of the toolchain can check that manipulations applied
to entangled qubits are done so legally and correctly. Likewise, one can
use algorithm-level information to guide qubit ‘garbage collection’. That is,
when a qubit is no longer being used for one purpose, it can be reclaimed
and reused. Languages can provide ways for the programmer to indicate
that he/she has finished using a qubit, and the compiler can determine
when qubits may be reused without perturbing any entangled bits.

Software toolchains can also assist with hardware design decisions.
For example, by analysing different algorithms one can estimate the
operation-level parallelism that might be useful to them, and use this
to guide how the hardware or quantum error correction code is imple-
mented. Having established the core differences between classical and
quantum software, as well as the reasons for them, we examine how
these issues affect QC programming languages, compilers and debug-
ging techniques.

Programming languages
Many people hope that quantum programming languages will aid in the
discovery of new quantum algorithms. At this point, however, most QC
algorithm designers work at a more mathematical level and do not con-
sider the programming language to be the limiting factor in designing
new algorithms.

Our experience is that implementing a quantum algorithm—that is,
transforming them from a mathematical description in a scientific paper
into an executable implementation—can be complex and error-prone. It is
in this endeavour that quantum programming languages, compilers and
debuggers can make a big difference. In fact, this is analogous to classical
computing, where software tools allow programmers to create, debug,
and verify complex implementations that are based upon combining
and adapting a relatively small set of known classical algorithms. As with
classical computing, better abstractions and software infrastructure can
accelerate the development of practical quantum programs. For example,
quantum algorithms for ground-state estimation and variational solvers
have been developed, but substantial work is involved in developing
detailed software implementations that solve real problems. The Quarc
group at Microsoft Research used their language (Liquid) and software
to develop an algorithm to optimize nitrogen fixation using these kernels,
improving the efficiency of the implementation by five orders of magni-
tude through compiler optimization and error tolerance37.

As with classical programming languages, quantum programming lan-
guages fall into two categories: functional and imperative. Purely func-
tional languages do not allow variables to be directly modified—rather,
a new value for a variable requires a new name for that variable. Most
functional languages encourage a more abstract or mathematical imple-
mentation of algorithms which tends to be more compact and some argue
is less error-prone. Imperative languages, on the other hand, allow direct
modification of variables and tend to specify each step of a computation
sequentially and in great detail. Imperative languages tend to produce
more efficient programs, but are generally more complex for program-
mers to think in.

One of the earliest quantum programming languages was qcl19,38, an
imperative language based on C that expressed quantum bits as vectors
of data and quantum operations as matrix operations on those vectors.
More recently, the IARPA Quantum Computer Science research pro-
gram resulted in three languages and software toolchains: two functional

Table 1 | Differences between quantum and classical software tools
Quantum software Classical software

Compiles from algorithms to gate-level
instructions

Compiles from algorithms to machine
instructions

Some inputs of problems known at
compilation time

Inputs of problems unknown at
compilation time

Very limited reliability through error
correction

Reliability generally assumed

Can run only small programs for
debugging

Runs all programs for debugging

Vast parallelism Limited parallelism
Although software in both domains shares many similarities, some key differences drive many of
the challenges in developing quantum software tools.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Although software in both domains shares many similarities, some key
differences drive many of the challenges in developing quantum
software tools. The combination of state fragility and the no cloning
theorem makes error correction much more important in QC than in
classical computing.

13 / 21

University of Verona Department of Computer Science

Cloud-based Quantum Computing

Quantum computers are now available to use via the internet, thanks
to the development of software tools for cloud computing.
Quantum programming today is chiefly the invocation of quantum
emulators, simulators or processors through the cloud. Some existing
platforms:

IBM Q Experience (access to quantum hardware as well as HPC
simulators)

Quandela Cloud (1st European photonic quantum computer)

Xanadu Quantum Cloud (access to three fully programmable
photonic quantum computers)

Forest by Rigetti Computing (include a programming language)

LIQUi> by Microsoft (include a programming language).

See here or here for a more comprehensive list.

14 / 21

https://en.wikipedia.org/wiki/Cloud-based_quantum_computing
https://research.aimultiple.com/quantum-software

University of Verona Department of Computer Science

Cloud-based Quantum Computing
Accessing quantum devices via software platforms.

3

Not Currently Available to General Users

QISKit

(IBM)

pyQuil

(Rigetti)

 Quantum

Development Kit

(Microsoft)

Project Q

(ETH Zurich)

Mac, Windows,

Linux
Mac, Windows,

Linux

Mac,

Windows,

Linux

IBMQX4

5 Qubits

IBMQX5

16 Qubits

IBM Quantum

Experience

Rigetti

Forest

Agave

8 Qubits

Mac,

Windows,

Linux

IBMQX2

5 Qubits

QS1_1

20 Qubits

Local Simulator

~20­30 Qubits

Local Simulator

~20­30 Qubits

Member of
IMBQ Network

Google

Bristlecone

72 Qubits

Local Simulator

~20­30 Qubits QVM Simulator

30+ Qubits

Connecting to Gate Level Quantum Hardware

Register for

API key
Register

for API

key

Azure

Cloud

Simulator

40+ Qubits
Paid subscription

service

HPC Simulator

30 Qubits Request

access

Intel/
QuTech

Tangle Lake

49 Qubits

50 Qubit
Prototype

Local Simulator

~20­30 Qubits

Acorn

20 Qubits

Currently

Offline

ibmq_20_tokyo
20 Qubits

FIG. 1. A schematic diagram showing the paths to connecting a personal computer to a usable gate-level quantum computer.
Starting from the personal computer (bottom center), nodes in green shows software that can be installed on the user’s personal
computer. Grey nodes show simulators run locally (i.e., on the user’s computer). Dashed lines show API/cloud connections
to company resources shown in yellow clouds. Quantum simulators and usable quantum computers provided by these cloud
resources are shown in blue and gold, respectively. Red boxes show requirements along the way. For example, to connect to
Rigetti Forest and use the Agave 8 qubit quantum computer, one must download and install pyQuil (available on macOS,
Windows, and Linux), register on Rigetti’s website to get an API key, then request access to the device via an online form.
Notes: (i) Rigetti’s Quantum Virtual Machine requires an upgrade for more than 30 qubits, (ii) local simulators depend on the
user’s computer so numbers given are approximates, and (iii) the grey box shows quantum computers that have been announced
but are not currently available to general users.

This last method is recommended for any users who may
wish to contribute to pyQuil. See the contribution guide-
lines on GitHub for more information.

b. Documentation and Tutorials pyQuil has excel-
lent documentation hosted online with background in-
formation in quantum computing, instructions on instal-
lation, basic programs and gate operations, the simulator
known as the quantum virtual machine (QVM), the ac-
tual quantum computer, and the Quil language and com-
piler. By downloading the source code of pyQuil from
GitHub, one also gets an examples folder with Jupyter

notebook tutorials, regular Python tutorials, and a pro-
gram run quil.py which can run text documents written
in Quil using the quantum virtual machine. Last, we
mention Grove, a collection of quantum algorithms built
using pyQuil and the Rigetti Forest environment.

c. Syntax The syntax of pyQuil is very clean and
e�cient. The main element for writing quantum circuits
is Program and can be imported from pyquil.quil. Gate
operations can be found in pyquil.gates. The api module
allows one to run quantum circuits on the virtual ma-
chine. One nice feature of pyQuil is that qubit registers

15 / 21

University of Verona Department of Computer Science

Quantum Computing Platforms

Quantum computing platforms provide SDK, typically in the form of
libraries of reusable functions or module interfaces allowing users to
schedule and run quantum programs on a variety of local simulators
and cloud-based quantum processors.

Programs are typically in low-level code

The compilation process consists in the last phases of a modern
compiler: intermediate representation generation, code
generation, optimization.

Qasm is a hardware-agnostic quantum assembly language which
guarantees the interoperability between all the quantum
compilation and simulation tools.

16 / 21

University of Verona Department of Computer Science

Qiskit
A open source SDK created by IBM.
Allows users to construct quantum programs and run them on
simulators or real quantum computers.
Simulators may run on the user’s own device.
Includes OpenQasm, an intermediate representation that can be
used by higher-level compilers to communicate with quantum
hardware, and allows for the description of a wide range of
quantum operations, as well as classical feed-forward flow control
based on measurement outcomes.

Qiskit Code Example

qc.h(0)

qc.cx(0, 1)

print(qc.draw())

res = qi.execute(qc).data()

print(f"Amplitudes of the quantum states after H, CX:

res[’statevector’]"
17 / 21

University of Verona Department of Computer Science

Quantum programming languages

Quantum programming languages were introduced more than twenty
years ago.

theoretical

no existing hardware

Today’s existing quantum computers bring about the problem of
actually implementing such languages, i.e. bridging the gap from the
programmer’s high-level thinking to the machine’s qubits.
This requires

understanding the whole chain from languages to quantum
machine

developing a open source software tool chain offering a suite of
compilers for various quantum programming languages

realizing it in an efficient and reliable way.

18 / 21

University of Verona Department of Computer Science

Some Implemented Languages

A few high-level quantum programming languages have been
implemented:

ProjectQ (ETH Zurich) is an open-source (DSL) quantum
language with a compiler translating programs into the low-level
instruction sets supported by the various back-ends (e., hw or
circuit drawers).

Scaffold is a programing language with a compiler written using
the LLVM open-source infrastructure. Quantum applications
written in Scaffold are compiled to a low-level quantum assembly
format (QASM).

Microsoft’s LIQUi|> provides a high-level languages and a toolkit
including a compiler, optimizers, translators and various
simulators. Not open-source.

19 / 21

University of Verona Department of Computer Science

Silq
Silq is a high-level programming language for quantum computing
with a strong static type system, developed at ETH Zürich.
Main features

More ‘abstract’ than the other existing quantum languages.
Type system and semantics formally defined.
An implemented type-checker.
No compiler but a proof-of-concept simulator.
A development environment.

20 / 21

University of Verona Department of Computer Science

Outlook

The quantum revolution will depend heavily on software toolchain,
that will bridge the gap between algorithms and physical machines.

The current constraints of the QC toolchain resemble the
constraints of computing in the 1950’s.

The QC toolchain is still evolving and its layers are being
gradually filled in.

Much work is needed especially in the aerea of verification.

Importance of developping a software toolchain for QC:

It will allow reduction of the required number of qubit and
operations in implementing quantum algorithms

This will make an important difference when QC is ready to be
deployed commercially.

21 / 21

	Introduction & Motivation
	Programming Languages
	Compilers
	Quantum Programming on the Cloud
	High-level Quantum Programming
	Conclusions

