Compiler Design
for Quantum Hardware

Alessandra Di Pierro

Universita di Verona

Stellenbosh, 21 April 2023
HPC for Sustainable Development

UNIVERSITY OF VERONA Department of Computer Science

@ Introduction & Motivation

© Programming Languages

© Compilers

@ Quantum Programming on the Cloud
e High-level Quantum Programming

@ Conclusions

2/21

UNIVERSITY OF VERONA Department of Computer Science

Programming a Quantum Computer

Several laboratories in industry and academia around the world have
produced quantum devices that

@ operate on the circuit model of quantum computing

@ are small, noisy, and not as powerful as current classical
computers

@ steadily growing, and promising large computational power for
problems in chemistry, machine learning, optimization, finance

As we have learnt from the history of programming languages for
classical computers, it is inecessary to accompany the new hardware
with the appropriate software.

Although software in both domains shares many similarities, some key
differences drive many of the challenges in developing quantum
software tools.

UNIVERSITY OF VERONA

The Early 1950s

1946

1949

1950's

1952,

1957

/ 21

ENIAC, the first real multi-purpose computer was programmed
by flipping switches and moving wires.

Assembly, the first method of writing programs for these
general-purpose machines. An assembly language simply
associates a human-readable name to each of the
computer-specific instructions.

Birth of the modern, i.e. machine-independent, programming
languages (FORTRAN, COBOL, and LISP and many others
followed).

The first compiler was written by Grace Hopper for the A-O
programming language.

The FORTRAN team led by John Backus at IBM is generally
credited as having introduced the first complete compiler.
COBOL was an early language to be compiled on multiple
architectures, in 1960.

Department of Computer Science

5

UNIVERSITY OF VERONA

Department of Computer Science

Toolchain
Set of programming tools for complex software development!

@ To counter the rise of proprietary software, in 1983 Richard
Stallman at MIT announced the GNU project ("GNU's not
Unix!").

@ The GNU Project is a free-software, mass-collaboration project:
users are free to run the software, share it (copy and distribute),
study it, and modify it.

@ Main components of a toolchain:

o the assembler, that turns assembly code (generated by GCC) to
binary;

o the compiler; the only realistic solution today is GCC, the GNU
Compiler Collection. Nowadays, as input, it not only supports C,
but also C++, Java, Fortran, Objective-C and Ada. As output, it
supports a very wide range of architectures.

A software toolchain tpically also includes: Linker - merges multiple files into a
single program Library - a collection of code, such as prebuilt functions or other
resources Debugger - an optional tool that can help fix bugs

21

UNIVERSITY OF VERONA Department of Computer Science

Compilers

@ A machine language consists of very simple commands.

@ Writing a program in this language is a very tedious and
error-prone.

@ It is much easier to use instead high-level programming language.

@ But, before a program can be run, it first must be translated by
a compiler.

Advantages:
@ notation is more intuitive and closer to human language
@ compilers can spot some obvious programming mistakes

@ programs are shorter than their equivalent written in machine
language, and

@ the same high-level program can be run on different machines,
previous translation/compiling.

/ 21

UNIVERSITY OF VERONA Department of Computer Science

From Source to Machine Code

_ source
source program Input]
f f program input
|Target Program|
! v)
target program output output

7/21

UNIVERSITY OF VERONA Department of Computer Science

From Source to Machine Code

_ source
source program Input 1
f f program input
‘Target Program ‘
! + 7
target program output output

o Compilation results in a lower-level language program, e.g.,
machine code, which can be run on various inputs.

@ Interpretation directly executes one by one the operations
specified in the source program on the input supplied by the
user, by using the facilities of its implementation language.

The Structure of a Modern Compiler

CH

Source | >
Code

C)

IR Optimization

Code Generation

Optimization —_— -

The Structure of a Modern Compiler

CHE—
Source| ===>> | Lexical Analysis
Code

a Syntax Analysis

Semantic Analysis

IR Generation

-

while (y < z) {
int x = a + b;
y += x;

while (y < z) {
int x = a + b;
y += x;

while (y < z) {
int x = a + b;
y += x;

T While

T _LeftParen

T Identifier y
T Less

T _Identifier z
T RightParen
T_OpenBrace

T _Int

T Identifier x
T _Assign

T Identifier a
T_Plus

T _Identifier b
T Semicolon

T TIdentifier y
T_PlusAssign

T Identifier x
T_Semicolon

T CloseBrace

while (y < z) {
int x = a + b;
y += x;

T While

T _LeftParen

T Identifier y
T Less

T _Identifier z
T RightParen
T_OpenBrace

T _Int

T Identifier x
T _Assign

T Identifier a
T_Plus

T _Identifier b
T Semicolon

T TIdentifier y
T_PlusAssign

T Identifier x
T_Semicolon

T CloseBrace

while (y < z) {
int x = a + b;
y += x;

Lexical Analysis

Semantic Analysis

Sequence

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {
int x = a + b;
y += x;

Lexical Analysis

Syntax Analysis

IR Generation

Sequence

IR Optimization

Code Generation

Optimization

while (y < z) {
int x = a + b;
y += x;

void

Sequence

Lexical Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {
int x = a + b;
y += x;

void

Sequence

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Optimization

Code Generation

Optimization

while (y < z) {
int x = a + b;

y += x;
}
Loop: x a + b
Yy = Xty
tl =y < z

1if tl goto Loop

while (y < z) {
int x = a + b;

y += x;
}
Loop: x a + b
Yy = Xty
tl =y < z

1if tl goto Loop

while (y < z) {
int x = a + b;

y += x;
}
X a+ b
Loop: vy = x t vy
_tl y < z

1if tl goto Loop

while (y < z) {
int x = a + b;

y += x;
}
X a+ b
Loop: vy = x t vy
_tl y < z

1if tl goto Loop

while (y < z) {
int x = a + b;

y += x;
}
add S$1,
Loop: add $4,
slt $o,

beq $o,

$2, $3
$1, sS4
$1, $5
loop

while (y < z) {
int x = a + b;

y += x;
}
add S$1,
Loop: add $4,
slt $o,

beq $o,

$2, $3
$1, sS4
$1, $5
loop

while (y < z) {
int x = a + b;
y += x;

}

add $1, $2, $3
Loop: add $4, $1, $4
blt $1, $5, loop

UNIVERSITY OF VERONA Department of Computer Science

Compiler Phases

Pseudo-SML Code

val result = let val x = 10 :: 20 :: 0x30 ::]
in List.map (fna — 2 * 2 * a) x
end

Discuss:

@ what does the code do?

@ what would be the necessary steps to translate the source code
to machine code?

UNIVERSITY OF VERONA Department of Computer Science

Translation from Source to C to Machine Code

Equivalent C Code

@ initialize the array int x[3] = {10, 20, 0x30};
@ map translated to a loop int i = 0;
@ possible optimization: for (nk d = 05 & < 3; i+H) {
2%2=4 at compile time, x[i] = 4xx[il;
result reuses the space of x. }
Pseudo MIPS assembly code
load_imm $2, 0 # $2 counter
load_addr $3, x_addr # $3 address of x
load_imm $5, 3 # $5 stores ct 3
@ three-address-like code Loop:
))) branch_ge $2, $5, end
@ registers instead of variables load_word $4, 0($3) # $4 holds x[i]
@ explicit load and store ops shift_left $4, $4, 2 # multiply by 4
@ shift instead of multiplication stor?_word D e osieie Lo ol
add_imm $3, $3, 4 # next x addr
add_imm $2, $2, 4 #i =1+ 1
jmp loop
15 end

Department of Computer S

This simple datapath is of a
single-cycle nature. The

instruction begins with the
RCH

PC value: 000001104

I

PC

SLT Instruction

The SLT instruction sets the destination register's content to the value 1 if the first source register's contents are
less than the second source register's contents. Otherwise, it is set to the value 0.

10 /21

UNIVERSITY OF VERONA Department of Computer Science

Challenges

How can we program a quantum computer?

What are the basic structures that a language should support?

How can a compiler help a user develop abstract/high-level
reasoning about algorithms?

How to compile and optimize quantum programs?

How do we test and verify quantum programs?

UNIVERSITY OF VERONA

Comparison

Assembly language
(low-level) programs

Relay circuits and
discrete wires

Fig.: Toolchain for
computing in the
1950's

12/21

Department of Computer Science

Algorithms
High-level languages
Classical compiler V Quantum compiler
Classical

architecture
(control operations)

Quantum
architecture
(QC gates, qubits,
Hardware building communication)

blocks (gates, bits)

Error-correction

VLSl circuits and control pulses

Underlying technology
(semiconductors,
trapped ions)

Semiconductor
transistors

Fig.: Toolchain for classical and quantum
computing today

UNIVERSITY OF VERONA Department of Computer Science

Main Differences

Quantum software Classical software

Compiles from algorithms to gate-level Compiles from algorithms to machine
instructions instructions

Some inputs of problems known at Inputs of problems unknown at
compilation time compilation time

Very limited reliability through error Reliability generally assumed
correction

Can run only small programs for Runs all programs for debugging
debugging

Vast parallelism Limited parallelism

Although software in both domains shares many similarities, some key
differences drive many of the challenges in developing quantum
software tools. The combination of state fragility and the no cloning
theorem makes error correction much more important in QC than in
classical computing.

13 /21

UNIVERSITY OF VERONA Department of Computer Science

Cloud-based Quantum Computing

Quantum computers are now available to use via the internet, thanks
to the development of software tools for cloud computing.

Quantum programming today is chiefly the invocation of quantum
emulators, simulators or processors through the cloud. Some existing
platforms:

e IBM Q Experience (access to quantum hardware as well as HPC
simulators)

@ Quandela Cloud (1st European photonic quantum computer)

e Xanadu Quantum Cloud (access to three fully programmable
photonic quantum computers)

o Forest by Rigetti Computing (include a programming language)
e LIQUi> by Microsoft (include a programming language).

See here or here for a more comprehensive list.

14 / 21

https://en.wikipedia.org/wiki/Cloud-based_quantum_computing
https://research.aimultiple.com/quantum-software

Cloud-based Quantum Computing

Accessing quantum devices via software platforms.

Department of Computer Science

_ p (TangieLak)
[IBMQX5 - 49 Qubits
/ IBMQX4 16 Qubits Bristlecone
\ Saniy /oestt Intel/ \’“’\‘fy
\¥\ 20 Qubits QuTech
. A NN - ~—Google
[Aconf) [Agav'e | /IBMOX2 IBM Qu.anmm p” > :/ 50 Qubit ®
" 20 Qubits 8 Qubits | 5 Qubits | Experience | ibmq_20_tokyo Prototype
\/ \f 20 Qubits
| e | A
G| Rigetti B0 etwo Azure
Offline Forest

QVM Simulator| |
30+ Qubits

Register
for AP1
key
K Project Q
\ (ETH Zurich)

Mac, Windows,

Local Simulator|
~20-30 Qubits

15 /21

Quantum
Development Kit
(Microsoft)

UNIVERSITY OF VERONA Department of Computer Science

Quantum Computing Platforms

Quantum computing platforms provide SDK, typically in the form of
libraries of reusable functions or module interfaces allowing users to

schedule and run quantum programs on a variety of local simulators
and cloud-based quantum processors.

@ Programs are typically in low-level code

@ The compilation process consists in the last phases of a modern
compiler: intermediate representation generation, code
generation, optimization.

@ Qasm is a hardware-agnostic quantum assembly language which
guarantees the interoperability between all the quantum
compilation and simulation tools.

16 / 21

UNIVERSITY OF VERONA Department of Computer Science

Qiskit

@ A open source SDK created by IBM.

@ Allows users to construct quantum programs and run them on
simulators or real quantum computers.

@ Simulators may run on the user's own device.

@ Includes OpenQasm, an intermediate representation that can be
used by higher-level compilers to communicate with quantum
hardware, and allows for the description of a wide range of
quantum operations, as well as classical feed-forward flow control
based on measurement outcomes.

Qiskit Code Example

qc.h(0)

gc.cx(0, 1)

print(qc.draw())

res = qi.execute(qc).data()

print(f"Amplitudes of the quantum states after H, CX:

res[’statevector’]"
17 /21

UNIVERSITY OF VERONA Department of Computer Science

Quantum programming languages

Quantum programming languages were introduced more than twenty
years ago.

o theoretical
@ no existing hardware

Today's existing quantum computers bring about the problem of
actually implementing such languages, i.e. bridging the gap from the
programmer’s high-level thinking to the machine's qubits.

This requires

@ understanding the whole chain from languages to quantum
machine

@ developing a open source software tool chain offering a suite of
compilers for various quantum programming languages

@ realizing it in an efficient and reliable way.

18 / 21

UNIVERSITY OF VERONA Department of Computer Science

Some Implemented Languages

A few high-level quantum programming languages have been
implemented:

@ ProjectQ (ETH Zurich) is an open-source (DSL) quantum
language with a compiler translating programs into the low-level
instruction sets supported by the various back-ends (e., hw or
circuit drawers).

@ Scaffold is a programing language with a compiler written using
the LLVM open-source infrastructure. Quantum applications
written in Scaffold are compiled to a low-level quantum assembly
format (QASM).

@ Microsoft's LIQUi|> provides a high-level languages and a toolkit
including a compiler, optimizers, translators and various
simulators. Not open-source.

19 / 21

UNIVERSITY OF VERONA Department of Computer Science

Silq

Silq is a high-level programming language for quantum computing

with a strong static type system, developed at ETH Ziirich.

Main features
@ More ‘abstract’ than the other existing quantum languages.
@ Type system and semantics formally defined.
@ An implemented type-checker.
@ No compiler but a proof-of-concept simulator.
@ A development environment.

e :=c | x | measure | reverse | if ¢ then e; else e, |

e'(er,....en) | M(Prxy: T1a. ... Puxn: Tn).€

expressions (E) (ﬁ)dc ?)

types annotations
n n

ri=1|B| X | X e ! S| te @S (mfree afree}
k=1 k=1 f C {const}

20 /21

UNIVERSITY OF VERONA Department of Computer Science

Outlook

that will bridge the gap between algorithms and physical machines.

@ The current constraints of the QC toolchain resemble the
constraints of computing in the 1950's.

@ The QC toolchain is still evolving and its layers are being
gradually filled in.

@ Much work is needed especially in the aerea of verification.

o It will allow reduction of the required number of qubit and
operations in implementing quantum algorithms

@ This will make an important difference when QC is ready to be
deployed commercially.

21/ 21

	Introduction & Motivation
	Programming Languages
	Compilers
	Quantum Programming on the Cloud
	High-level Quantum Programming
	Conclusions

