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~175 Dillion parameters

Tell me In 2 sentences why backpropagation is so important.

Backpropagation is important because it allows artificial neural networks to learn and

Improve their performance over time through the adjustment of their weights. Without

backpropagation, training complex neural networks with many layers and connections

would be impractical, if not impossible.
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How does backpropagation work?
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How does backpropagation work?

* Arecipe to compute gradients
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How does backpropagation work?

* Arecipe to compute gradients

— Model: F(x; 0) |=—amm (Cost: C(F(x;0))

Update: & 4—— Optimise: V4 C(F(x; 0))
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How does backpropagation work?

* Arecipe to compute gradients

* The first computationally efficient method update parameters of a neural network
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How does backpropagation work?

* Arecipe to compute gradients

* The first computationally efficient method update parameters of a neural network

—

f(X;0)=0(0r(c(0r_1...01(X))))

* (Often solely attributed to the chain rule
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How does backpropagation work?

F(X;0) = a(01(0(0—1..0:(X))))

Deep neural network
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How does backpropagation work?

—

0f(X;0)
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How does backpropagation work?

* As a neural network function is being computed, intermediate information is
cleverly stored and reused for gradient computation - dynamic programming
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Memory and time
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Memory and time

 Neural network with M parameters

F(6), 6 ¢ RM



Memory and time

» Neural network with M parameters F(9), 0 € RM
* (Cost to compute the function in time: TIME(F(0))
* (Cost to compute the function in memory: MEMORY (F'(0))
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Memory and time

» Neural network with M parameters F(9), 0 € RM
* (Cost to compute the function in time: TIME(F(0))
* (Cost to compute the function in memory: MEMORY (F'(0))

TIME(VF(0)) < w; TIME(F(0))

MEMORY (VF(0)) < ws MEMORY (F(0))
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Memory and time

» Neural network with M parameters F(9), 0 € RM
* (Cost to compute the function in time: TIME(F(0))
* (Cost to compute the function in memory: MEMORY (F'(0))

TIME(VF(0)) < w; TIME(F(0))

W1, Wy & [2, 4]
MEMORY (VF(0)) < wy, MEMORY (F'(6))
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An example: naive gradient computation

 Neural network: M = 1000 parameters

TIME(F(8)) = 0.01 seconds
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An example: naive gradient computation

 Neural network: M = 1000 parameters

TIME(F(8)) = 0.01 seconds
TIME(VF(6)) = 10 seconds
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An example: naive gradient computation

 Neural network: M = 1 billion parameters

TIME(F'(6)) = 60 seconds
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An example: naive gradient computation

 Neural network: M = 1 billion parameters

TIME(F'(6)) = 60 seconds
TIME(VF(0)) ~ 31 years
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An example: backpropagation scaling

 Neural network: M = 1 billion parameters

TIME(F'(6)) = 60 seconds
TIME(VF(6)) ~ 5 minutes
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Relative complexity

TIME(VF(0)) < w; TIME(F(6))

W1, Wy & [2, 4]

MEMORY (VF(8)) < ws MEMORY (F(0))
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Quantum backpropagation?

TIME(VE(6)) < w; TIME(F(6))

W1, Wy & [2, 4]

MEMORY (VF(0)) < ws MEMORY (F(0))
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Quantum backpropagation?

TIME(VE(6)) < w; TIME(F(6))

W1, Wy & [2, 4]

MEMORY (VF(0)) < ws MEMORY (F(0))
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Quantum backpropagation?
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Simple variational model

F(0) = (1(0)[0|9(0))
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F(0) = (1(0)[0|9(0))
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Simple variational model

F(0) = (1(0)[0|9(0))
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Simple variational model

v(0)) = | [U;0)10) = ] [ e ]0)
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Simple variational model

M M

w(0)) = | [ U;(07)10) = [ [ e7* " 0)
71=1 1=1

a‘g@(f» __ H e—iHij(_ZPk) He—iHZPl‘(D
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Simple variational model
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Naive quantum gradient scaling
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Naive quantum gradient scaling

* Unit cost for each parameterised unitary, of which there are M of them




Naive quantum gradient scaling

* Unit cost for each parameterised unitary, of which there are M of them

F(0) = ((0)[0|p(0))




Naive quantum gradient scaling

* Unit cost for each parameterised unitary, of which there are M of them

w(0)) = | [U;0)10) = ] [ e ]0)




Naive quantum gradient scaling

* Unit cost for each parameterised unitary, of which there are M of them
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Naive quantum gradient scaling

* Unit cost for each parameterised unitary, of which there are M of them

w(0)) = | [U;0)10) = ] [ e ]0)
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Naive quantum gradient scaling

* Unit cost for each parameterised unitary, of which there are M of them

F(0) = ((6) 0l0(0) F()o, = —2 Tn (6(0)]0 5 0(0)
(@) =TT 610, = [T e )
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Naive quantum gradient scaling

* Unit cost for each parameterised unitary, of which there are M of them

F(0) = () 0l0(0) F()o, = —2 Tn (6(0)]0 5 0(0)
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Naive quantum gradient scaling

* Unit cost for each parameterised unitary, of which there are M of them

e,

F(8) = (4(6)|0](6) F/(O)]o, = —2 Im (1:(6)|0 55 |0(0)
o) = [0 = [[e*%10) 2= T e =irg [T« 0
TIME(F(8)) = M/¢€? TIME([F'(0)]g,) = M/e
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Naive quantum gradient scaling

* Unit cost for each parameterised unitary, of which there are M of them

e,

F(8) = (4(6)|0](6) F/(O)]o, = —2 Im (1:(6)|0 55 |0(0)
o) = [0 = [[e*%10) 2= T e =irg [T« 0
TIME(F(8)) = M€ TIME([F'(0)]g, ) = M/e
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Naive quantum gradient scaling




Naive quantum gradient scaling

TIME(VF(0)) =M - M/e* = M - TIME(F(6))

TIME(VF()) = log(M) - TIME(F(6))




Quantum backpropagation?

 Parameter shift rule does not yield backprop scaling
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Quantum backpropagation?

 Parameter shift rule does not yield backprop scaling
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Quantum backpropagation?

 Parameter shift rule does not yield backprop scaling

« SPSA (meant to be dimension independent) will fall
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Quantum backpropagation?

 Parameter shift rule does not yield backprop scaling
« SPSA (meant to be dimension independent) will fall

* All known methods fail (unless special case models are considered)

4 UNIVERSITY OF ™
AR KWAZULU-NATAL
ey

S INYUVESI

A
W, YAKWAZULU-NATALI




Is there something more fundamental
preventing us from achieving
backpropagation scaling?
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No cloning theorem

0
00

F'(0)]o,, = =2 Im (¢(0)|O-—|v(0))

Measurement collapse
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Connecting the gradient problem to
a more general open problem




Simplifying gradients

F(0) = (1(0)[0|9(0))
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Simplifying gradients

F(0) = (1(0)[0|9(0))
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Simplifying gradients

F(0) = (1(0)[0|9(0))

Olyp(8)) —i0, P, 0, P
0, _;;:1116 9 (—@Pk)ge "t 0)
[F'(0)]o), =
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Simplifying gradients
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Simplifying gradients

F(0) = (1(0)[0|9(0))

M) TT —iop s o TT .itrP
0, _;,-:1116 9 (—@Pk)ge "t 0)
(F'(0)]g, = —2 Im | (0] (Heieaf’a) 0( |1 emem> (—iP) (
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Simplifying gradients

[F/(H)]ek — _91Tm <O‘ (H 67393P3> O ( H eiQum> (—ZPk;) (H €i91P1> ‘O>

m=k-+1 [=1

et =0and O =1
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Simplifying gradients

[F/(é’)]ek — _91Tm <O‘ (H 67393P3> O ( H eiQum> (—Zpk) (H 6i91P1> ‘O>

m=k-+1 [=1

et =0and O =1

F7(0)]o, = 2 Re (0[F%[0)
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Simplifying gradients

F'(0)]g, =—21Im | (0] | [ [ %" | O

et =0and O =1

F7(0)]o, = 2 Re (0[F%[0)

M

(

M
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m=k-+1

eiQum) (—ZPk) (

H o~ 101D

[—=

1

) 0)

Task: Estimate the above expectation value for all k =1, ..., M using as little

resources as possible
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Shadow tomography
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Shadow Tomography of Quantum States™

Scott Aaronson’

Problem 1 (Shadow Tomography) Given an unknown D-dimensional quantum mized state p,
as well as known 2-outcome measurements E-, ..., Ep, each of which accepts p with probability
Tr (E;p) and rejects p with probability 1 — Tr (E;p), output numbers by,...,by € |0,1] such that
b; — Tr (E;p)| < € for all i, with success probability at least 1 — §. Do this via a measurement of
p®%  where k = k (D, M,e,6) is as small as possible.
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Reusing quantum states
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Reusing quantum states

 Partially destructive measurements

HP_P,Htr




Reusing quantum states

 Partially destructive measurements

lp— 'l <«




Reusing quantum states

 Partially destructive measurements

lp— 'l <«

e (Gentle measurements




Can we use shadow tomography
for gradients”

IIIIIIIIIIIIII




es... and no.
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Shadow tomography

TIME(VE(9)) = log(M) - TIME(F(0))
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Shadow tomography

TIME(VE(9)) = log(M) - TIME(F(0))

* |eading techniqgues require storage of exponentially
large offline models




Shadow tomography

TIME(VE(9)) = log(M) - TIME(F(0))

* |eading techniqgues require storage of exponentially
large offline models

MEMORY (VF(0)) # w MEMORY (F(6))




Recap
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Recap

* [nformation reuse in quantum models is not easy and is an inhibitor of true
backprop scaling

4 UNIVERSITY OF ™
AR KWAZULU-NATAL
[ ] )
(h INYUVESI
. YAKWAZULU-NATALI



Recap

* [nformation reuse in quantum models is not easy and is an inhibitor of true
backprop scaling

* (Current gradient methods for guantum backprop do not achieve the desired
scaling of resources

4 UNIVERSITY OF ™
AR KWAZULU-NATAL
[ ] )
‘h INYUVESI
. YAKWAZULU-NATALI



g remarks
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Closing remarks

 There may be some restricted settings, perhaps where models are not as universal or
powerful, where backprop scaling is attainable
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Closing remarks

 There may be some restricted settings, perhaps where models are not as universal or
powerful, where backprop scaling is attainable

 Shadow tomography: true computational complexity is still unknown

INYUVESI

4 UNIVERSITY OF ™
AR KWAZULU-NATAL
[ ] )
V‘I\
. YAKWAZULU-NATALI



Closing remarks

 There may be some restricted settings, perhaps where models are not as universal or
powerful, where backprop scaling is attainable

 Shadow tomography: true computational complexity is still unknown

* |s there a more general computational argument to rule out backprop?
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Closing remarks

 There may be some restricted settings, perhaps where models are not as universal or
powerful, where backprop scaling is attainable

 Shadow tomography: true computational complexity is still unknown
* |s there a more general computational argument to rule out backprop?

* New models or methods for optimisation? — If QML is to complete with classical ML
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