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What 1s a fluid?

¢, o
/ wikipedia: credit ~
_l National Oceanic and Atmospheric 3

Administration/ e

1 & Department of Commerce CeR

Orpe + 0; (pevy) = 0

| |
Oyvy + v, 0,;v; + —0;pg = viscous terms

—From short to long £

—The resulting equations are simpler
—Description arbitrarily accurate

—construction can be made without knowing the nature of the particles.

—short distance physics appears as a non trivial stress tensor for the long-distance fluid



Do the same for matter in our Universe

% %k —l dit NASA

with Baumann, Nicolis and Zaldarriaga JCAP 2012

with Carrasco and Hertzberg JHEP 2012
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—From short to long
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—The resulting equations are simpler

—Description arbitrarily accurate
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—construction can be made without knowing the nature of the particles.

—short distance physics appears as a non trivial stress tensor for the long-distance fluid
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Dealing with the Effective Stress Tensor

e Using our lessons from quantum field theory, we express the stress tensor with all the

terms allowed by the symmetries.

e Equations with only long-modes
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Perturbation Theory within the EFT

* In the EFT we can solve iteratively §,,v,, &, << 1 ,wWhere 0, =

0P
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Perturbation Theory within the EFT

* Solve iteratively some non-linear eq. §, = 5§1) + 522) + ... <1

* We end up with the same Feynman diagrams as Prof. Feynman:

e but this time "lines’ are not "quantum elementary particles’, but “waves of galaxies’

e and so we seek help of the expert of particle physics

see eg. Simonovic, Baldauf, Zaldarriaga,
Carrasco, Kollmeier 2018
with Anastasiou, Braganca, Zheng 2212




Application to data has teeth

* Though non-linearities are non-negligible, we can compute them, at long distances.
e ... 1t actually took a decade-long of work to do that...

 Bounds similar to CMB:
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Evaluational/Computational Challenge

with Anastasiou, Braganca, Zheng 2212



The best approach so far

Simonovic, Baldauf, Zaldarriaga,
Carrasco, Kollmeier 2018

* Nice trick for fast evaluation of the loops integrals

elecgllh A () Mpe]

MRS M I R
* The power spectrum is a numerically computed function  f “!5 AP
* Decompose linear power spectrum :F i
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0.001 2.0l 0l | iQ

wavenumber k [h/Npc]

Pl—loop /K q, Pll(k _ Q> P11(C]) —

= 3 ot ([ K@ R B 502) = 37 0, M0

ni,n9 9 ni,n2
—using quantum field theory techniques

— M, n, 18 cosmology independent = so computed once



Computational Challenge _ phitcox. vanov. Cabass.

Simonovic, Zaldarriaga 2022

e Two difficulties:

Pl—loop(k) = [K(Cﬁ E) Pn(/f — CI) Pll(Q) —

= 3 e ([ RGR 9 52) = 5 0,0
q

ni,ng ni,n2

e integrals are complicated due to fractional, complex exponents

e many functions needed, the matrix M,,,n,n, for bispectrum is about 50Gb, so,

~1mpossible to load on CPT for data analysis

e In order to ameliorate (solve) these 1ssues, we use a different basis of functions.



with Anastasiou, Braganca, Zheng

Complex-Masses Propagators
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e Use as basis:
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e With just 16 functions:
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with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

 This basis 1s equivalent to massive propagators to integer powers

49
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e So, each basis function:
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with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

 This basis 1s equivalent to massive propagators to integer powers
47
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Complex-Mass propagator

e So, each basis function:
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with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

 We end up with integral like this:
(kl . q)2n1 q2n2 (kQ _I_ q)2n3

L(ni,di,n9,da,n3,d :/
(01, d1,ma2, da, 3, ds) o (k1 —@q)? + M) (q? + M2)%((ka + q)? + Ms)ds

e with integer exponents.
 First we manipulate the numerator to reduce to:
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q
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* Then, by integration by parts, we find (i.e. Babis teach us how to) recursion relations

0
— - (qut(d1,d2,d3)) =0
| Gt . ds)

— (3 — d1223)6 + dlklsf—\l_ —+ dg(kzs)ﬁ —+ 2M2d2§_\i_ — dlf_\i_? — dgé:g_? = (

e relating same integrals with raised or lowered the exponents (easy terminate due to

integer exponents).



with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

* We end up to three master integrals:

* Tadpole: 43 2\n
q (p;)
Tad(M;, n, d) = / 4P
T (pi -+ M])
e Bubble: 73
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with Anastasiou, Braganca, Zheng

Complex-Masses Propagators

e The master integrals are evaluated with Feynman parameters, but with great care of

branch cut crossing, which happens because of complex masses.

e Bubble Master:

T,
Bmaster(k27 M17 MQ) — %Z[log (A(]-7 mi, m2)) — 1Og (A(07 mi, mQ))

— 2miH (Im A(1, my, mo))H(—Im A(0, mq, m2))],

A(O,ml,mg) = 2./mo + i(ml — Mo + 1),
A(l,ml,mg) = 2v/m1 +i(m1 — Mo — 1),
m1 = Mi/k* and mo = M>y/k?

* Triangle Master:

=1
V24 —T\/To—2—
JT arctan(\/xo_er\/x_z_)

=
V| R2] VIO — Z4/Tp — Z—

Ent(R27 Ry B— s .CC()) — S(Z—I—7 _Z—)

* Very simple expressions with simple rule for branch cut crossing.

 In 3d, these are the same integrals for all n-point functions!
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Positivity bounds
on effective field theories
with spontaneously broken Lorentz

with Creminelli, Janssen JHEP 2022



EFT’s & Positivity bounds

—EFT’s are the common framework to describe phenomena below a certain energy.
—Given a set of DOF, write down all operators allowed by the symmetries

—Is every operator possible? With arbitrary prefactor?

—The seminal work of Allan Adams et al, 2006 showed that, by assuming unitarity, locality

and Lorentz invariance of the UV completion, there are bounds on some coefficients.

—This 1s very interesting theoretically and experimentally.

—Much much work has followed since then, and 1s happening today.

e.g. Caron Hout and Van Duong 2020



EFT’s & Positivity bounds

—Is 1t possible to extend such a program to theories with Lorentz invariance, and in

particular boosts, are spontaneously broken?
—Typical regime for Cosmology and Condensed matter
—Why that would be interesting?
—Cosmology:
* Not so many data
e Peculiar looking theories:
—QGalileons, Ghost Condensate

» While strange behaviors in Lorentz invariant limit, not clear the broken

phase can be ruled out.
—Condensed Matter

* One could perhaps argue that these kinds of Lagrangians are much more numerous to

probe experimentally.



EFT’s & Positivity bounds

—Using that the Lorentz-breaking EFT is originating from a Lorentz preserving one 1s

not easy.

—Normal bounds are based on 2 — 2 scattering. But in Lorentz breaking background

operators with many legs become relevant.
(00)" — (60)"*(066)’

—not much 1s know about scattering 717, — M

—Sometimes it 1s very hard to connect the Lorentz preserving and Lorentz breaking

theories: e.g. fluids. There 1s no straightforward limit.

—Therefore, try to study directly the broken phase.



Review of Lorentz Invariant case

—Useful/needed properties. The S-matrix:

1. It is a physically well-defined function for all real s.
2. It is field redefinition independent.

3. It has an analytic continuation to the upper and lower half complex s-planes, with
singularities residing only on the real axis, including unitarity cuts for energies |s| > 4m?
where 7 is Lhe mass gap in the theory. which is assumed (o be non-zero. This properly
is a. consequence of locality and Lorentz invariance.

4. The discontinuily across the cul on the posilive real axis is ¢ X a posilive numnber. This
1s a consequence of unitarity.

5. It satisfies a crossing symmetry: M(s)* = M(4m? — s*). This is a consequence of
locality and Lorentz invariance.

6. It decays as |[M(s)|/s®> — 0 as |s| — oo. This property follows from the minimal
requirements to derive the Froissart bound [16].



Review of Lorentz Invariant case

—The S-matrix in an EFT, in the forward limit, will take the following form

52 4
M(é) — (0—|—C2A4 —I—C4A8

—Then A M(S) €2 t .

ds I QmA—4 : |5
—Deform contour by analyticity
—Circle at infinity negligible
—Integral along negative cut

—AAAAAAAAA ) ay (CAAAAAAAAA—
J \/ N

e =along positive cut
—1ntegral along positive cut=

i X ¢y, wWith ¢, a non-negative number.

- = 20




Doing the same for Lorentz breaking EFT’s
—Many difficulties

—Most important: with boosts, the in and out states, no matter how energetic, can be
mapped to the same state. So, they are defined no matter what the center of mass

energy S 1s. S0 S-matrix is defined at all S

* Without boosts, this cannot be done. It 1s clearly impossible to scatter a 1 TeV
phonon, because it simply does not exists (as there 1s a privileged reference

frame)

— Other difficulties relate to analyticity, crossing, etc. But the one above seems just a

show stopper.

Grall and Melville 2021

—Explorations with assumptions made ine.g. o "~ 5o Sore

e Let us try to find the same ingredients that we uses for the S-matrix, but controlled.



UV/IR control

—Something that we control both in the UV and IR

—Idea: correlation functions of conserved currents (or the stress tensor), as they are

defined at all energies.

—In the UV, we assume the theory goes to a conformal fixed point, a CFT. Currents are

primary operators and their 2-point function is fixed:

(T (=k)J¥ (k) = (kR — ™ k) k4

— Also, they are field-redefinition independent

 Which correlation function to study?

—Since we expect causality to play a role, choose ret. or adv. Green’s functions:
GR (z —y) = i0(2" — ") (O|[J"(x), J"(y)]|0) .
GH (x — y) = —if(y’ — 2) (0|[J*(x), " (y)]|0) .



Analiticity
w é%,jA(w,p) = /d A%z €_ZP‘IG%/A( )
R

- G%(x) = 0 for 2° < 0 and for 2% > 0
— = Integration region restricted to  (FLC): 2° > 0,22 < 0

—Consider complex four-momentum P : convergence for

Re(—ip-x) < Oorp'M-2 < 0as|a| — oo
—Ofr: p'm c FLC

—So, for p'm c FLC , é"}l—'{u (w7 p) is analytic.
—Analogously, é‘f (wg p) 1s analytic 1n backward light cone.



Analiticity

—We explore this region by choosing:

p = ko + w§

—where k();€€Rd’_1 , |€| — f < 1 and

W™ > 0 for Gp and w'™ < 0 for G4

G (w,p) ifw'™ >0,
G (w,p) if w'™ <0,

{,
[

—Let us now define: ‘”w.u( 7
A

—This function 1s analytic on C\ {(—o0,—m) U (m, )}



Analiticity
) ifwm >0,

) ifw'™ <0,
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—Consider w € R :

lim (C}’“’(w—i—'i&‘)— GH (w — iz i) / A%z e P (0|[J* (). J7(0)]|0) (8
R4

c—0

— ld —iP-T 0 ];1 Pn O _ ()
1/1121 re | (Z| ) 0)|0) — (<> v, <> 0)

= / A%z e T (O|€—’P : ]‘”0)6’1)1 (Z \Py) ( |) JY(0)]|0) — (<> v, 2 <> 0)
Rd

i(2m)* Y {6 (p  P) (017"(0)| Pa) {Pul7(0)[0) — 6“(p + Pn) (0] T"(0) | Pr) (Pl 7“(0)[0)

Wl < M ,so0

—Assuming a mass gap: ]77? ~> 1M > () ,the difference vanish in

function is analytic except for the two cuts.

— Analiticity ok



Positivity along cut
—Since we aim for a contour argument similar to S-matrix one, we need positivity along

the cuts.
lim (é’”(w + i) — GM(w — 25)) =

e—0

i(2m)" ) {6 @ (p — Po) (017%(0)| B) {Fal 77 (0)]0) = 6D (p + P) (0177 (0)| Po) (Fn] J#(0)]0) }

—Contract with areal V#1/¥ , divide by w and 1ntegrate along the positive cut. Only

one ¢ — function contributes:

1 dw ~ "o dw ~(, . _
(277)(} / ( )I /“V = / Q\;f Z O(I)(p o Pn) |<R7|]‘(0)Vﬂ

2
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W

(m,o0) cut
—thisis § X (positive)

e Stmilarly for negative cut:

]. ' (LU ~ —Tri, (1w :
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e forodd ¢ ,thisis ¢ X (positive) . Positivity ok.



Crossing Symmetry

—Useful, though not necessary, property:

G (—p) = —i / A P 0(—a2) (0][J* (), J*(0)]|0)

d

_ / Az e~ 20(20) (0|[J* (—a), J*(0)]|0)

Rd

— /Rd dz e=P*0(°) (0][J7(0), J*(2)]|0) = G4’ (p) .

—In particular: G**(w) = G"*(—w) when ko =10

—Reality of Green’s function: (G o (p) = ‘}’;’,”(— p*)*

“Combining: | G (1)) — GU(p*)?



Gauging the symmetry

—UV-IR connection

—Need to be sure we are computing, in the IR, with EFT, the same quantity that in the

UV has the CFT scaling.

—Integrated-out heavy modes generate contact terms at low energies. These are not

them would give IR-UV mismatch.

encoded in the Noether current constructed from the EFT. Therefore, neglecting

* To keep track of contact terms: gauge the symmetry: interpret the correlation functions

of currents as functional derivatives with respect to the non-dynamical gauge bosons.

 Let us be explicit. Notice

G (z —y) = i0(2" — y°) (O|[J"(x), J* (y)]|0) = i (O T{J*(2)J* () }0) — i O[] (y)J"(x)[0) .

—The last term does not produce contact terms, as only low-energy states contribute:

i/Rd A%z e (0[J7(0)(2)[0) = i(2m)* Y 6@ (p + Bn) (0] 77 (0)| P) (Pu] J#(0)]0)

—but time-ordering has a convolution and so they contribute



Gauging the symmetry
G (x —y) = i0(2” — y°) (O|[J"(x), J* (y)]|0) = i (O|T{J"(x)J*(y) }|0) — i 0] () J*(2) 0) |

—Time-ordered part:

1 ] ,
O] T{T* ()] (y) }|0) = ZfDﬁ ¢! Jea 47 L) T (1) TV (y)

? diz L
—Non-ordered part: 4 = / Do e Jgd (¢)

—Go to Shroedinger picture:

(01 () J*(2)]0) = (O|U (+00, y")J(o (1)U (3", 2°) JE. (®)U (2, —00)|0)

—Inserting unity

I — / D) |6(2)) (6()

»(Y)

-and time evolution: (6", )|U(5". ") lo(a®. @) = [ Do e 1520
'Weget o(x)

/ D¢2 ei fxyo d?z L(¢2) / D¢1 67, f_oo d?z L(¢1) . (26)
¢(Z)



Gauging the symmetry

—So we can write, gauging the symmetry:

G%V(xv y) —
i

-~ (/ Deso ¢ Jet 1 EL00A) g (50(2)) ¥ (d0(y)) A

| Po@) [ Potm) 7o )0t @) [ Doy e BB

P(Y) g0 (2) (9) a0 (1)
/ Doo e’ Jy0 d% £(¢2’A“2 ) / Do, e Jooodta £(¢1’A“1 ) .
P () AL23)_g

—or equivalently as functional derivative:

. 2 ; 0
G/ﬂ/(x y) i . 5 O) /D¢ 7 fRdd :I?[,(qﬁo A( )) B
Z O ()5 A O

f—l—oo A% £(¢3 A(3))

Do (z / Do (7 Do e %
SAV (z) 5 AP ( / o)

2 D¢ 6@ fy ddacﬁ §b2 A(2) / DQ§ 7 f dx £(¢1 A(l))
:B 1 .
A(1,2,3)

P(Z)




Gauging the symmetry

—. Z 0 0 dix E(qb A(O))
G (x,y) == | — / D ¢ Iz ’ —

/ X / Do) [ Doy )

¢(Y)

5A

?(y) g0 (2) 0 (1)
Depy ¢ Jio 4’ £(92:417) / Dy ¢ I A1 £(01:41)
P(x)

AE}’Q"%):O

—This is the expression in the UV. In the IR, ¢?BFT (¢4 / Dy, " BFT(PrbeAu)

—and we generate contact terms. They are captured by the gauge bosons dependence and

therefore by the functional derivatives:

—only from the T-ordered part, because contain the same gauge boson.

e UV and analyticity control.



Contour argument

—Consider, for example:

- I 1 w? C
00/, \ _ , d—2 | 2
@)= lor—ga+ e (e




Contour argument

—Consider, for example:

™) = [y + oy

/

non-relativistic speed

w2

Co

\

cutoff

(1 —c2€?)?

contact terms




Contour argument

—Consider, for example:

= g | e @) o (&

non-relativistic speed
contact terms

cutoff

_ 7§de002 )—27”’(( =gy 1 e

—For. d = 3, GOO()waorw%oo D R

—circle negligible

C9 |
= (—02@“2)2 - d, ZD




Without mass gap

— At loop level, the cut extends all the way to origin. One can use this contour (or, using

crossing symmetry, just the upper contour)

—S0, no mass gap needed. |ﬂ




An example



Conformal Superfluids

—Appl ampbl f the EFT b Hellerman et al, 2015
PPLY SetuP 10 ex pic o © Y Monin et al, 2017

—Motivated by CFT studies, they match an operator at large charge with a state (at large
charge): correlation functions of large charge operators can be computed with an EFT
around this state. This state spontaneously breaks the symmetry, and also breaks, due to

finite chemical potential, also time translations.

—An EFT can be constructed, using the non-linear realization of symmetries. The full

symmetry 1s (could be an inflationary model!)

SO(d,2) x U(1) brokento rotations and spacetime translations

—Simplest construction: Cuomo, 2021
—Write diff. invariant action with Wyel invariant metric: ° QW = Guv |9a6 O Xaﬂ X ‘
—and ' X = pt+7(t, x)

—(we will Gauge 1it)
1 €1 3 ~ G 3 3
e Leading operator: S 6 d°x\/—g = 6 d’z+/—g|0x



JJ calculation
—The EFT action reads, at NLO:

0|V y|)? Vi, Vx|’ Vi VY
EZ%MP_Q@H X (2< 9, V) m( Y x)ayw)

Vx| Vx|3 Vx|?
7
N /T V.xVux, — v A
4 |Vy 2 [Vx|3 v,uX— X K

—Gauge symmetry:

m(x) = m(z) + Ax), A, (x) = A, (x) + I, A(x)

—Several contact terms.

—Expanding to quadratic order:

3 1 )
Loy =2 4+ 22 [(7% F A = S (O — A+ (7 + AO)] + % —r0i + 2A°07 £ A’OA")
) | . o
+ % [—WD# +2A%0, 7 — Aldi + (A°)? + AO@A@} +

+ (b T d) 1@ ((9()14@')2 + QAO(az'Ai)} — 4i (aiAj - 0in)2 ;

21 v



JJ

—Noether current:

calculation

5

0 pcy Aoy ey
Iy = [LC1T0 T
2 p p
- C 2cs ..
J]ZV — % ;1T Iug 87;77,
—We compute the correlation functions of the Noether currents, using
C 2(cyg 4 ¢
L(2),4=0 = EW cs Tt G 3)7
2 i

—and add the contact terms, as prescribed by the path integral formula:

1 1 x
5 [ Dottt

(0))
U

2
(qbo,A,SO)) 0°L (qbo,A
SAY (2)6 A (z)

AP =0



JJ conservation

— We notice that it 1s true that

k(T (— k)T (k) = 0

—without any contact terms.
« Proof: consider C = [ D¢ ¢! /4*v£@A)  and change variables ¢ = e @),
and use Py — P Stoget o _ / Do e J 4% £(6/(6).4,)

e Gauge invariance L (¢'(¢), A, —0,a) = L (P, A,)
= L(¢'(¢), Ay) = L (¢, Ay + Ouc)

/D¢€zfddx£(¢Au+8 W) /D¢€Zfddx£(¢A ) (1—|—2/dd£€8 Oz( )52i ))

e So:




JJ conservation

—0: _ i [dda £(¢,AM)/ d 0.5
0 /D(b e dz a“&(x)&élu(x)

; d ./ / / 6»9
_ d y i [ d% L(p(x'),Av(2))
/dxoz(x)@x /D¢e 54, (7)

5 ; d ./ / /
_ i [ g ) Doy o 4%’ L) Au(@))
@/d r a(x) 0, TNES / b e

5 ; d ./ / /
= 0= 0. Do ¢ [d%x" L(p(z"),Ar(z"))
0A, () / b

—Take a second derivative:

- O: aa;,u

52 / . d . ./ / /
D¢ e’ [d%x" L(d(x"),Ap(z)))
5Au(x)514y(y)

Ap=

—This 1s our functional form. But notice that it includes the contact terms.



JJ conservation
=30k (JM(—k)JY (k) =0

— —> it has 2 tensorial structures (non relativistic theory):

W(JH(=k)JV (k) = A (k'K — " k*) + B (k'K — 67 k)

—Wordking in d=3:
A [LCq e (w2 — kz) k* C3 wrk?

2R (k) (- k)

5 _ [LC e (w? — k:2)2 cs w2 (w? — k?)

Lw? = k) p (w2 - k?)” (w2 - k)



Positivity bounds from JJ

—There 1s a rich kinematical structure. Consider:

~

flw) = G (k)V,.(k)V, (k)

—Take ky = O (as it does not change the result)

—Take the most general

A

Vw) = a(w)K + Bw)E +~y(w)F

— (expanded 1n a base)

—Get: =

f(w) = Aw?(1

—Contour argument:

i)

B

. ["(0) >0

— &) (B +77) — B&wy’

= ir f"(0)

kz(&),ko—l—&)é) |
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= f7(0) = 03

eu-¢)
(1 —¢€2/2)?

52—03

Positivity bounds from JJ

52

—.& — 1 with v £ 0 we obtain

_letting £ — 0 we get

(1—-&2/2)

d > 0

-~ w ~w

b+d>0

— Look at terms in 2 : most stringent if for v = 0

>
b+d —

(&2

52

252+b(52+72)+d(52= 7 )20

£ €0,1)
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Positivity bounds from JJ
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TT calculation
—We need to go to NNLO. It 1s possible to classity all the operators, and at quadratic

order, there are only 3 independent ones:
/dgx\/ (— — CQR -+ ch“”ﬁﬂxéVX + C4ft22 -+ 05}%,,}?“” -+ cﬁﬁgﬁ“o)

ffig — éAM 0 AX
—We consider (T (—Fk)T"(k)) ,again, defined through path integral

—Conservation constraints the form: TP (— )P ()Y = C(k) TI"77 (k) + D (k) ﬁ,ul/pa( k)

with
1 1
[TH7Po = 5 (HP? + mHIP) — ¥ 17T“”7Tp0
- N N N N 1 o
[[HvpPe — — (7_‘_,up7_‘_1/0 i THo ZVP 4+ VO T HP i 7_‘_1/pﬂ_,ua) . 7_‘_/11/7_‘_,00’
4 d— 2
where
[T R%
pv o — o pv kK
7T - 77 k2 9
m l.mn
o L K™k




TT conservation

—Similar to current:

0= —iVu / D ¢' /4% V=9 L(#(2).gp0(2')) ! N
vV =9(x) 09u()
1

v, [ pg s )
(\/ g(@ )59W

—when act with second derivative, we hit the Christoffell:

_ ! 0 . ! & et J 4% V=g L(9(a").gas(@"))
’ \/_g(y) 5gp0(y)vx (\/ ( )5g,u1/ /D )

_ v, ! Ji [ 44’ =5 £(6().905 ("))
. (\/(g(x)(g(y))@w( )90 (Y / P )

| 5 L o) (2 i LA G £(6()05(0)
V=) 20,-0) (\/ —Q(I)FQW( )> (5997 / b )




TT conservation

—At uv = Nuv
2
0 = Oy ( ° / Do ' /4 V=g ﬁ(qﬁ(w’)vw(w’)))
390 ()39 (1)
A

: / [dda’ /=g L / /
. D¢ ezf z' \/—g (Qb(iv),gaﬁ(x)))
\/_g(ﬂf) 59:00' (y) Juv="Nupv (5997

Juv="Nuv

—The second term is proportion to 5@ ($ —Y ) and to the vev of the stress tensor. (for

us it is proportional to Cp)



TT calculation
—We need to go to NNLO. It 1s possible to classity all the operators, and at quadratic

order, there are only 3 independent ones:
/dgx\/ (— — CQR -+ ch“”ﬁﬂxéVX + C4ft22 -+ 05}%,,}?“” -+ cﬁﬁgﬁ“o)

ffig — éAM 0 AX
—We consider (T (—Fk)T"(k)) ,again, defined through path integral

—Conservation constraints the form: TP (— )P ()Y = C(k) TI"77 (k) + D (k) ﬁ,ul/pa( k)

with
1 1
[TH7Po = 5 (HP? + mHIP) — ¥ 17T“”7Tp0
- N N N N 1 o
[[HvpPe — — (7_‘_,up7_‘_1/0 i THo ZVP 4+ VO T HP i 7_‘_1/pﬂ_,ua) . 7_‘_/11/7_‘_,00’
4 d— 2
where
[T R%
pv o — o pv kK
7T - 77 k2 9
m l.mn
o L K™k




TT calculation

pw?(w? — k2)2 1 k4(w2 — k2)2 1 (w? — k2)2 (wQ(w2 — k2) + k4)

<= 2 (w? — c2k*)2 2+ es) + [ (w? — 2k?)? “r 24 (w2 — c2k*)? =
LR R (o4 e) K@’ — k) (7
dp (W2 —ckh? 2 o (W c2RRP
k' (w? — K 1 k*(w? — k%)? 3 1 k(w? — K
0 = (2 305) +5, e
1 (ca + c3)? K'w?(w? — k%)? ;
poo (w2 — c2k*)3

—Contract with general symmetric 2-tensor: <TWTPU>AW Apa

A = oK, K,+BE,E,+vF,F,+a (IA(MEV 1 [A(VEM) +8 (IA(NFV 1 IA(,,FM) +5 (E#FV 4 E,,FM)

—We get the bound:

2 <T'W/Tpa>su bI.A,LwApJ —

C
5 (B =) +45°| + D¥°



TT positivity

—Explicitly

4646%¢, + 2 [(2 _ 52)2&2 +(1— £2 +§4)52} cs + €2 ((2 — 52)2&2 n 52) Co

1 — &2
45452 (CQ —+ 03)2

>
T 2-¢&2 C1

—Not hard to show that the most stringent bounds are:

0520

and

CGZO

)

dey + 25 + cg > 4(ca +c3)? e |.




Summary of the bounds
—By working at NLO and NNLO, we obtained:

cy > 0 (for healthy fluctuations),

2 /52
bfd(1_€2) bfdz - §2/2) ’
d>0,
b+d>0,
deg 4 2c5 4+ cg > 4(eo +¢3)? /e
cs > 0,

C@ZO.



Loop corrections?

—So far, we worked at tree-level. In this particular case, up to NNLO d=3, there are no-

loop corrections. In fact, in canonical normalization:

L= 1 1 1
=3 |:7-‘:(32 - _(aﬂc)ﬂ - —7 7S 37'Tél | 62;328271'68271'0 | 3022;3 O’ 0.7
2 2 Cl/ MS/Q C1 U C1 4 Cl/ /LS
| 04;5;2 Pr.0m. + ...
C1 U

—and combinations of C2.3 and c4.5.6 do not have the right p-dependence o

make these coefficient run (it will happen at higher order).

—In general, however, no problem: one can do the loop with this contour, and use a finite
w

radius:

£
\__/



Conclusions

—We have constructed a method to derive robust bound on coefficients of operators

where Boosts are spontaneously broken.
—Method based on 2-point functions of conserved current and stress tensor.

—proved that they have the right analytic properties and also controlled UV behavior
thanks to CFT UV assumption

—then argument similar to S-matrix derived.
* Many applications:
—Light in Material
—QCD at finite U
—Inflation
e Limitations:
—need to go to high order to ensure convergence
—presence of the contact terms

e ...Perhaps, we just started... perhaps...



