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Penrose diagram

 \We work in the Poincare’ patch (half of dS)
ds® = —dt* + a*dx* = a*(—dn* + dz°)

The future (conformal)
boundary can be thought as
the reheating surface after
inflation and determines the
statistics of LSS and CMB
observations
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The wavefunction

e The wavefunction of the universe, Y[¢] = (¢ | V), is a functional of
the all fields in the theory (including the metric), at some time:

\Ij[¢7n]:exp wan kla'“ nvn H¢

e All probabilities can be computed as in QM

(0) = / o0 O

* The Wh are closely related to cosmological correlators, which

determine the statistics of the Cosmic Microwave Background and
Large Scale Structures

(p¢) = [2Rera (k)] ", (¢dp) = —2Reps | | [ Rew




Feynman Diagrams

 Given a model, the wavefunction can be computed
perturbatively from a path integral

¢(x,m0) |
[p(x); 10] — / D] 519

vacuuin

with the following Feynman rules (equivalent to in-in):




The Bootstrap

The wavefunction and the associated correlators have been
computed over the past 20 years for a variety of models

Here, I'll discuss how the wavefunction is constrained by
symmetries, causality, locality and unitarity

Most results are valid to all orders in perturbation theory or
non-perturbatively for any FLRW spacetime, including de
Sitter and Minkowski

All constraints in this talk assume the Bunch-Davies initial
state



Symmetries

e Cosmological perturbations are observed to be

statistically homogeneous and isotropic ?Iﬁ:;\;elg’:ions
| | | ® Rotaions
* Primordial perturbations are also observed to ® Scale invariance

be approximately scale invariant

e Anything else?

e Assuming de Sitter boost, we can derive
general results and connect with CFTs and dS boosts:

holography. See beautiful progress by boostless
Maldacena, Pimentel, Arkani-Hamed, bootstrap
Baumann, Joyce, etc... [this talk]

e In a dS invariant theory, all connected

correlators of { vanish in single-clock
Inflation [areen erP 201 | Will NOt assume boosts



Boost/ess theories

e All cosmological models break Lorentz/de Sitter boosts.
The breaking of boosts can be large and is NOT slow-roll
suppressed, in contrast to the small breaking of dilation

assumed S kalo(kr) ... o(k,)) =0 translations

observed

symmetries . -

Y > ko (p(k1) ... ¢(kn)) =0  rotations

a=1
> (3= A+kaOh,) (d(k1)...¢(kn)) =0  dilations
a=1
[21« 68 ké? d " (3= Ay Sl st AT =T “dS boosts



The Analytic Wavefunction

The Analytic
S-Matrix




Analyticity and causality

* There is a well-known connection between causality and
analyticity, which leads to powerful UV/IR sum rules,
analogous to the Kramers Kronig “dispersion relation”.

* EX: operators commuting outside the light cone implies the
2-to-2 amplitude is analytic in Mandelstam s at fixed t

M’
x

Y,

 What is the analytic structure of wavefunction coefficients?

e Here are some results [Goodhew, Lee, Melville & Pajer ’22]



Off-shell wavefunction

* Analytic in what?! We need to go off-shell.

e Off-shell wavefunction coefficients are the F-transform of
amputated (i.e. acted on eqg. of motions for all fields),
connected in-out Green’s functions

U ({0}, {K}) = H / Ay Ko (war1ia) | GE™PS™ (1, 1)

=0 TH¢k Qi) eon = Gy, (F1s er ) 65 (Zk )

 where K are mode functions in any FLRW spacetime with
Bunch-Davies initial conditions.

e This is valid non-perturbatively. Reminiscent of LSZ.



Analyticity

b () ~ / dt e G (1)

— OO

Time integral for W[¢,no] stops at 71, because of causality

Then y,, are analytic in w in the lower-half complex plane

because the integral is even more convergent. This is true
non-perturbatively

Sometimes, one can extend to upper-half plane by Hermitian
analyticity Pn(w*)=Pn*(w)

Singularities only on the (negative) real axis



Singularities

e |Locality: at tree-level, the wavefunction has singularities
when the “total energy” vanishes. The leading residue is
the UV-limit of the flat-space amplitude [maidacena & Pimentel *11; Raju

’12; Arkani-Hamed et al ’17-‘18; Benincasa ’18]

A n
13 n ™ — kr = ka’
Jim o~ 5 r =2 Mk
* Only other singularities are at vanishing partial energy
| Cn int ext
lim ¢, ~ = E=) |k + ) [pml

* All residues of partial energy
singularities are fixed by \“:

Unitarity! [Jazayeri, EP & Stefanyszyn '21]



All singularities

 Consider off-shell coefficients as function of a single w with
other kinematics fixed. Singularities occur only on the negative
real w axis where the energy of a perturbative subdiagram
vanishes. (There might be additional anomalous thresholds)
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UV/IR sum rules

= e s
— == S LB
- - -

e By Cauchy’s theorem we can write UV/IR sum ruléé '

0 :
dw disc(w W, Wi£1, K
wTwEFT(wz',kj) — / ( TwUV( L J))

_ (WTwUV(Wawi;élakj))
271 W — W1 '

- Res
oo w — Wi

e The LHS can computed in a low-energy EFT. The RHS
depends on the full UV theory.

* This fixes all Wilson coefficients in the EFT, including total
derivatives and terms proportional to the eq of motion.



Locality
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Locality

e |ocality: what happens here cannot affect what happens far away.
Operators commute for space-like separation and correlators factorise
at large distances (cluster decomposition).

O
e There is no cluster decomposition in dS \ /
q

* A common sufficient condition is Manifest Locality: Lagrangian
iInteractions are products of operators at the same spacetime point. No
Inverse laplacians are allowed.

 The wavefunction of light scalars and spin-2 fields (m2 < 2H?2) satisfies
non-perturbatively the Manifestly Local Test (MLT) (azayeri, €P & Stefanyszyn 21]

= (

Wi =0

5’wlwn(w1, ‘ o ,wn;kl, “ e ,kn)

manifest locality -> awlwn(wla o wnn kg, ,kn) ok =0 = 0

Wa:|ka|



Derivation

* Two derivations: (/) boundary derivation using unitarity and
singularities (see paper) and (i/) a bulk derivation that uses

g (w0}, {61 = | T] / Ao K (Watla) | GE™™4 (tr, st

e Notice that as k — 0 there is no linear term in k
Ouw K3 /2(w, 1)|w=0 = 0u,(1 — iwn)e™y=o = 0
e The same is true non-perturbatively for Pn(w)

* By manifest locality we can take this on-shell w=k and it is
still 0 because there cannot be a divergence at k=0



Manifest locality

* The Manifestly Local Test is a necessary condition for all
manifestly local test. All large non-Gaussianities in single
field inflation (e.g. EFT of inflation) obey this

LD+ (00)°h+ ¢ + ...
* Gravity has non-manifestly-local interactions for
backreacting scalars after integrating out lapse and shift

Laop D C.QV_QC. + ...

But the MLT applies more generally to all “soft” interactions

Lo / k} VF({K}) s.t. A, F{K})| _

In particular, the MLT applies to gravitons and spectator
fields to all orders in perturbation theory.
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Bootstrap Rules

* |nstead of computing bispectra from a model we use a set of
Bootstrap Rules based on fundamental principles [ep 20

e As an example, let’s bootstrap the bispectrum (3-point
function) of a scalar. We can work directly on shell wlog.

* |t can only have KT poles by locality!

Bose symmetry
/ kT = k1 + ko + k3

7 . = Ky + koks + k1 k
P01y3—|—p(kT762763) €2 1k2 + koks + K1k3
€3Ek1]€2]{i3

¢3 — D
- kp
tree level in dS \

Bunch Davies vacuum



The calculation

* The Bootstrap Rules reduced the problem to determining the
numerical constants Cmn via the Manifestly Local Test

|B52 ) | B

( ) 34+p—2m—
1)(01‘ A l‘ Ap § E pmn +[} g m 28

n=~u0 m=0
akl ¢3 =
k1=0

* This yields all manifestly local bispectra for a scalar to any
order in derivatives in the EFT of inflation

* This gives order by order the shapes of non-Gaussianity
that are constraint e.g. by the Cosmic Microwave
Background, e.g. the Planck mission



Shapes of non-Gaussianity
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e Y30 contains the famous local non-Gaussianity, while

Ys(1.2) the so-called equilateral and orthogonal non-

Gaussianities, the main targets of non-Gaussian searches
in the CMB and galaxy surveys!

* |n the standard approach the numerical coefficient come
from time integrations, here they’re fixed algebraically






Unitary time evolution

In Quantum Mechanics we compute probabilities, which
must be between 0 and 1 to make sense

This requires the positive norm of states in the Hilbert space
and Unitary time evolution, UUT=1. Colloquially this is the
conservation of probabllities

The consequences of unitarity for particle physics
amplitudes were discover over 60 years ago: the Optical
theorem and Cutkosky Cutting Rules.

In cosmology we don’t see the time evolution, so how can
we see it’s unitary?!



The Cosmological Optical
Theorem (COT) cvcowcom

From unitarity, UUT=1, we found infinitely many relations.
The simplest applies to contact n-point functions

wn({w}v {k}) + w;;({_wh {_k}) =0 : ; : A time

It follows from unitarity time evolution, but the equation does not
involve time! Time “emerges” at boundary as in holography...

This is a Cosmological Optical Theorem (COT) and can be
interpreted as fixing a “discontinuity”

Disctpn, = ¥n({w}, 1k}) + 1, (1—w}i, {—k}) =0



Exchange diagrams

* The next simplest case is a 4-particle exchange diagram
(trispectrum). The Cosmo Optical Theorem (COT) is

{ Discq[ilpklk?_q] Paq' U Discy [M’q'kslﬁ;]



General diagrams

* These relations are valid to all order in perturbation theory to
any number of loops for fields of any mass and spin and
arbitrary interactions (around any FLRW admitting a Bunch
Davies initial condition) [Goodhew, Jazayeri & EP '21: Melville & EP '21]

i disc [iw(D)} = Z H / H (—7) tdisc1 N [iw(“bdiagram) ,

internal :
lines cuts cut Subdlagrams cut lines
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+ + . l +
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Loop corrections

e Unitarity gives us also loop corrections! For example we
compute the leading 1-loop corrections for the power
spectrum in the EFT of inflation, from tree-level results.
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Contact interactions

e (Contact interactions contribute to correlators as
| Do WU (k) . ..qz(kn)
ki)...0(k,)) = :

B;ontact({k}; {k}) _ W ({k}i_[{k};)Q_'_R?ﬁ/w(z{(k}) {k})

which gives the Real or Imaginary part for parity even or odd interactions.

Yn(1w}, 1k})

| cosmo optical
piﬂ?g/////// \\\\\\\\\\ﬁffxenw
scaling

-, ({w), {—k)) | b ({—wi, {—k})
A7, ({Aw}, {Ak})




No-go for
parity odd

Assuming scale invariance, unitarity and a BD initial state,

IR-finite parity-odd correlators vanish at tree-level for (cavass,
Jazayeri, EP & Stefanyszyn ‘22]

* Any number of external massless field interacting with
conformally coupled scalar fields

* 4 external massless scalars interacting with any number
of massive scalars, or massless fields of any spin.

If a parity-odd trispectrum were detected (see e.g. [cam, Siepian
& You "22; Philcox 22]), ON€ would need to relax these assumptions,
e.g. break scale invariance, massive or chiral spinning fields



Loop at leading order

In single field inflation, assuming scale invariance, the parity-
odd trispectrum B4 vanishes.

Leading contribution is 1-loop!
1-loop 1-vertex vanished in dim reg (ho momentum flow)

Calculation is complicated (d-dimensional mode functions,
many derivativeS), but answer IS Simple [Lee, McCulloch, EP to appear]

(k1 x kg) - k3 Poly,, (k)
(k1koksks)3 kR

B© =i

Is this an observable quantum effect?



Horizons

* There are still basic and very general facts about gquantum field
theory on cosmological spacetimes that are awaiting to be
discovered: it’s a wide open field of research!

e Questions for the future include:

 Can we derive “positivity bounds” for cosmology that encode the
constraints of a consistent UV completion?

* Are there measurable non-perturbative quantum gravity effects in
cosmological correlators as e.g. in Black Hole physics?

 Numerically bootstrap fully non-perturbative correlators in dS?

 Because of the ever growing body of cosmological dataset,
advancements on the theory side are likely to have important
repercussion on the phenomenology and ultimately make a long
standing contribution to our understanding of the very early universe.



