Double Copy in (A)dS

Arthur Lipstein
Durham University

Based on:

2304.07141 with S. Nagy
2304.07206 with C. Armstrong, H. Goodhew, J. Mei

Motivation

- Double copy reduces complicated calculations in gravity to simpler ones in gauge theory.
- Can this progress be extended to cosmology?
- What does this teach us about flat space amplitudes?
- New connections between AdS/CFT and flat space holography?

Overview

- review of flat space double copy
- self-dual AdS_{4} gravity
- color/kinematics duality and $\mathrm{w}_{1+\infty}$ in AdS_{4}
- review of cosmological correlators
- cosmo boostrap
-4-graviton wavefunction
- conclusion

AdS $_{4}$ metric

- Poincaré patch of Euclidean AdS_{4} with unit radius:

$$
d s_{\mathrm{AdS}}^{2}=\frac{d t^{2}+d x^{2}+d y^{2}+d z^{2}}{z^{2}}
$$

where $0<z<\infty$

- Light cone coordinates:

$$
\begin{aligned}
& u=i t+z, \quad v=i t-z \\
& =x+i y, \quad \bar{w}=x-i y, \quad
\end{aligned} \quad \longrightarrow \quad d s_{\text {AdS }}^{2}=\frac{4(d w d \bar{w}-d u d v)}{(u-v)^{2}}
$$

- Wick rotation $z \rightarrow i \eta$ gives dS_{4} metric. In practice we will Wick rotate conformal time integrals in dS_{4} to AdS_{4}

Double Copy in Flat Space

-3-point gluon amplitudes square into 3-point graviton amplitudes

- Color/kinematics duality can be used to extend double copy beyond three points. Take a 4-point gluon amplitude:

$$
\mathcal{A}_{4}=\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}, \quad c_{s}+c_{u}+c_{t}=0
$$

numerators obey kinematic Jacobi: $n_{s}+n_{t}+n_{u}=0$

- Squaring these numerators gives 4-point graviton amplitude:

$$
\mathcal{M}_{4}=\frac{n_{s}^{2}}{s}+\frac{n_{t}^{2}}{t}+\frac{n_{u}^{2}}{u}
$$

Self-dual sector

- SDYM: $\quad F_{\mu \nu}=\frac{\sqrt{g}}{2} \epsilon_{\mu \nu \rho \lambda} F^{\rho \lambda}$, SDG: $\quad R_{\mu \nu \rho \sigma}=\frac{1}{2} \sqrt{g} \epsilon_{\mu \nu}{ }^{\eta \lambda} R_{\eta \lambda \rho \sigma}$
- SDYM in lightcone gauge (Bardeen,Chalmers,Siegel):

$$
\square_{\mathbb{R}^{4}} \Phi-\frac{i}{2}[\{\Phi, \Phi\}]=0, \quad\{f, g\}:=\partial_{w} f \partial_{u} g-\partial_{u} f \partial_{w} g=\varepsilon^{\alpha \beta} \Pi_{\alpha} f \Pi_{\beta} g
$$

- SDG in lightcone gauge (Plebanski):

$$
\square_{\mathbb{R}^{4}} \phi-\{\{\phi, \phi\}\}=0, \quad\{\{f, g\}\}=\frac{1}{2} \varepsilon^{\alpha \beta}\left\{\Pi_{\alpha} f, \Pi_{\beta} g\right\}, \quad \Pi_{\alpha}=\left(\Pi_{v}, \Pi_{\bar{w}}\right)=\left(\partial_{w}, \partial_{u}\right)
$$

- Color/kinematics duality manifest (Montiero,O'Connell)

SDG in $\mathbf{A d S}_{\mathbf{4}}$

- SDYM eom same as flat space (only knows about b.c.)
- SDG: $\quad T_{\mu \nu \rho \sigma}=\frac{1}{2} \sqrt{g} \epsilon_{\mu \nu}{ }^{\eta \lambda} T_{\eta \lambda \rho \sigma}$
where $\quad T_{\mu \nu \rho \sigma}=R_{\mu \nu \rho \sigma}-\frac{1}{3} \Lambda\left(g_{\mu \rho} g_{\nu \sigma}-g_{\nu \rho} g_{\mu \sigma}\right)$ (we will set $\Lambda=-3$)
- Contracting with inverse metric gives vacuum Einstein equation:

$$
R_{\mu \rho}-\Lambda g_{\mu \rho}=\frac{1}{2} \sqrt{g} \epsilon_{\mu}{ }^{\sigma \eta \lambda} R_{\eta \lambda \rho \sigma}=0
$$

Solution:

$$
\frac{1}{u-v} \square_{\mathbb{R}^{4}}\left(\frac{\phi}{u-v}\right)-\left\{\left\{\frac{\phi}{u-v}, \frac{\phi}{u-v}\right\}\right\}_{*}=0
$$

where $\{\{f, g\}\}_{*}=\frac{1}{2} \varepsilon^{\alpha \beta}\left\{\Pi_{\alpha} f, \Pi_{\beta} g\right\}_{*}$

- Deformed Poisson bracket:

$$
\{f, g\}_{*}=\frac{1}{2} \varepsilon^{\alpha \beta}\left(\Pi_{\alpha} f \tilde{\Pi}_{\beta} g-\Pi_{\alpha} g \tilde{\Pi}_{\beta} f\right) \quad \tilde{\Pi}=\left(\tilde{\Pi}_{v}, \tilde{\Pi}_{\bar{w}}\right)=\left(\partial_{w}, \partial_{u}-\frac{4}{u-v}\right)
$$

- Solutions: $\phi=(u-v) e^{i k \cdot x}$

CK Duality for $\mathbf{S D G}^{\mathbf{i n}} \mathbf{A d S}_{\mathbf{4}}$

- Feynman rules: $V_{\text {SDYM }}=\frac{1}{2} X\left(k_{1}, k_{2}\right) f^{a_{1} a_{2} a_{3}}$,

$$
V_{\mathrm{SDG}}=\frac{1}{2} X\left(k_{1}, k_{2}\right) \tilde{X}\left(k_{1}, k_{2}\right)
$$

where $X\left(k_{1}, k_{2}\right)=k_{1 u} k_{2 w}-k_{1 w} k_{2 u}, \quad \tilde{X}\left(k_{1}, k_{2}\right)=X\left(k_{1}, k_{2}\right)-\frac{2 i}{u-v}\left(k_{1}-k_{2}\right)_{w}$

- Double copy: $f^{a_{1} a_{2} a_{3}} \rightarrow \tilde{X}\left(k_{1}, k_{2}\right)$
- Kinematic Jacobi: $0=X\left(k_{1}, k_{2}\right) X\left(k_{3}, k_{1}+k_{2}\right)+$ cyclic

$$
=\tilde{X}\left(k_{1}, k_{2}\right) \tilde{X}\left(k_{3}, k_{1}+k_{2}\right)+\text { cyclic }
$$

w-infinity algebras in $\mathbf{A d S}_{\mathbf{4}}$

- Expand plane waves: $e^{i k \cdot x}=\sum_{a, b=0}^{\infty} \frac{\left({ }^{\left(i k_{u}\right)^{a}}{ }^{a}\left(i k_{w}\right)^{b}{ }_{a}{ }_{a b}\right.}{a b b)^{2}}$
where $\mathfrak{c}_{a b}=(u+\rho \bar{w})^{a}(w+\rho v)^{b}$ (Monteiro)
- Let $w_{m}^{p}=\frac{1}{2} \varsigma_{p-1+m, p-1-m}$. Then

$$
\begin{aligned}
\left\{w_{m}^{p}, w_{n}^{q}\right\} & =(n(p-1)-m(q-1)) w_{m+n}^{p+q-2}, \\
\left\{w_{m}^{p}, w_{n}^{q}\right\}_{*} & =\left\{w_{m}^{p}, w_{n}^{q}\right\}+\frac{(m+q-p-n)}{u-v} w_{m+n+1 / 2}^{p+q-3 / 2}
\end{aligned}
$$

- First line is $\mathrm{w}_{1+\infty}$ algebra, which plays an important role in flat space holography (Strominger). Second line contains a deformation

Cosmological Observables

- Inflation: early Universe approximately described by dS_{4}. CMB comes from correlations on future boundary

$$
d s^{2}=\frac{-d \eta^{2}+\left(d x^{i}\right)^{2}}{\eta^{2}}, \quad-\infty<\eta<0
$$

$\eta=0$

Cosmological Wavefunction

- In-in correlators (Maldacena,Weinberg):

$$
\left\langle\phi\left(\vec{k}_{1}\right) \ldots \phi\left(\vec{k}_{n}\right)\right\rangle=\frac{\int \mathcal{D} \phi \phi\left(\vec{k}_{1}\right) \ldots \phi\left(\vec{k}_{n}\right)|\Psi[\phi]|^{2}}{\int \mathcal{D} \phi|\Psi[\phi]|^{2}}
$$

- Wavefunction:

$$
\ln \Psi[\phi]=-\sum_{n=2}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} \frac{\mathrm{~d}^{d} k_{i}}{(2 \pi)^{d}} \psi_{n}\left(\vec{k}_{1}, \ldots \vec{k}_{n}\right) \phi\left(\vec{k}_{1}\right) \ldots \phi\left(\vec{k}_{n}\right)
$$

- ψ_{n} can be treated like CFT correlator in the future boundary and computed from Witten diagrams
(Maldacena,Pimentel,McFadden,Skenderis)

Graviton Wavefuntion

- Tree-level wavefunction for 4 gravitons recently computed by (Bonifacio,Goodhew,Joyce,Pajer,Stefanyszyn)
- Bootstrapped using flat space limit (Maldacena,Pimentel,Raju), Cosmological Optical Theorem (Goodhew,Jazayeri,Melville,Pajer) and Manifestly Local Test (Jazayeri,Pajer,Stefanyszyn)
- De Sitter Feynman diagrams give hundreds of thousands of terms but result of bootstrap is only about a page long.
- Combining bootstrap with double copy reduces it down to only a few lines!

Cosmo Boostrap

- Flat space limit: $\lim _{E \rightarrow 0} \psi_{4}^{\gamma} \propto \frac{k_{1} k_{2} k_{3} k_{4}}{E^{3}} \mathcal{M}_{4}, E=k_{1}+k_{2}+k_{3}+k_{4}, k_{a}=\left|\vec{k}_{a}\right|$
- COT: $\quad \tilde{\psi}_{4}\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{s}\right)+\tilde{\psi}_{4}^{*}\left(-k_{1},-k_{2},-k_{3},-k_{4}, k_{s}\right)=$

$$
\frac{1}{k_{s}^{3}}\left[\tilde{\psi}_{3}\left(k_{1}, k_{2}, k_{s}\right)-\tilde{\psi}_{3}\left(k_{1}, k_{2},-k_{s}\right)\right]\left[\tilde{\psi}_{3}\left(k_{3}, k_{4}, k_{s}\right)-\tilde{\psi}_{3}\left(k_{3}, k_{4},-k_{s}\right)\right]
$$

where $k_{s}=\left|\vec{k}_{1}+\overrightarrow{k_{2}}\right|$ and $\tilde{\psi}_{n}$ is "trimmed" wavefunction

- MLT: $\lim _{k_{1} \rightarrow 0} \partial_{k_{1}} \tilde{\psi}_{4}\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{s}\right)=0$

Gluon Wavefuntion

- Diagrams:

(axial gauge Feynman rules obtained by Liu,Tseytlin, Raju)
- s-channel wavefunction:

$$
\psi_{A}^{(s)}=\int \frac{d \omega \omega}{k_{s}^{2}+\omega^{2}} d z d z^{\prime}(K K J)_{12}^{1 / 2}(z)(K K J)_{34}^{1 / 2}\left(z^{\prime}\right) N_{s}
$$

where $N_{s}=V_{12}^{i} H_{i j} V_{34}^{j}+V_{c}^{s}\left(\omega^{2}+k_{s}^{2}\right)$

$$
(K K J)_{a b}^{\nu}=\frac{2}{\pi}\left(k_{a} k_{b} z\right)^{\nu} z K_{\nu}\left(k_{a} z\right) K_{\nu}\left(k_{b} z\right) J_{\nu}(\omega z)
$$

Double copy ansatz

- Ansatz: $\psi_{\gamma, \mathrm{DC}}^{(s)}=\int \frac{d \omega \omega}{k_{s}^{2}+\omega^{2}} d z d z^{\prime}(K K J)_{12}^{3 / 2}(z)(K K J)_{34}^{3 / 2}\left(z^{\prime}\right)$

$$
\times\left(N_{s}^{2}-\frac{1}{2} \tilde{v}_{12}^{i j} H_{i j} \tilde{J}_{34}^{k l} H_{k l}+\frac{1}{2}\left(\epsilon_{1} \cdot \epsilon_{2}\right)^{2}\left(\epsilon_{3} \cdot \epsilon_{4}\right)^{2}\left(\omega^{2}+k_{s}^{2}\right)^{2}\right)
$$

where $\tilde{V}_{a b}^{i j}=V_{a b}^{i} V_{a b}^{j}$

- Satisfies flat space limit, COT, and MLT
- Can be written in terms of deformed numerators: $N_{s}^{\gamma}=\frac{1}{2}\left(N_{12}^{-} N_{34}^{+}+N_{12}^{+} N_{34}^{-}\right)$

$$
\begin{aligned}
& N_{12}^{ \pm}=N_{s}+\frac{i}{\sqrt{2}} \epsilon_{1} \cdot \epsilon_{2} \epsilon_{3} \cdot \epsilon_{4}\left(\omega^{2}+k_{s}^{2}\right) \pm \frac{1}{\sqrt{2}} \tilde{V}_{12}^{i j} H_{i j} \\
& N_{34}^{ \pm}=N_{s}-\frac{i}{\sqrt{2}} \epsilon_{1} \cdot \epsilon_{2} \epsilon_{3} \cdot \epsilon_{4}\left(\omega^{2}+k_{s}^{2}\right) \pm \frac{1}{\sqrt{2}} \tilde{V}_{34}^{i j} H_{i j}
\end{aligned}
$$

Corrections

- The double copy ansatz captures most terms in the 4-graviton wavefunction
- But it has spurious poles, so we add a term to cancel the poles and another to restore the MLT:

$$
\begin{gathered}
\psi_{\gamma}^{(s)}=\psi_{\gamma, \mathrm{DC}}^{(s)}+\left(\epsilon_{1} \cdot \epsilon_{2}\right)^{2}\left(\epsilon_{3} \cdot \epsilon_{4}\right)^{2}\left(\psi_{\mathrm{sp}}^{(s)}+\psi_{\mathrm{MLT}}^{(s)}\right) \\
\psi_{\mathrm{Sp}}^{(s)}=-\frac{1}{2}\left(\frac{2 k_{1} k_{2} k_{3} k_{4}}{\left(k_{12}+k_{34}\right)^{2}}\left(\frac{\alpha^{2}}{k_{34}}+\frac{\beta^{2}}{k_{12}}\right)+\frac{\alpha^{2} k_{3} k_{4}}{k_{34}}+\frac{\beta^{2} k_{1} k_{2}}{k_{12}}\right) \\
\psi_{\mathrm{MLT}}^{(s)}=\frac{5 k_{1} k_{2} k_{3} k_{4}}{E}+\frac{E}{2}\left(k_{12} k_{34}-4 k_{1} k_{2}-4 k_{3} k_{4}\right)-\frac{1}{E}\left(k_{1} k_{2}-k_{3} k_{4}\right)\left(\alpha^{2}-\beta^{2}\right)-3\left(\alpha^{2} k_{12}+\beta^{2} k_{34}\right)
\end{gathered}
$$

where $k_{a b}=k_{a}+k_{b}, \quad \alpha=k_{1}-k_{2}, \quad \beta=k_{3}-k_{4}$

Conclusions I

- SDG in AdS_{4} can be described by a simple scalar theory with a deformed Poisson bracket
- Can be derived from asymmetric double copy combining the flat space kinematic algebra with a new deformed kinematic algebra
- Encodes two $\mathrm{w}_{1+\infty}$ algebras, one of which is deformed.
- Implies new connection between AdS/CFT and flat space holography!

Conclusions II

- Combining double copy with bootstrap gives a compact new formula for tree-level wavefunction of four gravitons in dS_{4}
- The double copy ansatz can be written in terms of asymmetric product of deformed numerators
- We do not yet have a systematic understanding of double copy in (A) dS_{4} but it appears to be useful

Future

- Compute boundary correlators of SDYM and SDG in AdS $_{4}$
- Investigate how they encode the double copy and $\mathrm{w}_{1+\infty}$
- Derive the double copy in AdS_{4} by expanding around self-dual sector
- Translate double copy to Mellin space or differential notation
- 5-point graviton wavefunction, loops
- Susy in AdS_{4} : COT and MLT in supermomentum space?
- Double copy for gravity coupled to massive scalars, boost breaking?

