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String theory



String theory in any background gives

1. The spectrum of states

– contains some massless states and infinite tower of massive
states

2. A formula for the scattering amplitudes involving these states



The original formulation of string theory was perturbative.

The amplitude for any scattering process can be expressed as

∞∑
n=0

an g2n+α
s

gs: string coupling

α: some fixed number for a given scattering process

an: coefficients that could depend on the quantum numbers of
external states

– can be computed in terms of integrals over the moduli spaces
of Riemann surfaces



As in quantum field theories, we expect that string amplitudes
will be additional terms that are not captured by the perturbation
expansion

– need a non-perturbative formulation

For special backgrounds we have some understanding of the
non-perturbative corrections using various dualities

– Matrix model

– S-duality

– AdS/CFT



However we do not yet have a complete non-perturbative
formulation of string theory in a general background.

Nevertheless there is one class of non-perturbative corrections
that can be studied systematically using (almost) the usual
formulation of string theory

– D-instanton corrections

– give additional contribution to an amplitude of the form

e−C/gs

∞∑
n=0

bn gn+β
s

C, β: some constants

bn’s depend on the quantum numbers of external states

– can be computed as integrals over the moduli space of
Riemann surfaces with boundaries



However the integrals that contribute to bn often diverge

Examples of some integrals we shall encounter:∫ ∞
0

dt
2t
(
et − 1

)
1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y)

∫ 1

0
dv
∫ 1/4

0
dx
{

v−2 − v−1

sin2(2πx)
+ 2ω2 v−1

}
The goal of these lectures will be to understand the physical
origin of these divergences and extract unambiguous, finite
numbers out of them.



∫ ∞
0

dt
2t
(
et − 1

)
⇒ i

4π2 2πδ(E)

E: total energy of all the external states

1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y) ⇒ −1

2

∫ 1

0
dv
∫ 1/4

0
dx
{

v−2 − v−1

sin2(2πx)
+ 2ω2 v−1

}
⇒ −1

2
ω2 ln 4



As a test of this procedure, we shall verify that when the answer
is known from a dual description e.g. matrix model or S-duality,
the procedure we shall describe reproduces them correctly.



Given that the string perturbation expansion is expected to be
an asymptotic series, does it make sense to compute
non-perturbative contribution?

Answer 1:

In many cases the perturbative contribution to specific
quantities either vanishes or terminates after a finite order

a) Terms protected by supersymmetry, e.g. R4 terms in type IIB
in D=10, moduli space metric in N=2 supersymmetric theories in
D=4, superpotential in N=1 supersymmetric theory in D=4 etc

b) Unitarity violation in c=1 bosonic string theory

c) Barrier penetration in ĉ = 1 type 0B string theory



Answer 2:

Instantons describe non-trivial saddle points of string theory

Instanton contribution to amplitudes represent the result of the
path integral along the steepest descent contour (Lefschetz
thimble) of this saddle point

– can be studied independently of the perturbative contribution

– can be used to test dualities between a pair of theories both of
which are weakly coupled, e.g. in c < 1 string theories



D-instantons



D-instantons are D-branes with Dirichlet boundary condition
along all non-compact directions, including Euclidean time

– describe finite action (C/gs) classical solutions in string theory

– analogous to instantons in quantum field theory

– give non-perturbative corrections to string amplitudes

e−C/gs × power series in gs

World-sheet theory of closed and open strings provide (formal)
expressions for the D-instanton contribution to the ampltudes

Integrals over moduli spaces of Riemann surfaces with
boundaries generate the series expansion in gs multiplying
e−C/gs



In these lectures we shall focus on single D-instanton
amplitudes for simplicity.

n D-instanton contribution ∝ e−n C/gs

– more suppressed than single D-instanton contribution.



Systematics of

D-instanton induced

amplitudes



In the presence of D-instantons the spectrum has both closed
strings and open strings with ends on the instanton.

However the open strings describe the modes of the instanton
and only exist for limited time

– they are not asymptotic states

The external states in a scattering amplitude will always be
closed strings

(or open strings on ordinary time filling D-branes if present)



Individual world-sheets with boundaries on the D-instanton do
not conserve energy / momentum

– disconnected world-sheets contribute even for generic values
of external energy / momentum

For getting leading contribution to the D-instanton amplitude, we

– maximize the number of disks since each disk gives 1/gs

– can use as many annuli as we want since annuli ∼ (gs)0

mexp
[ ]

exp[−C/gs] × × × ×· · ·

×: closed string vertex operator



At the next order there are more possibilities

mexp
[ ]

exp[−C/gs] × × ×× · · ·

mexp
[ ]

exp[−C/gs] × × × ×· · ·e
etc.

This way we can write down the expression for D-instanton
induced amplitude to any order in the string coupling gs

However, the moduli space integrals diverge from regions of the
moduli space where the Riemann surface degenerates
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We have seen that all D-instanton amplitudes have overall
normalization factor given by exponential of the annulus
amplitude.

Today we shall discuss computation of the annulus amplitude.

We shall pick a specific example but the same procedure can be
applied to all cases.



Example: 2D bosonic string theory

World-sheet theory has

1. A scalar X describing time direction

2. A Liouville field χL with central charge 25

– describes space direction with a potential

3. b,c ghost system with central charge −26

Ghost number assignment: c: 1, b: −1, matter: 0

Closed string spectrum has a single massless scalar field living
on a half line along χL

This theory has ‘ZZ instanton’ with Dirichlet boundary condition
on X and χL and action 1/gs



For D-instantons in 2D bosonic string theory:

Annulus partition function =

∫ ∞
0

dt
2t
(
et − 1

)
For D-instantons in type IIB string theory in ten dimensions

Annulus partition function =

∫ ∞
0

dt
2t

(8− 8)

8 from NS sector, −8 from R sector

Naively the answer vanishes

However this gives results for instanton correction that are
inconsistent with the prediction of S-duality



In order to make sense of these divergences and extract a finite
result we need ‘string field theory’

For now it is enough to know that

1. String field theory is a regular quantum field theory with
infinite number of fields, one for each mode of the string

2. It is designed so that the perturbative amplitudes reproduce
the world-sheet result (formally).

3. String field theory describing the dynamics of open strings on
D-instanton is a 0-dimensional field theory since open strings do
not carry continuous momentum

Path integral⇒ ordinary integrals



mexp
[ ]

= exp
[ ∫∞

0
dt
2t Z(t)

]

t ∝ ratio of circumference to the width of the cylinder / annulus

Z(t) = Tr
{

(−1)Fe−t L0b0c0
}

Tr is trace over open string states on the D-instanton

F = ghost number + 1

b0c0 is needed to remove ghost zero modes

Z(t) =
∑

b

e−t hb −
∑

f

e−t hf

hb,hf: L0 eigenvalues of bosonic / fermionic open string states
that are annihilated by b0 (Siegel gauge)

If hb or hf ≤ 0, then the integral diverges from large t region.



Strategy for dealing with large t divergence:

1. Use the identities, valid for hb,hf > 0,

exp
[∫

dt
2t
(
e−thb − e−thf

)]
=

√
hf

hb

h−1/2
b =

∫
dψb√

2π
e−

1
2 hbψ

2
b , ψb : grassmann even

hf =

∫
duf dvf e−hfufvf , uf,vf : grassmann odd

2. Interpret the modes ψb, uf, vf as open string fields (D=0) and
the exponent as open string field theory action in Siegel gauge

3. Modes with hb < 0 are tachyonic modes and integration over
them can be carried out along the steepest descent contour

4. Modes with hb = 0 and hf = 0 represent respectively the
bosonic and fermionic zero modes

– need to be treated carefully.



Origin of zero modes

1. Bosonic zero modes ψ0
b can arise from the freedom of

translating the instanton along flat directions e.g. Euclidean time

Remedy: Change variables from ψ0
b to D-instanton position y.

If ψ0
b = K1 y then dψ0

b = K1 dy

Integration over y has to be done at the end and produces a
factor of

∫
dyeiEy = 2πδ(E), with E being the total energy of

external states

In superstring theory similar treatment is needed for the fermion
zero modes associated with broken supersymmetry.



For 2D bosonic string theory

Z(t) =
(
et − 1

)
et ⇒ a mode with hb = −1 ⇒ produces

√
1/hb = i

The bosonic translation zero mode should give +1

Why do we have −1?

2. We have fermion zero modes coming from ghost sector

c1c−1|0〉, |0〉

They are results of wrongly fixing the U(1) ‘gauge symmetry’ on
the instanton



Consider the gauge invariant open string field theory on a
Dp-brane

– has a U(1) gauge field.

Action: ∫
dp+1x

[
1
4

FµνFµν +

(
1√
2
∂µAµ − φ

)2
]

φ: mode associated with the state c0eik.X(0)|0〉

– not present in the Siegel gauge but is present in the gauge
invariant theory

Gauge transformation:

δAµ =
√

2 ∂µθ(x), δφ = �θ(x)



S =

∫
dp+1x

[
1
4

FµνFµν +

(
1√
2
∂µAµ − φ

)2
]

δAµ =
√

2 ∂µθ(x), δφ = �θ(x)

Siegel gauge φ = 0 leads to gauge fixed action including ghosts:∫
dp+1x

[
−1

2
Aµ�Aµ − u�v

]
, u,v : ghosts

On D-instanton, there is no Aµ and all fields are x independent

⇒ u�v = 0

⇒ leads to ghost zero modes

– arise since we are attempting to gauge fix a rigid symmetry
with parameter θ under which δφ = 0



Remedy: Undo the gauge fixing by using a gauge invariant form
of the path integral

1. Integrate over φ and drop the integration over the ghosts

⇒
∫

dφe−φ
2

=
√
π

2. Divide by the volume of the gauge group

⇒
∫

dθ

– can be found by carefully comparing the string field theory
gauge transformation laws with ψ → eiαψ where α has period 2π.

ψ: any state of the open string with one end on the instanton

If θ = K2 α then
∫

dθ = K2 2π



Exponential of the annulus diagram is:

exp
[∫ ∞

0

dt
2t

Z(t)
]

= exp
[∫ ∞

0

dt
2t

(et − 1)

]
et is from a tachyon with hb = −1

−1 is the result of

1. A bosonic zero mode associated with translation along X

2. Two fermionic zero modes from the ghost

Final result for the annulus diagram:

i
√
π

1√
2π

K1

2πK2
2πδ(E)

We shall find K1,K2 but for this we need more details of open
string field theory.
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Open (bosonic) string field theory

H: Full vector space of open string states in matter + ghost
sector

An off-shell ‘classical’ open string field |ψ〉 is an arbitrary
element of H of ghost number 1.

Let |φ(n)
r 〉 be a set of basis states in H of ghost number n.

Then |ψ〉 =
∑

r ψr|φ(1)
r 〉

ψr are the dynamical variables over which we do (path)
integration.



Action:
S =

1
2
〈ψ|QB|ψ〉+ interaction terms

QB =

∮
0

dz [c(z) Tm(z) + b(z)c(z)∂c(z)]

Tm(z): matter stress tensor

Q2
B = 0

The action S is invariant under gauge transformation:

δ|ψ〉 = QB|λ〉+ · · ·

|λ〉: arbitrary state in H of ghost number 0.

If we expand |λ〉 as
∑

r λr|φ(0)
r 〉, then λr are the ‘gauge

transformation’ parameters



Siegel gauge: b0|ψ〉 = 0.

S =
1
2
〈ψ|c0L0|ψ〉+ · · ·

The gauge fixing leads to Faddeev-Popov ghosts

Result: The full action including the ghosts has the form

S =
1
2
〈ψ̃|c0L0|ψ̃〉+ · · ·

with |ψ̃〉 having arbitrary ghost number subject to b0|ψ̃〉 = 0

Components of |ψ̃〉 with ghost number other than 1 are the
Faddeev-Popov ghosts

Propagator ∝ (L0)−1



|ϕ(n)
r 〉: A basis of states of ghost number n, satisfying b0|ϕ(n)

r 〉 = 0

In order that the gauge fixed action 1
2 〈ψ̃|c0L0|ψ̃〉 has the form

−1
2

hbψ
2
b + hfufvf

we need to normalize the basis states as

〈ϕ(1)
r |c0|ϕ(1)

s 〉 = δrs, 〈ϕ(2)
r |c0|ϕ(0)

s 〉 = δrs

etc.

Also the basis states for out of Siegel gauge states for classical
string field must be chosen as c0|ϕ(0)

r 〉 so that gauge
transformation produces an L0

If |ψ〉 =
∑

r χr|ϕ(1)
r 〉+

∑
r φrc0|ϕ(0)

r 〉 and |λ〉 =
∑

r λr|ϕ(0)
r 〉 then

δ|ψ〉 = QB|λ〉 ⇒ δφr = hrλr

hr: L0 eigenvalue of |ϕr〉



Classical string field:

|ψ〉 = χc1|0〉+ ψ0
b c1α−1|0〉+ iφc0|0〉+ · · ·

Gauge transformation parameters:

|λ〉 = i θ|0〉+ · · ·

Siegel gauge field:

|ψ̃〉 = χc1|0〉+ ψ0
b c1α−1|0〉+ u|0〉+ v c1c−1|0〉+ · · ·

χ: tachyon corresponding to the h = −1 state

α−1: oscillator of X satisfying [α1, α−1] = 1

Factors of i ensure that χ and θ are real

If |0〉 had carried L0 eigenvalue h, e.g. by carrying momentum k,
then gauge transformation law would give δφ = hλ and the
Siegel gauge φ = 0 would give a Faddeev-Popov determinant h

– would be reproduced by the ghost action huv



For h=0 this procedure breaks down.

Go back to the original gauge invariant formulation:∫
dχ√
2π

∫
dψ0

b√
2π

∫
dφe−S/

∫
dθ

S = −1
2
χ2 + φ2

Note: Comparison with the world-sheet result fixes the
normalization of the path integral measure over the open string
fields.

We could have replaced dφ by dφ/
√

2π but then dθ will also be
replaced by dθ/

√
2π so that the Faddeev-Popov determinant

remains L0.



Relation between ψ0
b and y:

1. The dependence of an amplitude on the D-instanton position
y must be of the form

e−iω y

where ω is the total energy carried by all the closed string states

y insertion in an amplitude should product a −iω factor

Compare this with the result of the ψ0
b insertion



State multiplying ψ0
b in string field expansion

c1α−1|0〉 = c(0)i
√

2∂X(0)|0〉

X is normalized so that

∂X(z)∂X(w) = − 1
2(z−w)2 + non-singular

⇒ vertex operator for ψ0
b:

unintegrated : c(z)i
√

2∂X(z), integrated : i
√

2∂X(z)



The disk amplitude with one insertion of ψ0
b and n closed string

vertex operators V1, · · ·Vn of energy ω1, · · ·ωn is

A ∝ go

〈∫
dz i
√

2∂X(z)
n∏

k=1

Vk(zk)

〉

go = (gs/2π2)1/2: open string coupling constant

Using OPE

∂X(z)Vk(zk) = − iωk

2(z− zk)
Vk(zk) + non-singular

we get

A = iπ
√

2 go ω

〈
n∏

k=1

Vk(zk)

〉
, ω ≡

∑
k

ωk

⇒ ψ0
b insertion in an amplitude produces a factor of iπ

√
2 go ω

Since y insertion produces a factor of iω, we have

ψb = y/(π
√

2 go)



Relation between θ and α:

α: rigid gauge transformation parameter

An open string stretched between the original D-instanton and a
second spectator D-instanton picks up a phase eiα.

This gives infinitesimal transformation law:

δξ = iα ξ

ξ: Any state of the open string stretched between the pair of
D-instantons

We can compare this with the known gauge transformation law
of ξ in open string field theory:

δξ = go K θ ξ

K: three point function of normalized vertex operators of θ, ξ, ξc



In the expansion of the string field, θ multiplies i |0〉

⇒ θ vertex operator is i × identity

⇒ three point function of θ, ξ, ξc reduces to i × two point function
of ξ, ξc

i as long as ξ, ξc are normalized

Compare δξ = i go θξ with δξ = iαξ

This gives θ = α/go and therefore∫
dθ =

∫
dα/go = 2π/go



Summary of string field theory results

In the path integral representation the tachyon of hb = −1
contributes

√
1/hb = i

Contribution from translational zero mode:∫
dψ0

b√
2π

=
1√
2π

∫
dy

π go
√

2

y: D-instanton location along time direction, couples via eiyEtotal

∫
dy produces 2πδ (Etotal) at the end

Ghost zero mode integral is replaced by∫
dφe−φ

2
/∫

dθ =

√
π

2π/go

Net normalization i/(4π2) agrees with a dual matrix model result.



When the result is known from a dual description, this procedure
produces the correct result in all cases that have been studied.

1. 2D bosonic string theory

2. c<1 bosonic string theory

3. Type IIB in D=10

4. Type IIA / IIB on CY3

5. ĉ = 1 type 0B string theory

6. IIA/IIB on CY3 orientifolds

7. Sine-Liouville deformation of c=1 bosonic string theory



More on string field theory (SFT)

Perturbative amplitudes in string field theory are given by sum
of Feynman diagrams

Open string propagator ∝ (L0)−1

SFT is designed so that formally the sum of Feynman diagrams
reproduce the world-sheet expression after using

(L0)−1 =

∫ ∞
0

dt e−L0t, (L0 + L̄0)−1 =

∫ ∞
0

dt e−(L0+L̄0)t

t: Schwinger parameter

t’s become the moduli of Riemann surfaces after change of
variables



SFT ⇒ (L0)−1 =

∫ ∞
0

dt e−L0t ⇐ world-sheet

1. This is an identity for L0 > 0

2. For L0 < 0 the rhs diverges from t→∞ end but the lhs is finite
and we can use lhs as the correct expression

3. For L0 = 0 both sides diverge

However, on the lhs we sit on the pole of a propagator and
insights from QFT can be used to make sense of this.

This is the essence of why string field theory is useful for
dealing with divergences in the integrals over the moduli spaces
of Riemann surfaces
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In the case under study we have both open and closed string
fields.

The external states in a Feynman diagram are closed strings

The internal propagators are of closed and open strings.

Closed string propagator ∝ (L0 + L̄0)−1 =
∫∞

0 dt exp
[
−t(L0 + L̄0)

]
L0 + L̄0 eigenvalues ∝ k2 + m2, m: mass of the string mode

Since closed strings carry momentum k, it is possible to make
the L0 + L̄0 eigenvalue k2 + m2 positive by analytic continuation
in k.

– we can integrate out the closed strings and consider an
effective string field theory in which the internal states are only
open strings.



At the next order we need to compute

mexp
[ ]

exp[−C/gs] × × ×× · · ·

mexp
[ ]

exp[−C/gs] × × × ×· · ·e
etc.

Define:

gs f(ω1, ω2): Ratio of disk two point function to product of two
disk one point functions

gs g(ω): Ratio of annulus one point function to disk one point
function

gs C: Partition function for disk with two holes and torus with
one hole.



Order gs contribution to the n-point amplitude:

gs × leading order contribution×

∑
j<k

f(ωj, ωk) +
∑

j

g(ωj) + C


f, g and C have divergences.

f = ffimite + fdiv, g = gfinite + gdiv, C = Cfinite + Cdiv

fdiv(ω1, ω2) =
1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y) ≡ Af + Bf ω1ω2

gdiv(ω) =

∫ 1

0
dv
∫ 1/4

0
dx
{

v−2 − v−1

sin2(2πx)
+ 2ω2 v−1

}
≡ Ag + Bgω

2

n-point function at order gs:

= gs × leading order contribution

×

n(n− 1)

2
Af + n Ag + C +

{
Bg −

Bf

2

}∑
j

ω2
j + finite


We again need to make use of string field theory



Strategy:

1. Express the amplitudes as sum over SFT Feynman diagrams

– automatically replaces the tachyon contribution by 1/h where
h is the L0 eigenvalue

2. Remove the zero mode contribution to the propagators since
they are to be integrated at the end or removed altogether.

3. Add the propagator of the field φ that was not present in the
world-sheet formulation but should be present.

4. Account for corrections to the jacobian factors for change of
variable from ψ0

b to y and θ to α



We shall first describe the analysis of fdiv(ω1, ω2).

– related to the divergent part of disk / UHP two point function:

×
1
×
2

fdiv(ω1, ω2) =
1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y)

On the UHP, closed string vertex operators are located at i and iy

×
×

i

iy



fdiv(ω1, ω2) =
1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y)

Feynman diagrams:

• • •
(a) (b)

Thick lines: Closed strings Thin lines: open strings

The open-closed interaction vertices are UHP two point
functions



To compute these amplitudes we need the two point
open-closed interaction term for off-shell external states.

Need to choose a ‘local coordinate’ wi at the location of each
vertex operator.

If the UHP coordinate z is related to w as z = f(w) then we insert
the vertex operator f ◦ V(w) – conformal transform of V by f

e.g. for dimension h primeries, f ◦ V(w) = f′(w)hV(f(w))

Since only the open strings are off-shell, we need a choice of
local coordinates at the open string puncture.



C-O interaction vertex

Put C at i, O at 0

Choose local coordinate at O to be

w = λ z ⇒ f(w) = w/λ ⇒ f ◦ V(w) = λ−hVV(z)

λ: an arbitrary constant, taken to be large for convenience

⇒ the two point function of a closed string state C and open
string state O is

〈VC(i)VO(0)〉UHP λ
−hO



• • •
(a) (b)

We need to find the relation between y and the Schwinger
parameter q = e−t for diagram (a).

Diagram (a) corresponds to two UHP’s sewed via

ww′ = −q ⇒ λ2zz′ = −q, q ≡ e−t, t : Schwinger parameter

On the sewed surface the punctures are located at

z = i, z′ = i ⇒ z = i q/λ2 ≡ i y

This gives y = q/λ2.



y = q/λ2

0 ≤ q ≤ 1 ⇒ 0 ≤ y ≤ 1/λ2

The region 1/λ2 < y ≤ 1 comes from diagram (b) and gives finite
result.

Analyze fdiv using this:

1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y) =

1
2

{∫ 1/λ2

0
+

∫ 1

1/λ2

}
dy y−2(1 + 2ω1ω2y)

=
1
2

∫ 1

0
dq{λ2q−2 + 2ω1ω2q−1}+

1
2

∫ 1

1/λ2
dyy−2(1 + 2ω1ω2y)

⇒ −1
2
λ2 +

1
2

∫ 1

1/λ2
dyy−2(1 + 2ω1ω2y) = −1

2
+ 2ω1ω2 lnλ

−ω1, ω2 are energies of incoming and outgoing C.



For the choice of local coordinates we have made, the C-φ vertex
vanishes.

⇒ no need to include φ exchange contribution.

Final result:

fdiv(ω1, ω2) = −1
2

+ 2ω1ω2lnλ ≡ Af + Bfω1ω2

Af = −1
2
, Bf = lnλ2

Note: If we had chosen a different local coordinate for the C-O
vertex, the result will be different

– compensated by φ exchange diagram for Af.

For Bf some part may also cancel against contribution to 2 Bg.



We now turn to the divergent part of the annulus one point
function:

– four types of contributions

1. gfeynman from the Feynman diagrams with zero mode
contribution to the propagators removed

2. gφ with one or more φ propagators



3. Correction to the relation between ψ0
b and y

ψ0
b = K1y

[
1 + gs

∫
dωC(ω) F(ω)

]
F: computable function

Then the path integral gets an additional Jacobian factor while
changing variables from ψ0

b to y[
1 + gs

∫
dωC(ω) F(ω)

]
' exp

[
gs

∫
dωC(ω) F(ω)

]
⇒ new contribution gjac(ω)

4. There is a similar correction to the θ − α relation

θ = K2 α

[
1 + gs

∫
dωC(ω) G(ω)

]
⇒ ggauge(ω)



Results:

gfeynman(ω) = −2
π

∫ 1

(2λ̃)−1
dβ (1 + β2)−1 λ̃2 f(β)2 +

λ̃

4π
+

1
2
ω2 ln

α2λ̃2

4

gφ(ω) =
2
π

∫ 1

(2λ̃)−1
dβ (1 + β2)−1 λ̃2 f(β)2 +

λ̃

4π

gjac(ω) = − λ̃
π
− ω2ln

λ̃2

λ2

ggauge(ω) =
λ̃

2π
Total

gdiv(ω) =
1
2
ω2 ln

λ2

4
≡ Ag + Bgω

2

⇒ Ag = 0, Bg =
1
2

ln
λ2

4

Recall Bf = lnλ2

⇒ Bf − 2Bg = ln 4 is independent of λ



Unitarity

Based on our understanding of D-instanton amplitudes, one can
also analyze unitarity of these amplitudes

Result: The only source of unitarity violation is in the imaginary
part of the exponential of the annulus partition function

– related to the tachyonic modes on the instanton



Conclusion



World-sheet theory, aided by string field theory, provides a fully
systematic procedure for computing D-instanton contribution to
an amplitude

Besides being of practical use, this can be used to gain deeper
understanding of string theory, e.g,

– testing duality conjectures

– role of resurgence

etc.


