D-instanton Amplitudes in String Theory

Ashoke Sen
ICTS, Bengaluru, India

Trieste, April 2023

Lecture 1

References

B. Balthazar, V. A. Rodriguez and X. Yin, "ZZ Instantons and the Non-Perturbative Dual of $c=1$ String Theory," [arXiv:1907.07688 [hep-th]].
A. Sen, "Fixing an Ambiguity in Two Dimensional String Theory Using String Field Theory," JHEP 03 (2020), 005 [arXiv:1908.02782 [hep-th]].
B. Balthazar, V. A. Rodriguez and X. Yin, "Multi-Instanton Calculus in $c=1$ String Theory," [arXiv:1912.07170 [hep-th]].
A. Sen, "D-instanton Perturbation Theory," JHEP 08 (2020), 075 [arXiv:2002.04043 [hep-th]].
A. Sen, "Divergent \Longrightarrow complex amplitudes in two dimensional string theory," JHEP 02 (2021), 086 doi:10.1007/JHEP02(2021)086 [arXiv:2003.12076 [hep-th]].
A. Sen, "Cutkosky rules and unitarity (violation) in D-instanton amplitudes," JHEP 07 (2021), 205 doi:10.1007/JHEP07(2021)205 [arXiv:2012.00041 [hep-th]].
A. Sen, "D-instantons, string field theory and two dimensional string theory," JHEP 11 (2021), 061 [arXiv:2012.11624 [hep-th]].
A. Sen, "Normalization of D-instanton amplitudes," JHEP 11 (2021), 077 [arXiv:2101.08566 [hep-th]].
A. Sen, "Normalization of type IIB D-instanton amplitudes," JHEP 12 (2021), 146 [arXiv:2104.11109 [hep-th]].
A. Sen, "Muti-instanton amplitudes in type IIB string theory," JHEP 12 (2021), 065 [arXiv:2104.15110 [hep-th]].
S. Alexandrov, A. Sen and B. Stefański, "D-instantons in Type IIA string theory on Calabi-Yau threefolds," JHEP 11 (2021), 018 [arXiv:2108.04265 [hep-th]].
S. Alexandrov, A. Sen and B. Stefański, "Euclidean D-branes in type IIB string theory on Calabi-Yau threefolds," JHEP 12 (2021), 044 [arXiv:2110.06949 [hep-th]].
D. S. Eniceicu, R. Mahajan, C. Murdia and A. Sen, "Normalization of ZZ instanton amplitudes in minimal string theory," JHEP 07 (2022), 139 [arXiv:2202.03448 [hep-th]].
B. Balthazar, V. A. Rodriguez and X. Yin, "The S-Matrix of 2D Type 0B String Theory Part 2:

D-Instanton Effects," [arXiv:2204.01747 [hep-th]].
S. Alexandrov, A. H. Firat, M. Kim, A. Sen and B. Stefański, "D-instanton induced superpotential," JHEP 07 (2022), 090 [arXiv:2204.02981 [hep-th]].
N. B. Agmon, B. Balthazar, M. Cho, V. A. Rodriguez and X. Yin, "D-instanton Effects in Type IIB String Theory," [arXiv:2205.00609 [hep-th]].
D. S. Eniceicu, R. Mahajan, C. Murdia and A. Sen, "Multi-instantons in minimal string theory and in matrix integrals," JHEP 10 (2022), 065 [arXiv:2206.13531 [hep-th]].
J. Chakravarty and A. Sen, "Normalization of D instanton amplitudes in two dimensional type OB string theory," JHEP 02 (2023), 170 [arXiv:2207.07138 [hep-th]].
A. Sen, "Infrared finite semi-inclusive cross section in two dimensional type OB string theory," [arXiv:2208.07385 [hep-th]].
D. S. Eniceicu, R. Mahajan, P. Maity, C. Murdia and A. Sen, "The ZZ annulus one-point function in non-critical string theory: A string field theory analysis," JHEP 12 (2022), 151 [arXiv:2210.11473 [hep-th]].

String theory

String theory in any background gives

1. The spectrum of states

- contains some massless states and infinite tower of massive states

2. A formula for the scattering amplitudes involving these states

The original formulation of string theory was perturbative.
The amplitude for any scattering process can be expressed as

$$
\sum_{n=0}^{\infty} \mathbf{a}_{\mathbf{n}} \mathbf{g}_{\mathbf{s}}^{2 n+\alpha}
$$

g_{s} : string coupling
α : some fixed number for a given scattering process
a_{n} : coefficients that could depend on the quantum numbers of external states

- can be computed in terms of integrals over the moduli spaces of Riemann surfaces

As in quantum field theories, we expect that string amplitudes will be additional terms that are not captured by the perturbation expansion

- need a non-perturbative formulation

For special backgrounds we have some understanding of the non-perturbative corrections using various dualities

- Matrix model
- S-duality
- AdS/CFT

However we do not yet have a complete non-perturbative formulation of string theory in a general background.

Nevertheless there is one class of non-perturbative corrections that can be studied systematically using (almost) the usual formulation of string theory

- D-instanton corrections
- give additional contribution to an amplitude of the form

$$
\mathbf{e}^{-\mathbf{c} / \mathbf{g}_{\mathbf{s}}} \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \mathbf{b}_{\mathbf{n}} \mathbf{g}_{\mathbf{s}}^{\mathbf{n}+\beta}
$$

C, β : some constants
\mathbf{b}_{n} 's depend on the quantum numbers of external states

- can be computed as integrals over the moduli space of

Riemann surfaces with boundaries

However the integrals that contribute to b_{n} often diverge

Examples of some integrals we shall encounter:

$$
\begin{gathered}
\int_{0}^{\infty} \frac{d t}{2 t}\left(e^{t}-1\right) \\
\frac{1}{2} \int_{0}^{1} d y y^{-2}\left(1+2 \omega_{1} \omega_{2} y\right) \\
\int_{0}^{1} d v \int_{0}^{1 / 4} d x\left\{\frac{v^{-2}-v^{-1}}{\sin ^{2}(2 \pi x)}+2 \omega^{2} v^{-1}\right\}
\end{gathered}
$$

The goal of these lectures will be to understand the physical origin of these divergences and extract unambiguous, finite numbers out of them.

$$
\int_{0}^{\infty} \frac{\mathbf{d t}}{2 \mathbf{t}}\left(\mathbf{e}^{\mathbf{t}}-\mathbf{1}\right) \quad \Rightarrow \quad \frac{\mathbf{i}}{4 \pi^{2}} 2 \pi \delta(\mathbf{E})
$$

E: total energy of all the external states

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{1} d y y^{-2}\left(1+2 \omega_{1} \omega_{2} y\right) \quad \Rightarrow \quad-\frac{1}{2} \\
& \int_{0}^{1} d v \int_{0}^{1 / 4} d x\left\{\frac{v^{-2}-v^{-1}}{\sin ^{2}(2 \pi x)}+2 \omega^{2} v^{-1}\right\} \quad \Rightarrow \quad-\frac{1}{2} \omega^{2} \ln 4
\end{aligned}
$$

As a test of this procedure, we shall verify that when the answer is known from a dual description e.g. matrix model or S-duality, the procedure we shall describe reproduces them correctly.

Given that the string perturbation expansion is expected to be an asymptotic series, does it make sense to compute non-perturbative contribution?

Answer 1:

In many cases the perturbative contribution to specific quantities either vanishes or terminates after a finite order
a) Terms protected by supersymmetry, e.g. \mathbf{R}^{4} terms in type IIB in $\mathrm{D}=10$, moduli space metric in $\mathrm{N}=2$ supersymmetric theories in $D=4$, superpotential in $N=1$ supersymmetric theory in $D=4$ etc
b) Unitarity violation in $\mathrm{c}=1$ bosonic string theory
c) Barrier penetration in $\hat{\mathbf{c}}=\mathbf{1}$ type 0B string theory

Answer 2:

Instantons describe non-trivial saddle points of string theory

Instanton contribution to amplitudes represent the result of the path integral along the steepest descent contour (Lefschetz thimble) of this saddle point

- can be studied independently of the perturbative contribution
- can be used to test dualities between a pair of theories both of which are weakly coupled, e.g. in c <1 string theories

D-instantons

D-instantons are D-branes with Dirichlet boundary condition along all non-compact directions, including Euclidean time

- describe finite action ($\mathrm{C} / \mathrm{g}_{\mathrm{s}}$) classical solutions in string theory
- analogous to instantons in quantum field theory
- give non-perturbative corrections to string amplitudes

$$
\mathbf{e}^{-\mathbf{C} / \mathrm{g}_{s}} \times \text { power series in } \mathrm{g}_{\mathrm{s}}
$$

World-sheet theory of closed and open strings provide (formal) expressions for the D-instanton contribution to the ampltudes

Integrals over moduli spaces of Riemann surfaces with boundaries generate the series expansion in g_{s} multiplying $\mathrm{e}^{-\mathrm{C} / \mathrm{g}_{\mathrm{s}}}$

In these lectures we shall focus on single D-instanton amplitudes for simplicity.
n D-instanton contribution $\propto e^{-n C / g_{s}}$

- more suppressed than single D-instanton contribution.

Systematics of

D-instanton induced

amplitudes

In the presence of D-instantons the spectrum has both closed strings and open strings with ends on the instanton.

However the open strings describe the modes of the instanton and only exist for limited time

- they are not asymptotic states

The external states in a scattering amplitude will always be closed strings
(or open strings on ordinary time filling D-branes if present)

Individual world-sheets with boundaries on the D-instanton do not conserve energy / momentum

- disconnected world-sheets contribute even for generic values of external energy / momentum

For getting leading contribution to the D-instanton amplitude, we

- maximize the number of disks since each disk gives $1 / g_{s}$
- can use as many annuli as we want since annuli $\sim\left(\mathbf{g}_{s}\right)^{0}$

$$
\exp \left[-\mathbf{C} / \mathbf{g}_{\mathrm{s}}\right] \exp [\bigcirc]
$$

x : closed string vertex operator

At the next order there are more possibilities

etc.

This way we can write down the expression for D-instanton induced amplitude to any order in the string coupling g_{s}

However, the moduli space integrals diverge from regions of the moduli space where the Riemann surface degenerates

Lecture 2

We have seen that all D-instanton amplitudes have overall normalization factor given by exponential of the annulus amplitude.

Today we shall discuss computation of the annulus amplitude.

We shall pick a specific example but the same procedure can be applied to all cases.

Example: 2D bosonic string theory

World-sheet theory has

1. A scalar X describing time direction
2. A Liouville field $\chi_{\text {L }}$ with central charge $\mathbf{2 5}$

- describes space direction with a potential

3. b,c ghost system with central charge - 26

Ghost number assignment: c: 1, b: $\mathbf{- 1 ,}$ matter: $\mathbf{0}$

Closed string spectrum has a single massless scalar field living on a half line along $\chi \mathrm{L}$

This theory has ' $Z Z$ instanton' with Dirichlet boundary condition on X and χ_{L} and action $1 / g_{s}$

For D-instantons in 2D bosonic string theory:

$$
\text { Annulus partition function }=\int_{0}^{\infty} \frac{d t}{2 t}\left(e^{t}-1\right)
$$

For D-instantons in type IIB string theory in ten dimensions

$$
\text { Annulus partition function }=\int_{0}^{\infty} \frac{\mathrm{dt}}{2 \mathrm{t}}(8-8)
$$

8 from NS sector, -8 from R sector

Naively the answer vanishes

However this gives results for instanton correction that are inconsistent with the prediction of S-duality

In order to make sense of these divergences and extract a finite result we need 'string field theory'

For now it is enough to know that

1. String field theory is a regular quantum field theory with infinite number of fields, one for each mode of the string
2. It is designed so that the perturbative amplitudes reproduce the world-sheet result (formally).
3. String field theory describing the dynamics of open strings on D-instanton is a 0 -dimensional field theory since open strings do not carry continuous momentum

Path integral \Rightarrow ordinary integrals

$$
\exp [\circlearrowleft]=\exp \left[\int_{0}^{\infty} \frac{d t}{2 t} Z(t)\right]
$$

$t \propto$ ratio of circumference to the width of the cylinder / annulus

$$
\mathbf{Z}(\mathbf{t})=\operatorname{Tr}\left\{(-1)^{F} \mathbf{e}^{-t \mathrm{~L}_{0}} \mathbf{b}_{0} \mathbf{c}_{0}\right\}
$$

Tr is trace over open string states on the D-instanton
$F=$ ghost number +1
$b_{0} c_{0}$ is needed to remove ghost zero modes

$$
Z(t)=\sum_{b} e^{-t h_{b}}-\sum_{f} e^{-t h_{f}}
$$

$h_{b}, h_{f}: L_{0}$ eigenvalues of bosonic / fermionic open string states that are annihilated by b_{0} (Siegel gauge)

If $\mathbf{h}_{\boldsymbol{b}}$ or $\mathbf{h}_{\mathbf{f}} \leq 0$, then the integral diverges from large \mathbf{t} region.

Strategy for dealing with large t divergence:

1. Use the identities, valid for $h_{b}, h_{f}>0$,

$$
\begin{gathered}
\exp \left[\int \frac{\mathbf{d t}}{\mathbf{2 t}}\left(\mathbf{e}^{-\mathbf{t} \mathbf{h}_{\mathbf{b}}}-\mathbf{e}^{-\mathbf{t} \mathbf{h}_{\mathbf{f}}}\right)\right]=\sqrt{\frac{\mathbf{h}_{\mathbf{f}}}{\mathbf{h}_{\mathbf{b}}}} \\
\mathbf{h}_{\mathbf{b}}^{-\mathbf{1} / \mathbf{2}}=\int \frac{\mathbf{d} \psi_{\mathbf{b}}}{\sqrt{\mathbf{2} \pi}} \mathbf{e}^{-\frac{1}{2} \mathbf{h}_{\mathbf{b}} \psi_{\mathbf{b}}^{2}}, \quad \psi_{\mathbf{b}}: \text { grassmann even } \\
\mathbf{h}_{\mathbf{f}}=\int \mathbf{d u}_{\mathbf{f}} \mathbf{d v _ { f }} \mathbf{e}^{-\mathbf{h}_{\mathbf{f}} u_{\mathbf{f}} \mathbf{v}_{\mathrm{f}}}, \quad \mathbf{u}_{\mathbf{f}}, \mathbf{v}_{\mathbf{f}}: \text { grassmann odd }
\end{gathered}
$$

2. Interpret the modes $\psi_{\mathbf{b}}, \mathbf{u}_{\mathbf{f}}, \mathbf{v}_{\mathbf{f}}$ as open string fields ($\mathbf{D}=\mathbf{0}$) and the exponent as open string field theory action in Siegel gauge
3. Modes with $h_{b}<0$ are tachyonic modes and integration over them can be carried out along the steepest descent contour
4. Modes with $h_{b}=0$ and $h_{f}=0$ represent respectively the bosonic and fermionic zero modes

- need to be treated carefully.

Origin of zero modes

1. Bosonic zero modes ψ_{b}^{0} can arise from the freedom of translating the instanton along flat directions e.g. Euclidean time

Remedy: Change variables from $\psi_{\mathrm{b}}^{\mathbf{0}}$ to D -instanton position \mathbf{y}.
If $\psi_{\mathbf{b}}^{\mathbf{0}}=\mathbf{K}_{\mathbf{1}} \mathbf{y}$ then $\mathbf{d} \psi_{\mathbf{b}}^{\mathbf{0}}=\mathbf{K}_{1} \mathbf{d y}$
Integration over y has to be done at the end and produces a factor of $\int \mathrm{dyy}^{\mathrm{iEy}}=2 \pi \delta(\mathrm{E})$, with E being the total energy of external states

In superstring theory similar treatment is needed for the fermion zero modes associated with broken supersymmetry.

For 2D bosonic string theory

$$
\mathbf{Z}(\mathbf{t})=\left(\mathbf{e}^{\mathbf{t}}-\mathbf{1}\right)
$$

$e^{t} \Rightarrow$ a mode with $h_{b}=-1 \Rightarrow$ produces $\sqrt{1 / h_{b}}=\mathbf{i}$
The bosonic translation zero mode should give +1

Why do we have - 1 ?
2. We have fermion zero modes coming from ghost sector

$$
\mathbf{c}_{1} \mathbf{c}_{-\mathbf{1}}|\mathbf{0}\rangle, \quad|\mathbf{0}\rangle
$$

They are results of wrongly fixing the $\mathbf{U}(1)$ 'gauge symmetry' on the instanton

Consider the gauge invariant open string field theory on a Dp-brane

- has a $\mathrm{U}(1)$ gauge field.

Action:

$$
\int \mathbf{d}^{\mathbf{p}+\mathbf{1}} \mathbf{x}\left[\frac{\mathbf{1}}{\mathbf{4}} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}+\left(\frac{\mathbf{1}}{\sqrt{\mathbf{2}}} \partial^{\mu} \mathbf{A}_{\mu}-\phi\right)^{2}\right]
$$

ϕ : mode associated with the state $\mathbf{c}_{0} \mathrm{e}^{\mathrm{ik} \cdot \mathrm{X}}(\mathbf{0})|0\rangle$

- not present in the Siegel gauge but is present in the gauge invariant theory

Gauge transformation:

$$
\delta \mathbf{A}_{\mu}=\sqrt{\mathbf{2}} \partial_{\mu} \theta(\mathbf{x}), \quad \delta \phi=\square \theta(\mathbf{x})
$$

$$
\begin{gathered}
\mathbf{S}=\int \mathbf{d}^{\mathbf{p}+\mathbf{1}} \mathbf{x}\left[\frac{\mathbf{1}}{\mathbf{4}} \mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}+\left(\frac{\mathbf{1}}{\sqrt{\mathbf{2}}} \partial^{\mu} \mathbf{A}_{\mu}-\phi\right)^{\mathbf{2}}\right] \\
\delta \mathbf{A}_{\mu}=\sqrt{\mathbf{2}} \partial_{\mu} \theta(\mathbf{x}), \quad \delta \phi=\square \theta(\mathbf{x})
\end{gathered}
$$

Siegel gauge $\phi=0$ leads to gauge fixed action including ghosts:

$$
\int \mathbf{d}^{\mathbf{p}+\mathbf{1}} \mathbf{x}\left[-\frac{\mathbf{1}}{\mathbf{2}} \mathbf{A}^{\mu} \square \mathbf{A}_{\mu}-\mathbf{u} \square \mathbf{v}\right], \quad \mathbf{u}, \mathbf{v}: \text { ghosts }
$$

On D-instanton, there is no A_{μ} and all fields are \mathbf{x} independent
$\Rightarrow \mathbf{u} \square \mathbf{v}=\mathbf{0}$
\Rightarrow leads to ghost zero modes

- arise since we are attempting to gauge fix a rigid symmetry with parameter θ under which $\delta \phi=\mathbf{0}$

Remedy: Undo the gauge fixing by using a gauge invariant form of the path integral

1. Integrate over ϕ and drop the integration over the ghosts

$$
\Rightarrow \int \mathbf{d} \phi \mathbf{e}^{-\phi^{2}}=\sqrt{\pi}
$$

2. Divide by the volume of the gauge group

$$
\Rightarrow \int \mathbf{d} \theta
$$

- can be found by carefully comparing the string field theory gauge transformation laws with $\psi \rightarrow \mathbf{e}^{\mathbf{i} \alpha} \psi$ where α has period $\mathbf{2} \pi$.
ψ : any state of the open string with one end on the instanton
If $\theta=\mathbf{K}_{\mathbf{2}} \alpha$ then $\int \mathbf{d} \theta=\mathbf{K}_{\mathbf{2}} \mathbf{2} \pi$

Exponential of the annulus diagram is:

$$
\exp \left[\int_{0}^{\infty} \frac{d t}{2 t} Z(t)\right]=\exp \left[\int_{0}^{\infty} \frac{d t}{2 t}\left(e^{t}-1\right)\right]
$$

e^{t} is from a tachyon with $h_{b}=-1$
-1 is the result of

1. A bosonic zero mode associated with translation along X
2. Two fermionic zero modes from the ghost

Final result for the annulus diagram:

$$
\mathbf{i} \sqrt{\pi} \frac{\mathbf{1}}{\sqrt{2 \pi}} \frac{\mathbf{K}_{1}}{\mathbf{2} \pi \mathbf{K}_{2}} \mathbf{2} \pi \delta(\mathbf{E})
$$

We shall find K_{1}, K_{2} but for this we need more details of open string field theory.

Lecture 3

Open (bosonic) string field theory

H: Full vector space of open string states in matter + ghost sector

An off-shell 'classical' open string field $|\psi\rangle$ is an arbitrary element of H of ghost number 1.

Let $\left|\phi_{\mathbf{r}}^{(\mathbf{n})}\right\rangle$ be a set of basis states in \mathbf{H} of ghost number \mathbf{n}.
Then $|\psi\rangle=\sum_{\mathbf{r}} \psi_{\mathbf{r}}\left|\phi_{\mathbf{r}}^{(\mathbf{1})}\right\rangle$
ψ_{r} are the dynamical variables over which we do (path) integration.

Action:

$$
\begin{aligned}
\mathbf{S} & =\frac{\mathbf{1}}{\mathbf{2}}\langle\psi| \mathbf{Q}_{\mathbf{B}}|\psi\rangle+\text { interaction terms } \\
\mathbf{Q}_{\mathbf{B}} & =\oint_{\mathbf{0}} \mathbf{d} \mathbf{z}\left[\mathbf{c}(\mathbf{z}) \mathbf{T}_{\mathbf{m}}(\mathbf{z})+\mathbf{b}(\mathbf{z}) \mathbf{c}(\mathbf{z}) \partial \mathbf{c}(\mathbf{z})\right]
\end{aligned}
$$

$T_{m}(\mathbf{z})$: matter stress tensor
$\mathbf{Q}_{\mathbf{B}}^{2}=\mathbf{0}$
The action S is invariant under gauge transformation:

$$
\delta|\psi\rangle=\mathbf{Q}_{\mathbf{B}}|\lambda\rangle+\cdots
$$

$|\lambda\rangle$: arbitrary state in H of ghost number $\mathbf{0}$.
If we expand $|\lambda\rangle$ as $\sum_{\mathbf{r}} \lambda_{\mathbf{r}}\left|\phi_{\mathbf{r}}^{(\mathbf{0})}\right\rangle$, then $\lambda_{\mathbf{r}}$ are the 'gauge transformation' parameters

Siegel gauge: $\mathbf{b}_{\mathbf{0}}|\psi\rangle=\mathbf{0}$.

$$
\mathbf{S}=\frac{\mathbf{1}}{\mathbf{2}}\langle\psi| \mathbf{c}_{0} \mathbf{L}_{\mathbf{0}}|\psi\rangle+\cdots
$$

The gauge fixing leads to Faddeev-Popov ghosts

Result: The full action including the ghosts has the form

$$
\mathbf{S}=\frac{\mathbf{1}}{\mathbf{2}}\langle\widetilde{\psi}| \mathbf{c}_{0} \mathbf{L}_{\mathbf{0}}|\widetilde{\psi}\rangle+\cdots
$$

with $|\widetilde{\psi}\rangle$ having arbitrary ghost number subject to $\mathbf{b}_{\mathbf{0}}|\widetilde{\psi}\rangle=\mathbf{0}$
Components of $|\widetilde{\psi}\rangle$ with ghost number other than 1 are the Faddeev-Popov ghosts

Propagator $\propto\left(L_{0}\right)^{-1}$
$\left|\varphi_{\mathbf{r}}^{(\mathbf{n})}\right\rangle$: A basis of states of ghost number \mathbf{n}, satisfying $\mathbf{b}_{\mathbf{0}}\left|\varphi_{\mathbf{r}}^{(\mathbf{n})}\right\rangle=\mathbf{0}$
In order that the gauge fixed action $\frac{1}{2}\langle\widetilde{\psi}| \mathbf{c}_{0} \mathbf{L}_{0}|\widetilde{\psi}\rangle$ has the form

$$
-\frac{1}{\mathbf{2}} \mathbf{h}_{\mathbf{b}} \psi_{\mathbf{b}}^{2}+\mathbf{h}_{\mathfrak{f}} \mathbf{u}_{\mathrm{f}} \mathbf{v}_{\mathrm{f}}
$$

we need to normalize the basis states as

$$
\left\langle\varphi_{\mathbf{r}}^{(\mathbf{1})}\right| \mathbf{c}_{\mathbf{0}}\left|\varphi_{\mathbf{s}}^{(1)}\right\rangle=\delta_{\mathbf{r s}}, \quad\left\langle\varphi_{\mathbf{r}}^{(2)}\right| \mathbf{c}_{\mathbf{0}}\left|\varphi_{\mathbf{s}}^{(\mathbf{0})}\right\rangle=\delta_{\mathbf{r s}}
$$

etc.

Also the basis states for out of Siegel gauge states for classical string field must be chosen as $\mathrm{c}_{0}\left|\varphi_{\mathrm{r}}^{(0)}\right\rangle$ so that gauge transformation produces an L_{0}

If $|\psi\rangle=\sum_{\mathbf{r}} \chi_{\mathbf{r}}\left|\varphi_{\mathbf{r}}^{(\mathbf{1})}\right\rangle+\sum_{\mathbf{r}} \phi_{\mathbf{r}} \mathbf{c}_{\mathbf{0}}\left|\varphi_{\mathbf{r}}^{(\mathbf{0})}\right\rangle$ and $|\lambda\rangle=\sum_{\mathbf{r}} \lambda_{\mathbf{r}}\left|\varphi_{\mathbf{r}}^{(\mathbf{0})}\right\rangle$ then

$$
\delta|\psi\rangle=\mathbf{Q}_{\mathbf{B}}|\lambda\rangle \quad \Rightarrow \quad \delta \phi_{\mathbf{r}}=\mathbf{h}_{\mathbf{r}} \lambda_{\mathbf{r}}
$$

$\mathbf{h}_{\mathbf{r}}: \mathrm{L}_{\mathbf{0}}$ eigenvalue of $\left|\varphi_{\mathbf{r}}\right\rangle$

Classical string field:

$$
|\psi\rangle=\chi \mathbf{c}_{\mathbf{1}}|\mathbf{0}\rangle+\psi_{\mathbf{b}}^{\mathbf{0}} \mathbf{c}_{1} \alpha_{-\mathbf{1}}|\mathbf{0}\rangle+\mathbf{i} \phi \mathbf{c}_{\mathbf{0}}|\mathbf{0}\rangle+\cdots
$$

Gauge transformation parameters:

$$
|\lambda\rangle=\mathbf{i} \theta|\mathbf{0}\rangle+\cdots
$$

Siegel gauge field:

$$
|\widetilde{\psi}\rangle=\chi \mathbf{c}_{1}|\mathbf{0}\rangle+\psi_{\mathbf{b}}^{\mathbf{0}} \mathbf{c}_{1} \alpha_{-\mathbf{1}}|\mathbf{0}\rangle+\mathbf{u}|\mathbf{0}\rangle+\mathbf{v} \mathbf{c}_{1} \mathbf{c}_{-\mathbf{1}}|\mathbf{0}\rangle+\cdots
$$

χ : tachyon corresponding to the $h=-1$ state
α_{-1} : oscillator of \mathbf{X} satisfying $\left[\alpha_{1}, \alpha_{-1}\right]=1$

Factors of \mathbf{i} ensure that χ and θ are real

If $|0\rangle$ had carried L_{0} eigenvalue h, e.g. by carrying momentum \mathbf{k}, then gauge transformation law would give $\delta \phi=\mathbf{h} \lambda$ and the Siegel gauge $\phi=0$ would give a Faddeev-Popov determinant \mathbf{h}

- would be reproduced by the ghost action huv

For $h=0$ this procedure breaks down.
Go back to the original gauge invariant formulation:

$$
\begin{gathered}
\int \frac{\mathbf{d} \chi}{\sqrt{\mathbf{2} \pi}} \int \frac{\mathbf{d} \psi_{\mathbf{b}}^{\mathbf{0}}}{\sqrt{\mathbf{2} \pi}} \int \mathbf{d} \phi \mathbf{e}^{-\mathbf{s}} / \int \mathbf{d} \theta \\
\mathbf{S}=-\frac{\mathbf{1}}{\mathbf{2}} \chi^{2}+\phi^{\mathbf{2}}
\end{gathered}
$$

Note: Comparison with the world-sheet result fixes the normalization of the path integral measure over the open string fields.

We could have replaced $\mathbf{d} \phi$ by $\mathbf{d} \phi / \sqrt{2 \pi}$ but then $\mathbf{d} \theta$ will also be replaced by $\mathbf{d} \theta / \sqrt{\mathbf{2} \pi}$ so that the Faddeev-Popov determinant remains L_{0}.

Relation between $\psi_{\mathbf{b}}^{\mathbf{0}}$ and $\mathbf{y}:$

1. The dependence of an amplitude on the D-instanton position y must be of the form

$$
\mathbf{e}^{-i \omega y}
$$

where ω is the total energy carried by all the closed string states
y insertion in an amplitude should product a-i ω factor
Compare this with the result of the ψ_{b}^{0} insertion

State multiplying $\psi_{\mathbf{b}}^{\mathbf{0}}$ in string field expansion

$$
\mathbf{c}_{1} \alpha_{-1}|\mathbf{0}\rangle=\mathbf{c}(\mathbf{0}) \mathbf{i} \sqrt{\mathbf{2}} \partial \mathbf{X}(\mathbf{0})|\mathbf{0}\rangle
$$

X is normalized so that

$$
\partial \mathbf{X}(\mathbf{z}) \partial \mathbf{X}(\mathbf{w})=-\frac{\mathbf{1}}{\mathbf{2}(\mathbf{z}-\mathbf{w})^{2}}+\text { non-singular }
$$

\Rightarrow vertex operator for $\psi_{\mathbf{b}}^{\mathbf{0}}$:
unintegrated: $\mathbf{c}(\mathbf{z}) \mathbf{i} \sqrt{\mathbf{2}} \partial \mathbf{X}(\mathbf{z}), \quad$ integrated : $\mathbf{i} \sqrt{\mathbf{2}} \partial \mathbf{X}(\mathbf{z})$

The disk amplitude with one insertion of $\psi_{\mathbf{b}}^{0}$ and \mathbf{n} closed string vertex operators $\mathbf{V}_{1}, \cdots \mathbf{V}_{\mathbf{n}}$ of energy $\omega_{1}, \cdots \omega_{\mathrm{n}}$ is

$$
A \propto g_{\circ}\left\langle\int d z i \sqrt{2} \partial X(z) \prod_{k=1}^{n} v_{k}\left(z_{k}\right)\right\rangle
$$

$g_{o}=\left(g_{s} / 2 \pi^{2}\right)^{1 / 2}$: open string coupling constant

Using OPE

$$
\partial \mathbf{X}(\mathbf{z}) \mathbf{V}_{\mathbf{k}}\left(\mathbf{z}_{\mathbf{k}}\right)=-\frac{\mathbf{i} \omega_{\mathbf{k}}}{\mathbf{2}\left(\mathbf{z}-\mathbf{z}_{\mathbf{k}}\right)} \mathbf{V}_{\mathbf{k}}\left(\mathbf{z}_{\mathbf{k}}\right)+\text { non-singular }
$$

we get

$$
\mathbf{A}=\mathbf{i} \pi \sqrt{\mathbf{2}} \mathbf{g}_{o} \omega\left\langle\prod_{\mathbf{k}=\mathbf{1}}^{\mathbf{n}} \mathbf{V}_{\mathbf{k}}\left(\mathbf{z}_{\mathbf{k}}\right)\right\rangle, \quad \omega \equiv \sum_{\mathbf{k}} \omega_{\mathbf{k}}
$$

$\Rightarrow \psi_{\mathbf{b}}^{\mathbf{0}}$ insertion in an amplitude produces a factor of $\mathbf{i} \pi \sqrt{\mathbf{2}} \mathbf{g}_{\mathbf{o}} \omega$
Since y insertion produces a factor of $i \omega$, we have

$$
\psi_{\mathbf{b}}=\mathbf{y} /\left(\pi \sqrt{\mathbf{2}} \mathbf{g}_{\mathbf{o}}\right)
$$

Relation between θ and α :

α : rigid gauge transformation parameter

An open string stretched between the original D-instanton and a second spectator D-instanton picks up a phase $\mathrm{e}^{\mathrm{i} \alpha}$.

This gives infinitesimal transformation law:

$$
\delta \xi=\mathbf{i} \alpha \xi
$$

ξ : Any state of the open string stretched between the pair of D-instantons

We can compare this with the known gauge transformation law of ξ in open string field theory:

$$
\delta \xi=\mathbf{g}_{\mathbf{\circ}} \mathbf{K} \theta \xi
$$

K: three point function of normalized vertex operators of θ, ξ, ξ^{c}

In the expansion of the string field, θ multiplies $\mathbf{i}|0\rangle$
$\Rightarrow \theta$ vertex operator is $\mathbf{i} \times$ identity
\Rightarrow three point function of θ, ξ, ξ^{c} reduces to $\mathbf{i} \times$ two point function of ξ, ξ^{c}
i as long as ξ, ξ^{c} are normalized

Compare $\delta \xi=\mathbf{i} \mathbf{g}_{\mathbf{o}} \theta \xi$ with $\delta \xi=\mathbf{i} \alpha \xi$
This gives $\theta=\alpha / \mathbf{g}_{\boldsymbol{o}}$ and therefore

$$
\int \mathbf{d} \theta=\int \mathbf{d} \alpha / \mathbf{g}_{\mathbf{o}}=\mathbf{2} \pi / \mathbf{g}_{\circ}
$$

Summary of string field theory results

In the path integral representation the tachyon of $h_{b}=-1$ contributes $\sqrt{1 / h_{b}}=i$

Contribution from translational zero mode:

$$
\int \frac{\mathbf{d} \psi_{\mathbf{b}}^{\mathbf{0}}}{\sqrt{\mathbf{2} \pi}}=\frac{\mathbf{1}}{\sqrt{\mathbf{2} \pi}} \int \frac{\mathbf{d y}}{\pi \mathbf{g}_{\mathbf{o}} \sqrt{\mathbf{2}}}
$$

y : D-instanton location along time direction, couples via $e^{i y E_{\text {total }}}$
$\int \mathrm{dy}$ produces $2 \pi \delta\left(\mathrm{E}_{\text {total }}\right)$ at the end
Ghost zero mode integral is replaced by

$$
\int \mathbf{d} \phi \mathbf{e}^{-\phi^{2}} / \int \mathbf{d} \theta=\frac{\sqrt{\pi}}{2 \pi / \mathbf{g}_{\mathbf{o}}}
$$

Net normalization $i /\left(4 \pi^{2}\right)$ agrees with a dual matrix model result.

When the result is known from a dual description, this procedure produces the correct result in all cases that have been studied.

1. 2D bosonic string theory
2. $\mathbf{c}<1$ bosonic string theory
3. Type IIB in $\mathrm{D}=10$
4. Type IIA / IIB on CY_{3}
5. $\hat{c}=1$ type $0 B$ string theory
6. IIA/IIB on CY_{3} orientifolds
7. Sine-Liouville deformation of $\mathrm{c}=1$ bosonic string theory

More on string field theory (SFT)

Perturbative amplitudes in string field theory are given by sum of Feynman diagrams

Open string propagator $\propto\left(L_{0}\right)^{-1}$

SFT is designed so that formally the sum of Feynman diagrams reproduce the world-sheet expression after using

$$
\left(L_{0}\right)^{-1}=\int_{0}^{\infty} d t e^{-L_{0} t}, \quad\left(L_{0}+\bar{L}_{0}\right)^{-1}=\int_{0}^{\infty} d t e^{-\left(L_{0}+\bar{L}_{0}\right) t}
$$

t: Schwinger parameter
t's become the moduli of Riemann surfaces after change of variables

$$
\text { SFT } \Rightarrow\left(L_{0}\right)^{-1}=\int_{0}^{\infty} \mathrm{dte}^{-L_{0} t} \Leftarrow \text { world-sheet }
$$

1. This is an identity for $L_{0}>0$
2. For $\mathrm{L}_{0}<\mathbf{0}$ the rhs diverges from $\mathrm{t} \rightarrow \infty$ end but the Ihs is finite and we can use lhs as the correct expression
3. For $L_{0}=0$ both sides diverge

However, on the lhs we sit on the pole of a propagator and insights from QFT can be used to make sense of this.

This is the essence of why string field theory is useful for dealing with divergences in the integrals over the moduli spaces of Riemann surfaces

Lecture 4

In the case under study we have both open and closed string fields.

The external states in a Feynman diagram are closed strings

The internal propagators are of closed and open strings.

Closed string propagator $\propto\left(\mathbf{L}_{0}+\bar{L}_{0}\right)^{-1}=\int_{0}^{\infty} d t \exp \left[-t\left(L_{0}+\bar{L}_{0}\right)\right]$
$\mathrm{L}_{0}+\overline{\mathrm{L}}_{0}$ eigenvalues $\propto \mathbf{k}^{\mathbf{2}}+\mathbf{m}^{\mathbf{2}}, \quad \mathbf{m}$: mass of the string mode

Since closed strings carry momentum k, it is possible to make the $L_{0}+\bar{L}_{0}$ eigenvalue $\mathbf{k}^{2}+\mathbf{m}^{2}$ positive by analytic continuation in \mathbf{k}.

- we can integrate out the closed strings and consider an effective string field theory in which the internal states are only open strings.

At the next order we need to compute
etc.

Define:
$\mathbf{g}_{\mathrm{s}} \mathbf{f}\left(\omega_{1}, \omega_{2}\right)$: Ratio of disk two point function to product of two disk one point functions
$\mathbf{g}_{\mathrm{s}} \mathbf{g}(\omega)$: Ratio of annulus one point function to disk one point function
g_{s} C: Partition function for disk with two holes and torus with one hole.

Order g_{s} contribution to the n-point amplitude:
$\mathbf{g}_{\mathbf{s}} \times$ leading order contribution $\times\left[\sum_{\mathbf{j}<\mathbf{k}} \mathbf{f}\left(\omega_{\mathbf{j}}, \omega_{\mathbf{k}}\right)+\sum_{\mathbf{j}} \mathbf{g}\left(\omega_{\mathbf{j}}\right)+\mathbf{C}\right]$
f, g and C have divergences.

$$
\begin{gathered}
\mathbf{f}=\mathbf{f}_{\text {fimite }}+\mathbf{f}_{\text {div }}, \quad \mathbf{g}=\mathbf{g}_{\text {finite }}+\mathbf{g}_{\text {div }}, \quad \mathbf{C}=\mathbf{C}_{\text {finite }}+\mathbf{C}_{\text {div }} \\
\mathbf{f}_{\text {div }}\left(\omega_{\mathbf{1}}, \omega_{\mathbf{2}}\right)=\frac{\mathbf{1}}{\mathbf{2}} \int_{0}^{\mathbf{1}} \mathbf{d y} \mathbf{y}^{-2}\left(\mathbf{1}+\mathbf{2} \omega_{1} \omega_{\mathbf{2}} \mathbf{y}\right) \equiv \mathbf{A}_{\mathbf{f}}+\mathbf{B}_{\mathbf{f}} \omega_{1} \omega_{\mathbf{2}} \\
\mathbf{g}_{\text {div }}(\omega)=\int_{0}^{\mathbf{1}} \mathbf{d v} \int_{0}^{\mathbf{1} / \mathbf{4}} \mathbf{d x}\left\{\frac{\mathbf{v}^{-2}-\mathbf{v}^{-1}}{\sin ^{2}(\mathbf{2} \pi \mathbf{x})}+\mathbf{2} \omega^{2} \mathbf{v}^{-1}\right\} \equiv \mathbf{A}_{\mathbf{g}}+\mathbf{B}_{\mathbf{g}} \omega^{2}
\end{gathered}
$$

n -point function at order g_{s} :
$=\mathbf{g}_{\mathbf{s}} \times$ leading order contribution

$$
\times\left[\frac{\mathbf{n}(\mathbf{n}-\mathbf{1})}{2} \mathbf{A}_{\mathbf{f}}+\mathbf{n} \mathbf{A}_{\mathbf{g}}+\mathbf{C}+\left\{\mathbf{B}_{\mathrm{g}}-\frac{\mathbf{B}_{\boldsymbol{f}}}{\mathbf{2}}\right\} \sum_{\mathrm{j}} \omega_{\mathrm{j}}^{2}+\text { finite }\right]
$$

We again need to make use of string field theory

Strategy:

1. Express the amplitudes as sum over SFT Feynman diagrams

- automatically replaces the tachyon contribution by $1 / \mathrm{h}$ where h is the L_{0} eigenvalue

2. Remove the zero mode contribution to the propagators since they are to be integrated at the end or removed altogether.
3. Add the propagator of the field ϕ that was not present in the world-sheet formulation but should be present.
4. Account for corrections to the jacobian factors for change of variable from $\psi_{\mathbf{b}}^{0}$ to \mathbf{y} and θ to α

We shall first describe the analysis of $\mathrm{f}_{\text {div }}\left(\omega_{1}, \omega_{2}\right)$.

- related to the divergent part of disk / UHP two point function:

$$
f_{\mathrm{div}}\left(\omega_{1}, \omega_{2}\right)=\frac{1}{2} \int_{0}^{1} d y^{\mathbf{y}^{-2}\left(1+2 \omega_{1} \omega_{2} y\right)}
$$

On the UHP, closed string vertex operators are located at i and iy

$$
\mathbf{f}_{\mathrm{div}}\left(\omega_{1}, \omega_{2}\right)=\frac{1}{2} \int_{0}^{1} \mathbf{d y} \mathbf{y}^{-2}\left(\mathbf{1}+2 \omega_{1} \omega_{2} \mathbf{y}\right)
$$

Feynman diagrams:

Thick lines: Closed strings
Thin lines: open strings

The open-closed interaction vertices are UHP two point functions

To compute these amplitudes we need the two point open-closed interaction term for off-shell external states.

Need to choose a 'local coordinate' w_{i} at the location of each vertex operator.

If the UHP coordinate z is related to w as $z=f(w)$ then we insert the vertex operator $f \circ \mathbf{V}(\mathbf{w})$ - conformal transform of V by f
e.g. for dimension h primeries, $f \circ \mathbf{V}(\mathbf{w})=\mathbf{f}^{\prime}(\mathbf{w})^{\mathbf{h}} \mathbf{V}(\mathbf{f}(\mathbf{w}))$

Since only the open strings are off-shell, we need a choice of local coordinates at the open string puncture.

C-O interaction vertex

Put C at i, O at 0

Choose local coordinate at O to be

$$
\mathbf{w}=\lambda \mathbf{z} \quad \Rightarrow \quad \mathbf{f}(\mathbf{w})=\mathbf{w} / \lambda \quad \Rightarrow \quad \mathbf{f} \circ \mathbf{V}(\mathbf{w})=\lambda^{-\mathbf{h}_{\mathbf{v}}} \mathbf{V}(\mathbf{z})
$$

λ : an arbitrary constant, taken to be large for convenience
\Rightarrow the two point function of a closed string state C and open string state \mathbf{O} is

$$
\left\langle\mathbf{V}_{\mathbf{C}}(\mathbf{i}) \mathbf{V}_{\mathbf{0}}(\mathbf{0})\right\rangle_{\mathbf{U H P}} \lambda^{-\mathbf{h}_{\mathbf{O}}}
$$

We need to find the relation between y and the Schwinger parameter $q=e^{-t}$ for diagram (a).

Diagram (a) corresponds to two UHP's sewed via
$\mathbf{w w}^{\prime}=-\mathbf{q} \quad \Rightarrow \quad \lambda^{2} \mathbf{z z}=-\mathbf{q}, \quad \mathbf{q} \equiv \mathbf{e}^{-\mathbf{t}}, \quad \mathbf{t}:$ Schwinger parameter
On the sewed surface the punctures are located at

$$
\mathbf{z}=\mathbf{i}, \quad \mathbf{z}^{\prime}=\mathbf{i} \quad \Rightarrow \quad \mathbf{z}=\mathbf{i} \mathbf{q} / \lambda^{2} \equiv \mathbf{i} \mathbf{y}
$$

This gives $\mathbf{y}=\mathbf{q} / \lambda^{2}$.

$$
\begin{gathered}
\mathbf{y}=\mathbf{q} / \lambda^{2} \\
\mathbf{0} \leq \mathbf{q} \leq \mathbf{1} \quad \Rightarrow \quad \mathbf{0} \leq \mathbf{y} \leq \mathbf{1} / \lambda^{2}
\end{gathered}
$$

The region $1 / \lambda^{2}<y \leq 1$ comes from diagram (b) and gives finite result.

Analyze $\mathrm{f}_{\text {div }}$ using this:

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{1} d \mathbf{y} \mathbf{y}^{-2}\left(\mathbf{1}+\mathbf{2} \omega_{1} \omega_{2} \mathbf{y}\right)=\frac{1}{2}\left\{\int_{0}^{1 / \lambda^{2}}+\int_{1 / \lambda^{2}}^{1}\right\} \mathbf{d y} \mathbf{y}^{-2}\left(1+2 \omega_{1} \omega_{2} \mathbf{y}\right) \\
& =\frac{1}{2} \int_{0}^{1} \mathbf{d q}\left\{\lambda^{2} \mathbf{q}^{-2}+2 \omega_{1} \omega_{2} \mathbf{q}^{-1}\right\}+\frac{1}{2} \int_{1 / \lambda^{2}}^{1} \mathbf{d y y}^{-2}\left(\mathbf{1}+2 \omega_{1} \omega_{2} \mathbf{y}\right) \\
& \Rightarrow-\frac{1}{2} \lambda^{2}+\frac{1}{2} \int_{1 / \lambda^{2}}^{1} \boldsymbol{d y y}^{-2}\left(\mathbf{1}+\mathbf{2} \omega_{1} \omega_{2} \mathbf{y}\right)=-\frac{1}{2}+\mathbf{2} \omega_{1} \omega_{2} \ln \lambda
\end{aligned}
$$

$-\omega_{1}, \omega_{2}$ are energies of incoming and outgoing \mathbf{C}.

For the choice of local coordinates we have made, the C- ϕ vertex vanishes.
\Rightarrow no need to include ϕ exchange contribution.

Final result:

$$
\begin{gathered}
\mathbf{f}_{\text {div }}\left(\omega_{1}, \omega_{\mathbf{2}}\right)=-\frac{\mathbf{1}}{\mathbf{2}}+\mathbf{2} \omega_{1} \omega_{\mathbf{2}} \ln \lambda \equiv \mathbf{A}_{\mathbf{f}}+\mathbf{B}_{\mathfrak{f}} \omega_{1} \omega_{\mathbf{2}} \\
\mathbf{A}_{\mathbf{f}}=-\frac{\mathbf{1}}{\mathbf{2}}, \quad \mathbf{B}_{\mathbf{f}}=\ln \lambda^{2}
\end{gathered}
$$

Note: If we had chosen a different local coordinate for the C-O vertex, the result will be different

- compensated by ϕ exchange diagram for $\mathbf{A}_{\mathbf{f}}$.

For B_{f} some part may also cancel against contribution to $2 B_{g}$.

We now turn to the divergent part of the annulus one point function:

- four types of contributions

1. $g_{\text {feynman }}$ from the Feynman diagrams with zero mode contribution to the propagators removed
2. \mathbf{g}_{ϕ} with one or more ϕ propagators
3. Correction to the relation between $\psi_{\mathbf{b}}^{\mathbf{0}}$ and \mathbf{y}

$$
\psi_{\mathbf{b}}^{\mathbf{0}}=\mathbf{K}_{\mathbf{1}} \mathbf{y}\left[\mathbf{1}+\mathbf{g}_{\mathbf{s}} \int \mathbf{d} \omega \mathbf{C}(\omega) \mathbf{F}(\omega)\right]
$$

F: computable function
Then the path integral gets an additional Jacobian factor while changing variables from ψ_{b}^{0} to \mathbf{y}

$$
\left[\mathbf{1}+\mathbf{g}_{\mathbf{s}} \int \mathbf{d} \omega \mathbf{C}(\omega) \mathbf{F}(\omega)\right] \simeq \exp \left[\mathbf{g}_{\mathbf{s}} \int \mathbf{d} \omega \mathbf{C}(\omega) \mathbf{F}(\omega)\right]
$$

\Rightarrow new contribution $\mathbf{g}_{\mathbf{j a c}}(\omega)$
4. There is a similar correction to the $\theta-\alpha$ relation

$$
\theta=\mathbf{K}_{\mathbf{2}} \alpha\left[\mathbf{1}+\mathbf{g}_{\mathbf{s}} \int \mathbf{d} \omega \mathbf{C}(\omega) \mathbf{G}(\omega)\right]
$$

$\Rightarrow \mathbf{g}_{\text {gauge }}(\omega)$

Results:

$\boldsymbol{g}_{\text {feynman }}(\omega)=-\frac{\mathbf{2}}{\pi} \int_{(\mathbf{2} \widetilde{\lambda})^{-1}}^{\mathbf{1}} \mathbf{d} \beta\left(\mathbf{1}+\beta^{\mathbf{2}}\right)^{-\mathbf{1}} \widetilde{\lambda}^{2} \mathbf{f}(\beta)^{\mathbf{2}}+\frac{\widetilde{\lambda}}{\mathbf{4} \pi}+\frac{\mathbf{1}}{\mathbf{2}} \omega^{2} \boldsymbol{\operatorname { l n }} \frac{\alpha^{2} \widetilde{\lambda}^{2}}{\mathbf{4}}$

$$
\begin{gathered}
\mathbf{g}_{\phi}(\omega)=\frac{\mathbf{2}}{\pi} \int_{(\mathbf{2} \tilde{\lambda})^{-1}}^{\mathbf{1}} \mathbf{d} \beta\left(\mathbf{1}+\beta^{\mathbf{2}}\right)^{-\mathbf{1}} \widetilde{\lambda}^{2} \mathbf{f}(\beta)^{2}+\frac{\tilde{\lambda}}{\mathbf{4} \pi} \\
\mathbf{g}_{\mathbf{j a c}}(\omega)=-\frac{\widetilde{\lambda}}{\pi}-\omega^{2} \mathbf{l n} \frac{\widetilde{\lambda}^{\mathbf{2}}}{\lambda^{2}} \\
\mathbf{g}_{\text {gauge }}(\omega)=\frac{\widetilde{\lambda}}{\mathbf{2} \pi}
\end{gathered}
$$

Total

$$
\begin{aligned}
& \mathbf{g}_{\text {div }}(\omega)=\frac{\mathbf{1}}{\mathbf{2}} \omega^{2} \ln \frac{\lambda^{2}}{\mathbf{4}} \equiv \mathbf{A}_{\mathbf{g}}+\mathbf{B}_{\mathbf{g}} \omega^{2} \\
& \Rightarrow \quad \mathbf{A}_{\mathbf{g}}=\mathbf{0}, \quad \mathbf{B}_{\mathbf{g}}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{\operatorname { l n }} \frac{\lambda^{2}}{\mathbf{4}}
\end{aligned}
$$

Recall $\mathbf{B}_{\mathbf{f}}=\boldsymbol{\operatorname { l n }} \lambda^{2}$
$\Rightarrow \mathbf{B}_{\boldsymbol{f}}-2 \mathbf{B}_{\mathbf{g}}=\ln 4$ is independent of λ

Unitarity

Based on our understanding of D-instanton amplitudes, one can also analyze unitarity of these amplitudes

Result: The only source of unitarity violation is in the imaginary part of the exponential of the annulus partition function

- related to the tachyonic modes on the instanton

Conclusion

World-sheet theory, aided by string field theory, provides a fully systematic procedure for computing D-instanton contribution to an amplitude

Besides being of practical use, this can be used to gain deeper understanding of string theory, e.g,

- testing duality conjectures
- role of resurgence
etc.

