Condensation of bosonic pairs in quantum magnets

F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland

Theorists

Mithilesh Nayak (Lausanne → Fribourg) Bruce Normand (PSI) Brijesh Kumar (New Delhi)

Experimentalists

Ellen Fogh (Lausanne) Henrik Rønnow (Lausanne)

and many more...

Spin nematics

- Pair condensation in spin-1/2 systems
 - \rightarrow Below saturation: bound states of magnons
 - \rightarrow From gapped phase: bound states of triplons
- Bosonic language: condensation of Cooper pairs
- Experimental evidence: triplet gap at transition
- Shastry-Sutherland compound SrCu₂(BO₃)₂
 - \rightarrow Inelastic neutron scattering up to 26 T
 - \rightarrow Dynamical structure factor from t-dependent DMRG
- Conclusions

Spin nematics

Broken SU(2) symmetry without magnetic order Spin-1 models with biquadratic interactions Blume and Hsieh, 1969 General classification Andreev and Grishchuk, 1984 Experimental realization in spin-1 systems? \rightarrow NiGa₂S₄: spin-1 on triangular lattice Nakatsuji et al, 2005 \rightarrow Theory: Ferro- and AF- quadrupolar phases Arikawa-Tsunetsugu, 2006; Läuchli, FM, Penc, 2006

Pair condensation in S=1/2 systems

Spin nematic below saturation if FM interactions Bound states of magnons condense first Shannon, Momoi, Sindzingre, 2006 Zhitomirsky and Tsunetsugu, 2010 NMR signature in LiCuVO₄ \rightarrow No shift below saturation \rightarrow No magnetic order Orlova et al, 2017

Pair condensation in gapped AF

Gapped antiferromagnets

 → Usually, gap closing = BEC of triplets

 Always? No!

 → If there is a spin-2 bound state below the two-triplet continuum, it will condense first
 → Non-zero magnetization, but no BEC of triplets

Absence of Single-Particle Bose-Einstein Condensation at Low Densities for Bosons with Correlated Hopping

Rachel Bendjama, Brijesh Kumar,* and Frédéric Mila[†]

Mean-field theory

$$H = -t \sum_{\mathbf{r}} \sum_{\delta = \pm x, \pm y} b_{\mathbf{r}+\delta}^{\dagger} b_{\mathbf{r}} - \mu \sum_{\mathbf{r}} n_{\mathbf{r}}$$
$$-t' \sum_{\mathbf{r}} \sum_{\delta = \pm x} \sum_{\delta' = \pm y} n_{\mathbf{r}} \{ b_{\mathbf{r}+\delta}^{\dagger} b_{\mathbf{r}+\delta'} + \text{H.c.} \},$$

Pair condensation without single particle condensation

(large enough correlated hopping and small density)

Experimental signature?

■ Follow spin-2 bound state up to condensation
→ tricky due to selection rules

Follow the first-triplet excitation

 gap does not close at the transition
 (as the single particle gap in BCS theory)
 kink at the transition

Toy model

Fogh, Nayak, ... FM, Rønnow, 2023

SrCu₂(BO₃)₂ Smith and Keszler, JSSC 1991

Famous for its magnetization plateaus

From orthogonal dimer to Shastry-Sutherland model

Shastry and Sutherland, 1981

Low-Lying Magnetic Excitation of the Shastry-Sutherland Model

K. Totsuka,^{1,*} S. Miyahara,² and K. Ueda²

3rd order perturbation theory in J/J_D

Two-triplet continuum

Spin-2 bound state

Pair condensation in SrCu₂(BO₃)₂

Inelastic neutron scattering \rightarrow need data above 23 T \rightarrow only possible a few years ago in Berlin and for a very limited period of time Time-dependent DMRG on cylinders \rightarrow good approximation to dynamical structure factor of 2D systems

Field-induced bound-state condensation and spin-nematic phase in $SrCu_2(BO_3)_2$ revealed by neutron scattering up to 25.9 T

Ellen Fogh,^{1, *} Mithilesh Nayak,^{2, *} Oleksandr Prokhnenko,³ Maciej Bartkowiak,^{3, 4} Koji Munakata,⁵ Jian-Rui Soh,¹ Alexandra A. Turrini,^{6, 1} Mohamed E. Zayed,⁷ Ekaterina Pomjakushina,⁸ Hiroshi Kageyama,⁹ Hiroyuki Nojiri,¹⁰ Kazuhisa Kakurai,⁵ Bruce Normand,^{1, 11} Frédéric Mila,² and Henrik M. Rønnow¹

Nature Communications, in press

DMRG

Neutron scattering

Discussion I

Momentum integrated results \rightarrow Better statistics \rightarrow Small dispersion, so not a major problem DMRG \rightarrow Width 4 for most results, some benchmarks at width 6 \rightarrow No adjustable parameters – all taken from previous experiments, including DM interactions Minimum of triplet branch due to DM interactions? \rightarrow The minimum should occur at 24 T, where the triplet

gap would close, not at 21 T

Discussion II

Red line: spin-2 mode detected in ESR Nojiri et al , 2003
 → Would cross the singlet too late
 → Dashed-red line: our guess for the lowest spin-2 bound state

→ Not seen probably because of A₂ symmetry Wang and Batista, 2018

Three-triplet excitations

 \rightarrow Expected when exciting a triplet in a sea of 2-triplet bound states

 \rightarrow Cannot be resolved with current accuracy

PHYSICAL REVIEW LETTERS 124, 087203 (2020)

Magnetic-Field-Induced Bound States in Spin- $\frac{1}{2}$ Ladders

Mithilesh Nayak,^{1,*} Dominic Blosser^(D),^{2,†} Andrey Zheludev,² and Frédéric Mila¹

2-triplet bound states between a condensed triplet and a triplet created by a neutron

Kink of triplet branch

Condensation of bound state of magnons below saturation

Momoi, arXiv:2308.12569

u, v₂: interaction parameters

Conclusions

Spin nematics

 Growing evidence in various systems

 SrCu₂(BO₃)₂

 First example when closing the gap in a gapped AF
 First evidence of a persistent gap in the triplet spectrum and of a kink in its field dependence

 Other properties?

 $\rightarrow \Delta S=2$ steps in magnetization (hard to observe in macroscopic samples)

→ Transitions between different phases, as in superfluid Helium 3?

More about DMRG results

