The Cather in the Rye of Deconfinement

ZI YANG MENG孟子杨
https：／／quantummc．xyz／

A coming of age story, themes of angst and alienation, and a critique of superficiality in society (phonies). Holden Caulfield, J. D. Salinger's adolescent antihero, has become an icon for teenage rebellion.
"I keep picturing all these little kids playing some game in this big field of rye and all. ... And I'm standing on the edge of some crazy cliff. I have to catch everybody if they start to go over the cliff - I mean if they're running and they don't look where they're going I have to come out from somewhere and catch them. That's all I do all day. I'd just be the catcher in the rye and all. I know it's crazy, but that's the only thing l'd really like to be."

Holden admires in children attributes that he often struggles to find in adults, like innocence, kindness, spontaneity, and generosity. Falling off the cliff could be a progression into the adult world that surrounds him and that he strongly criticizes.

Jing Guo

Liling Sun

Anders Sandvik

PHYSICAL REVIEW LETTERS 124, 206602 (2020)
Quantum Phases of $\mathbf{S r C u}_{\mathbf{2}}\left(\mathrm{BO}_{\mathbf{3}}\right)_{\mathbf{2}}$ from High-Pressure Thermodynamics
Jing Guo $\oplus,{ }^{1}$ Guangyu Sun $\odot{ }^{1,2}$ Bowen Zhao $\oplus,{ }^{3}$ Ling Wang $\oplus,{ }^{4,5}$ Wenshan Hong, ${ }^{1,2}$ Vladimir A. Sidorov, ${ }^{6}$ Nvsen Ma, ${ }^{1}$ Qi Wu, ${ }^{1}$, Shiliang Li, ${ }^{1,2,7}$ Zi Yang Meng $\oplus,{ }^{1,8,7, *}$ Anders W. Sandvik $\odot,{ }^{3,1,7}$ and Liling Sun $\oplus^{1,2,7, *}$
arXiv:2310.20128

Deconfined quantum critical point lost in pressurized $\operatorname{SrCu} \mathbf{u}_{2}\left(\mathrm{BO}_{3}\right)_{2}$
Jing Guo, ${ }^{1,5, *}$ Pengyu Wang, ${ }^{1,2, *}$ Cheng Huang, ${ }^{3, *}$ Bin-Bin Chen, ${ }^{3}$ Wenshan Hong, ${ }^{1,2}$ Shu Cai, ${ }^{4}$ Jinyu Zhao, ${ }^{1,2}$ Jinyu Han, ${ }^{1,2}$ Xintian Chen, ${ }^{1,2}$ Yazhou Zhou, ${ }^{1}$ Shiliang Li, ${ }^{1,2,5}$ Qi Wu, ${ }^{1}$ Zi Yang Meng, ${ }^{3, \dagger}$ and Liling Sun ${ }^{1,2,4,5, \ddagger}$

$H=J \sum_{\langle i, j\rangle} S_{i} \cdot S_{j}+J^{\prime} \sum_{\langle\langle i, j\rangle\rangle} S_{i} \cdot S_{j}$
\% Koga, Kawakami, PRL 84, 4461 (2000)
\& Corboz, Mila, PRB 87, 115144 (2013)
\& Wang, Sandvik, PRB 105, L060409 (2022)
\& Viteritti, Rende, Parola, Goldt, Becca, arXiv: 2311.16889
\&......

\& Jing Guo, et al., PRL 124, 206602 (2020)

Equipments used for HP heat capacity measurements

\& H. Kageyama et al. Physica B 667281 (2000)

- A peak emerges at lower T at 1.8 GPa and prevails up to 2.4 GPa - the Plaquette phase.

- At P>3 GPa, a new transition was observed at $1.7-3.5 \mathrm{~K}$ - the Antiferromagnet phase.
\& Jing Guo, et al., PRL 124, 206602 (2020)

- $P<1.8$ GPa: Dimer-singlet state
- $\mathrm{P}<2.5 \mathrm{GPa}$: Plaquette-singlet state
- 3 GPa < P < 4 GPa: AF state

Ref [11]: M. E. Zayed et al. Nat. Phys. 13962 (2017)

\& Jing Guo, et al., PRL 124, 206602 (2020)

- $P<1.8$ GPa: Dimer-singlet state
- $\mathrm{P}<2.5 \mathrm{GPa}$: Plaquette-singlet state
- 3 GPa < P < 4 GPa: AF state

Ref [11]: M. E. Zayed et al. Nat. Phys. 13962 (2017)

Deconfined quantum critical point lost in pressurized $\operatorname{SrCu} \mathbf{C u}_{2}\left(\mathrm{BO}_{3}\right)_{2}$

Jing Guo, ${ }^{1,5, *}$ Pengyu Wang, ${ }^{1,2, *}$ Cheng Huang, ${ }^{3, *}$ Bin-Bin Chen, ${ }^{3}$ Wenshan Hong, ${ }^{1,2}$ Shu Cai, ${ }^{4}$ Jinyu Zhao, ${ }^{1,2}$ Jinyu Han, ${ }^{1,2}$ Xintian Chen, ${ }^{1,2}$ Yazhou Zhou, ${ }^{1}$ Shiliang Li, ${ }^{1,2,5}$ Qi Wu, ${ }^{1}$ Zi Yang Meng, ${ }^{3, \dagger}$ and Liling Sun ${ }^{1,2,4,5, \neq}$

Deconfined quantum critical point lost in pressurized $\mathrm{SrCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$

Jing Guo, ${ }^{1,5, *}$ Pengyu Wang, ${ }^{1,2, *}$ Cheng Huang, ${ }^{3, *}$ Bin-Bin Chen, ${ }^{3}$ Wenshan Hong, ${ }^{1,2}$ Shu Cai, ${ }^{4}$ Jinyu Zhao, ${ }^{1,2}$ Jinyu Han, ${ }^{1,2}$ Xintian Chen, ${ }^{1,2}$ Yazhou Zhou, ${ }^{1}$ Shiliang Li, ${ }^{1,2,5}$ Qi Wu, ${ }^{1}$ Zi Yang Meng, ${ }^{3, \dagger}$ and Liling Sun ${ }^{1,2,4,5, \neq}$

The learning of entanglement on deconfined quantum critical points

ZI YANG MENG
孟子杨
https：／／quantummc．xyz／

Menghan Song (HKU)	Lukas Janssen (Dresden)	Meng Cheng (Yale)
Jiarui Zhao (HKU)	Michael Scherer (Bochum)	Cenke Xu (UCSB)
Bin-Bin Chen (HKU)	Gaopei Pan (Würzburg)	Yuxuan Wang (Florida)
Xu Zhang (HKU)	Zi Hong Liu (Dresden)	Kai Sun (Michigan)
Yuan Da Liao (Fudan)	Juncheng Rong (IHES)	William W. Krempa (Montreal)
Zheng Yan (Westlake)	Jonathan D'Emidio (DIPC)	Chaoming Jian (Cornell)
Yan-Cheng Wang (Beihang)	Fakher Assaad (Würzburg)	Yi-Zhuang You (UCSD)

PHYSICAL REVIEW LETTERS 128, 010601 (2022)

Scaling of Entanglement Entropy at Deconfined Quantum Criticality
Jiarui Zhao $\oplus,{ }^{1}$ Yan-Cheng Wang, ${ }^{2}$ Zheng Yan, ${ }^{1,3}$ Meng Cheng, ${ }^{4, *}$ and Zi Yang Meng $\oplus^{1,{ }^{1,}}$

arXiv:2312.?????
Extracting subleading corrections in entanglement entropy at quantum phase transitions

Entanglement entropy with incremental (Qiu Ku) method

$$
\begin{aligned}
& S_{A}^{(2)}=-\ln \left(\operatorname{Tr}_{A}\left(\rho_{A}^{2}\right)\right)=-\ln \left(\frac{Z_{A}^{(2)}}{Z_{\varnothing}^{(2)}}\right)=\beta\left(F\left(Z_{A}^{(2)}\right)-F\left(Z_{\varnothing}^{(2)}\right)\right) \\
& \text { \& Calabrese \& Cardy, J. Stat. Mech. (2004) P06002 } \\
& \text { \% V. Alba, PRE 95, } 062132 \text { (2017) } \\
& \text { \& J. D'Emidio, PRL 124, } 110602 \text { (2020) } \\
& \text { \& J. Zhao, ..., M. Cheng, ZYM, PRL 128, } 010601 \text { (2022) } \\
& \text { \& J. Zhao, ..., M. Cheng, ZYM, npj Quantum Materials 7, } 69 \text { (2022) } \\
& e^{-S_{A}^{(2)}}=\frac{Z(1)}{Z(0)}:=\frac{Z\left(\lambda_{1}\right)}{Z(0)} \frac{Z\left(\lambda_{2}\right)}{Z\left(\lambda_{1}\right)} \cdots \frac{Z\left(\lambda_{k}\right)}{Z\left(\lambda_{k-1}\right)} \cdots \frac{Z(1)}{Z\left(\lambda_{N_{\lambda}-1}\right)}
\end{aligned}
$$

\& J. D'Emidio, et al., arXiv:2211.04334
\& G. Pan, Y. D. Liao, J. D'Emidio, ZYM, PRB 108, L081123 (2023)
\&Y. D. Liao, arXiv:2307.10602
\& X. Zhang, G. Pan, B.-B, Chen, K. Sun, ZYM, arXiv:2311.03448

Smooth boundary

$$
\begin{gathered}
S_{A}^{(2)}(l)=a l+s_{G} \ln (l)+c \\
s_{G}=\frac{N_{G}}{2}
\end{gathered}
$$

Corner

$$
S_{A}^{(2)}(l)=a l-s_{C} \ln (l)+c
$$

$(2+1) d$ SSB, O(3) QCP, Topological order Z2 QSL, GNY, FL, DQCP, SMG, ...

Spontaneous symmetry breaking phases: smooth boundary

\& J. Zhao, B.-B Chen, Y.-C. Wang, Z. Yan, M. Cheng, ZYM, npj Quantum Materials 7, 69 (2022)
\& M. Song, J. Zhao, ZYM, C. Xu, M. Cheng, arXiv:2312.?????
Square lattice Heisenberg model

$$
H=J \sum_{\langle i, j\rangle} \mathrm{S}_{i} \cdot \mathrm{~S}_{j}
$$

Smooth boundary $S_{A}^{(2)}(l)=a l+s_{G} \ln (l)+c$ $S_{A}^{(2)}(l)=0.092(1) l+1.0(1) \ln (l)-1.63(3)$

$$
s_{G}=\frac{N_{G}}{2}
$$

$$
l \in[40,160]
$$

\& Metlitski \& Grover, arXiv:1112.5166

$$
\begin{aligned}
& \frac{S_{A}^{(2)}(l)}{l}=S_{G} \frac{\ln (l)}{l}+\frac{c}{l}+a \\
& \frac{S_{A}^{(2)}(l)}{l}=\frac{b}{l^{2}}+\frac{c}{l}+a \\
&
\end{aligned}
$$

$(2+1) d O(3)$ quantum critical points: smooth \& corner

\& J. Zhao, Y.-C. Wang, Z. Yan, M. Cheng, ZYM, PRL 128, 010601 (2022)
\& M. Song, J. Zhao, ZYM, C. Xu, M. Cheng, arXiv:2312.?????
$H=J \sum_{\langle i, j\rangle}\left(\mathrm{S}_{i, 1} \cdot \mathrm{~S}_{j, 1}+\mathrm{S}_{i, 2} \cdot \mathrm{~S}_{i, 2}\right)+J_{\perp} \sum_{i} \mathrm{~S}_{i, 1} \cdot \mathrm{~S}_{i, 2}$

Néel $\quad(2+1) \mathrm{d} O(3) \quad$ Dimer product state
$\frac{S_{A}^{(2)}(l)}{l}=a-s_{c} \frac{\ln l}{l}+\frac{c}{l}$

	Fitted s from	χ^{2} / k	
	S / l vs $1 / l$	$\ln l$	$1 / l$
$\mathrm{O}(3)$, smooth	0.016 ± 0.024	3.509	5.251
$\mathrm{O}(3)$, corner	0.074 ± 0.015	2.217	11.41

Substracted EE

$$
S^{S}(l)=S_{A}(2 l)-2 S_{A}(l)
$$

$$
\begin{aligned}
& S^{s}(l)=s \ln (l)-c \\
& S^{s}(l)=b^{\prime} / l-c
\end{aligned}
$$

	Fitted s from	χ^{2} / k	
		$\ln l$	$1 / 1$
$\mathrm{O}(3)$, smooth	0.000 ± 0.027	7.769	10.96
$\mathrm{O}(3)$, corner	0.088 ± 0.018	1.938	22.44

\&. Kallin, et. al, J. Stat. Mech. P06009 (2014) $\quad s_{G}=0.07(2)$
\& J. Helmes, S. Wessel, Phys. Rev. B 89, 245120 (2014)

Deconfined quantum critical points: Corner

\& J. Zhao, Y.-C. Wang, Z. Yan, M. Cheng, ZYM, PRL 128, 010601 (2022)
JQ3 model $H=-J \sum_{\langle i, j\rangle} P_{i, j}-Q \sum_{\langle i j k l m n\rangle} P_{i j} P_{k l} P_{m n}$

$$
P_{i j}=\frac{1}{4}-\mathrm{S}_{i} \cdot \mathrm{~S}_{j}
$$

Deconfined QCP: $(Q /(J+Q))_{c}=0.59864(4)$

$$
s_{C}=0.08>0
$$

$$
S_{A}^{(2)}(l)=a l-s_{C} \ln (l)+c
$$

Corner corrections for Renyi EE must be positive for unitary CFTs
H. Casini, M. Huerta, Journal of High Energy Physics 2012, 87 (2012)
\& P. Bueno and W. Witczak-Krempa, PRB 93, 045131 (2016)

Deconfined quantum critical points: Smooth boundary

\& M. Song, J. Zhao, ZYM, C. Xu, M. Cheng, arXiv:2312.????? JQ2 model: $\quad H=-J \sum_{\langle i, j\rangle} P_{i, j}-Q \sum_{\langle i j k l\rangle} P_{i j} P_{k l}$ JQ3 model: $\quad H=-J \sum_{\langle i, j\rangle} P_{i, j}-Q \sum_{\langle i j k l m n\rangle} P_{i j} P_{k l} P_{m n}$ (b)

$\frac{S_{A}^{(2)}(l)}{l}=a+\frac{c}{l}+\frac{l^{-}}{l^{2}} \frac{1}{l}$ finite size correction;

Substracted EE $\quad S^{S}(l)=S_{A}(2 l)-2 S_{A}(l)$

	Fitted s from	χ^{2} / k	
	$S(2 l)-2 S(l)$	$\ln l$	$1 / l$
DQCP, JQ 2, smooth	-0.43 ± 0.04	2.858	25.15
DQCP, JQ 3, smooth	-0.27 ± 0.04	0.478	13.1

$-s>0$ Not a CFT, behave like Goldstone mode.
Smooth boundary

$$
S_{A}^{(2)}(l)=a l+s_{G} \ln (l)+c
$$

Deconfined quantum criticality lost

Menghan Song, ${ }^{1}$ Jiarui Zhao, ${ }^{1}$ Lukas Janssen, ${ }^{2}$ Michael M. Scherer, ${ }^{3}$ and Zi Yang Meng ${ }^{1}$

Deconfined quantum criticality lost

Menghan Song, ${ }^{1}$ Jiarui Zhao, ${ }^{1}$ Lukas Janssen, ${ }^{2}$ Michael M. Scherer, ${ }^{3}$ and Zi Yang Meng ${ }^{1}$
\& arXiv: 2307.02547

$$
S_{A}^{(2)}=a l-s \ln (l)-b
$$

Deconfined quantum criticality lost

Menghan Song, ${ }^{1}$ Jiarui Zhao, ${ }^{1}$ Lukas Janssen, ${ }^{2}$ Michael M. Scherer, ${ }^{3}$ and Zi Yang Meng ${ }^{1}$

$$
s(N)=a_{s} N+b_{s} \ln \left(\frac{\pi N}{8}\right)+c_{s}+\mathcal{O}(1 / N)
$$

© arXiv: 2307.02547

Deconfined quantum criticality lost

Menghan Song, ${ }^{1}$ Jiarui Zhao, ${ }^{1}$ Lukas Janssen, ${ }^{2}$ Michael M. Scherer, ${ }^{3}$ and Zi Yang Meng ${ }^{1}$

Phases of (2+1)D SO(5) non-linear sigma model with a topological term on a sphere: multicritical point and disorder phase

```
Bin-Bin Chen, ,}\mp@subsup{}{}{1}\mathrm{ Xu Zhang, }\mp@subsup{}{}{1}\mathrm{ Yuxuan Wang,, 2,* Kai Sun, ,}\mp@subsup{}{}{3,\dagger}\mathrm{ and Zi Yang Meng,1, &
```

\% M. Ippoliti, R. Mong, F. Assaad, M. Zaletel, PRB 98, 235108 (2018)
\& Z. Wang, M. Zaletel, R. Mong, F. Assaad, PRL 126, 045701 (2021)

$$
\begin{gathered}
S=\frac{1}{g} \int d^{3} x(\nabla \hat{\boldsymbol{\varphi}})^{2}+S_{\mathrm{WZW}}+\cdots \\
H=\frac{1}{2} \int d \Omega\left\{U_{0}\left[\psi^{\dagger}(\Omega) \psi(\Omega)-2\right]^{2}-\sum_{i=1}^{5} u_{i}\left[\psi^{\dagger}(\Omega) \Gamma^{i} \psi(\Omega)\right]^{2}\right\} \\
\psi_{\tau \sigma}(\Omega) \quad \Gamma^{i}=\left\{\tau_{x} \otimes \mathbb{\square}, \tau_{y} \otimes \mathbb{\square}, \tau_{z} \otimes \sigma_{x}, \tau_{z} \otimes \sigma_{y}, \tau_{z} \otimes \sigma_{z}\right\}
\end{gathered}
$$

Projected to the LLL with degeneracy $\quad N=2 s+1$
© arXiv: 2307.05307

$$
\text { magnet monople inside a sphere } \quad 4 \pi s
$$

$$
\begin{align*}
& \psi(\Omega)=\sum_{m=-s}^{s} \Phi_{m}(\Omega) c_{m} \quad \Phi_{m}(\Omega) \propto e^{i m \phi} \cos ^{s+m}\left(\frac{\theta}{2}\right) \sin ^{s-m}\left(\frac{\theta}{2}\right) \\
& \hat{H}_{\Gamma}=U_{0} \hat{H}_{0}-\sum_{i} u_{i} \hat{H}_{i}, \text { with } \tag{b}\\
& \hat{H}_{i}=\sum_{m_{1}, m_{2}, m} V_{m_{1}, m_{2}, m_{2}-m, m_{1}+m} \times \\
& \quad\left(c_{m_{1}}^{\dagger} \Gamma^{i} c_{m_{1}+m}-2 \delta_{i 0} \delta_{m 0}\right)\left(c_{m_{2}}^{\dagger} \Gamma^{i} c_{m_{2}-m}-2 \delta_{i 0} \delta_{m 0}\right)
\end{align*}
$$

(b)

Phases of (2+1)D SO(5) non-linear sigma model with a topological term on a sphere: multicritical point and disorder phase

Bin-Bin Chen, ${ }^{1}$ Xu Zhang, ${ }^{1}$ Yuxuan Wang, ${ }^{2, *}$ Kai Sun, ${ }^{3, \dagger}$ and Zi Yang Meng ${ }^{1, \oplus}$
(a)

(b)

(c)

$$
\begin{gathered}
U_{0}=1, u_{1}=u_{2}=u_{K}, u_{3}=u_{4}=u_{5}=u_{N} \\
\left\langle O_{i}\right\rangle=\int d \Omega \psi^{\dagger}(\Omega) \Gamma^{i} \psi(\Omega)=\sum_{m=-s}^{s} c_{m}^{\dagger} \Gamma^{i} c_{m}
\end{gathered}
$$

$$
m_{V B S}^{2}=\frac{1}{2 N^{2}}\left\langle\left(O_{1}^{2}+O_{2}^{2}\right)\right\rangle^{m=-s} \quad m_{N e e l}^{2}=\frac{1}{3 N^{2}}\left\langle\left(O_{3}^{2}+O_{4}^{2}+O_{5}^{2}\right)\right\rangle
$$

Phases of (2+1)D SO(5) non-linear sigma model with a topological term on a sphere:

 multicritical point and disorder phaseBin-Bin Chen, ${ }^{1}$ Xu Zhang, ${ }^{1}$ Yuxuan Wang, ${ }^{2, *}$ Kai Sun, ${ }^{3, \dagger}$ and Zi Yang Meng ${ }^{1, \oplus}$

(b)

$$
U_{0}=1, u_{1}=u_{2}=u_{K}, u_{3}=u_{4}=u_{5}=u_{N}
$$

$$
\left\langle O_{i}\right\rangle=\int d \Omega \psi^{\dagger}(\Omega) \Gamma^{i} \psi(\Omega)=\sum_{m=-s}^{s} c_{m}^{\dagger} \Gamma^{i} c_{m}
$$

$$
m_{V B S}^{2}=\frac{1}{2 N^{2}}\left\langle\left(O_{1}^{2}+O_{2}^{2}\right)\right\rangle
$$

$$
m_{\text {Neel }}^{2}=\frac{1}{3 N^{2}}\left\langle\left(O_{3}^{2}+O_{4}^{2}+O_{5}^{2}\right)\right\rangle
$$

Phases of (2+1)D SO(5) non-linear sigma model with a topological term on a sphere:

 multicritical point and disorder phaseBin-Bin Chen, ${ }^{1}$ Xu Zhang, ${ }^{1}$ Yuxuan Wang, ${ }^{2, *}$ Kai Sun, ${ }^{3, \dagger}$ and Zi Yang Meng ${ }^{1, \oplus}$
(a)

(b)

(c)

$$
\begin{gathered}
U_{0}=1, u_{1}=u_{2}=u_{K}, u_{3}=u_{4}=u_{5}=u_{N} \\
\left\langle O_{i}\right\rangle=\int d \Omega \psi^{\dagger}(\Omega) \Gamma^{i} \psi(\Omega)=\sum_{m=-s}^{s} c_{m}^{\dagger} \Gamma^{i} c_{m}
\end{gathered}
$$

$$
m_{V B S}^{2}=\frac{1}{2 N^{2}}\left\langle\left(O_{1}^{2}+O_{2}^{2}\right)\right\rangle \quad m_{\text {Neel }}^{2}=\frac{1}{3 N^{2}}\left\langle\left(O_{3}^{2}+O_{4}^{2}+O_{5}^{2}\right)\right\rangle
$$

$$
u_{K}=4
$$

THE CATCHER IN THE RYE V.D. Soliager

A coming of age story, themes of angst and alienation, and a critique of superficiality in society (phonies). Holden Caulfield, J. D. Salinger's adolescent antihero, has become an icon for teenage rebellion.
"I keep picturing all these little kids playing some game in this big field of rye and all. ... And I'm standing on the edge of some crazy cliff. I have to catch everybody if they start to go over the cliff - I mean if they're running and they don't look where they're going I have to come out from somewhere and catch them. That's all I do all day. I'd just be the catcher in the rye and all. I know it's crazy, but that's the only thing l'd really like to be."
"I'm quite illiterate, but I read a lot."

The enigma of DQCP

\& Jiarui Zhao, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, PRL 128, 010601 (2022)

$$
S_{A}^{(2)}(l)=a l-s \ln l-b
$$

Entanglement entropy with Qiu Ku method

Topological order \& Yan-Cheng Wang, Meng Cheng, William Witczak-Krempa, ZYM, Nat Commun 12, 5347 (2021)
Kagome lattice frustrated spin model

$$
\begin{aligned}
H= & -t \sum_{\langle i j\rangle}\left(b_{i}^{\dagger} b_{j}+\text { h.c. }\right)-\mu \sum_{i} n_{i} \\
& +V\left(\sum_{\langle i j\rangle} n_{i} n_{j}+\sum_{\langle\langle j\rangle\rangle} n_{i} n_{j}+\sum_{\langle\langle\langle i j\rangle\rangle} n_{i} n_{j}\right)
\end{aligned}
$$

Spinon and vison
Conductivity fractionalisation
Translational symmetry fractionalisation
© S. Isakov, Y.B. Kim, A. Paramekanti, PRL 97, 207204 (2006)
\& Y.-C. Wang, et al., PRL 121, 057202 (2018)
\& G.-Y. Sun, et al., PRL 121, 077201 (2018)
© J. Becker, S. Wessel, PRL 121, 077202 (2018)
\qquad

Entanglement entropy with Qiu Ku method

Topological order

Kagome lattice frustrated spin model

\& S. Isakov, M. Hastings, R. Melko, Nature Phys 7, 772 (2011)

Itiarui Zhao, Bin-Bin Chen, Yan-Cheng Wang, Zheng Yan, Meng Cheng, ZYM, npj Quantum Materials 7, 69 (2022)

Extended pressure-temperature phase diagram

At P>4GPa, an AFM transition at $\sim 120 \mathrm{~K}$ and another previously not observed phase transition at T~8-9K were observed.

Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets

Guangyu Sun, ${ }^{1,2}$ Nvsen Ma, ${ }^{3,1}$ Bowen Zhao, ${ }^{4}$ Anders W. Sandvik, ${ }^{4,1, *}$ and Zi Yang Meng ${ }^{1,5, \dagger}$

Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets

Guangyu Sun, ${ }^{1,2}$ Nvsen Ma, ${ }^{3,1}$ Bowen Zhao, ${ }^{4}$ Anders W. Sandvik, ${ }^{4,1, *}$ and Zi Yang Meng ${ }^{1,5, \dagger}$
\& CPB 30, 067505 (2021) Cover Story

What is Qiu Ku (秋裤)

How can you tell winter is coming?

In Chinese: I need to put my Qiu Ku on.
\& long underwear, looks similar to leggings
normally made of cotton
most popular colors are grey, blue, white and beige
\& nothing to do with fashion or style
\& The only reason for its existence is to keep you warm. When jeans can no longer resist the freezing air, just wear Qiu Ku under your jeans. Problem solved!

A pair of (stretchy) pants

long johns

