Fractionalization and Emergent Gauge Fields in Quantum Matter ICTP, December 4-8, 2023

Deconfined Quantum Criticality in J-Q Models

Anders W Sandvik, Boston University

Fractionalization and Emergent Gauge Fields in Quantum Matter ICTP, December 4-8, 2023

Deconfined Quantum Criticality in J-Q Models

Anders W Sandvik, Boston University

Fractionalization and Emergent Gauge Fields in Quantum Matter ICTP, December 4-8, 2023

Deconfined Quantum Criticality in J-Q Models

Anders W Sandvik, Boston University

Recent main collaborators Hui Shao, Wenan Guo, Beijing Normal University Jon D'Emidio, Donostia International Physics Center, Spain Jun Takahashi, University of New Mexico Bowen Zhao, BU →Tencent Ltd

Heisenberg exchange = singlet-projector

$$P_{ij} = \frac{1}{4} - \mathbf{S}_i \cdot \mathbf{S}_j \qquad H_{\text{Heisenberg}} = -J \sum_{\langle ij \rangle} P_{ij}$$

Heisenberg exchange = singlet-projector

$$P_{ij} = \frac{1}{4} - \mathbf{S}_i \cdot \mathbf{S}_j \qquad H_{\text{Heisenberg}} = -J \sum_{\langle ij \rangle} P_{ij}$$

Extended models with products of singlet projectors

Heisenberg exchange = singlet-projector

$$P_{ij} = \frac{1}{4} - \mathbf{S}_i \cdot \mathbf{S}_j \qquad H_{\text{Heisenberg}} = -J \sum_{\langle ij \rangle} P_{ij}$$

• Extended models with products of singlet projectors

Heisenberg exchange = singlet-projector

$$P_{ij} = \frac{1}{4} - \mathbf{S}_i \cdot \mathbf{S}_j \qquad H_{\text{Heisenberg}} = -J \sum_{\langle ij \rangle} P_{ij}$$

Extended models with products of singlet projectors

Heisenberg exchange = singlet-projector

$$P_{ij} = \frac{1}{4} - \mathbf{S}_i \cdot \mathbf{S}_j \qquad H_{\text{Heisenberg}} = -J \sum_{\langle ij \rangle} P_{ij}$$

• Extended models with products of singlet projectors

+ all translations and rotations

- no frustration in the conventional sense (no QMC sign problem)
- correlated singlet projection still competes with antiferromagnetism

Heisenberg exchange = singlet-projector

$$P_{ij} = \frac{1}{4} - \mathbf{S}_i \cdot \mathbf{S}_j \qquad H_{\text{Heisenberg}} = -J \sum_{\langle ij \rangle} P_{ij}$$

Extended models with products of singlet projectors

+ all translations and rotations

- no frustration in the conventional sense (no QMC sign problem)
- correlated singlet projection still competes with antiferromagnetism

The J-Q model with two projectors (Sandvik 2007):

$$H_{JQ_2} = -J \sum_{\langle ij \rangle} P_{ij} - Q \sum_{\langle ijkl \rangle} P_{ij} P_{kl}$$

Heisenberg exchange = singlet-projector

$$P_{ij} = \frac{1}{4} - \mathbf{S}_i \cdot \mathbf{S}_j \qquad H_{\text{Heisenberg}} = -J \sum_{\langle ij \rangle} P_{ij}$$

Extended models with products of singlet projectors

+ all translations and rotations

- no frustration in the conventional sense (no QMC sign problem)
- correlated singlet projection still competes with antiferromagnetism

The J-Q model with two projectors (Sandvik 2007):

$$H_{JQ_2} = -J \sum_{\langle ij \rangle} P_{ij} - Q \sum_{\langle ijkl \rangle} P_{ij} P_{kl}$$

Has Néel-VBS transition of ground state

Sign-free in QMC simulations large-scale dqc tests possible

QMC simulations

- SSE, ground-state projector (valence bonds)

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

$$\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$$

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

$$\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$$

VBS: dimer order parameter

$$D_x = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$$
$$D_y = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$$

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

$$\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$$

VBS: dimer order parameter

$$D_x = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$$
$$D_y = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$$

Binder cumulants:

$$U_s = \frac{5}{2} \left(1 - \frac{1}{3} \frac{\langle M_z^4 \rangle}{\langle M_z^2 \rangle^2} \right) U_d = 2 \left(1 - \frac{1}{2} \frac{\langle D^4 \rangle}{\langle D^2 \rangle^2} \right)$$

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

$$\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$$

VBS: dimer order parameter

$$D_x = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$$
$$D_y = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$$

Binder cumulants:

$$U_s = \frac{5}{2} \left(1 - \frac{1}{3} \frac{\langle M_z^4 \rangle}{\langle M_z^2 \rangle^2} \right) \ U_d = 2 \left(1 - \frac{1}{2} \frac{\langle D^4 \rangle}{\langle D^2 \rangle^2} \right)$$

 $U_s \rightarrow 1, U_d \rightarrow 0$ in AFM phase $U_s \rightarrow 0, U_d \rightarrow 1$ in VBS phase

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

 $\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$

VBS: dimer order parameter

$$D_x = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$$
$$D_y = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$$

Binder cumulants:

$$U_s = \frac{5}{2} \left(1 - \frac{1}{3} \frac{\langle M_z^4 \rangle}{\langle M_z^2 \rangle^2} \right) U_d = 2 \left(1 - \frac{1}{2} \frac{\langle D^4 \rangle}{\langle D^2 \rangle^2} \right)$$

 $U_s \rightarrow 1, U_d \rightarrow 0$ in AFM phase $U_s \rightarrow 0, U_d \rightarrow 1$ in VBS phase

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

 $\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$

VBS: dimer order parameter

$$D_x = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$$
$$D_y = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$$

Binder cumulants:

$$U_s = \frac{5}{2} \left(1 - \frac{1}{3} \frac{\langle M_z^4 \rangle}{\langle M_z^2 \rangle^2} \right) U_d = 2 \left(1 - \frac{1}{2} \frac{\langle D^4 \rangle}{\langle D^2 \rangle^2} \right)$$

 $U_s \rightarrow 1, U_d \rightarrow 0$ in AFM phase $U_s \rightarrow 0, U_d \rightarrow 1$ in VBS phase

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

 $\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$

VBS: dimer order parameter

$$D_x = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$$
$$D_y = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$$

Binder cumulants:

$$U_s = \frac{5}{2} \left(1 - \frac{1}{3} \frac{\langle M_z^4 \rangle}{\langle M_z^2 \rangle^2} \right) U_d = 2 \left(1 - \frac{1}{2} \frac{\langle D^4 \rangle}{\langle D^2 \rangle^2} \right)$$

- $U_s \rightarrow 1, U_d \rightarrow 0$ in AFM phase $U_s \rightarrow 0, U_d \rightarrow 1$ in VBS phase
- looks like continuous transition, but is weakly first-order

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

 $\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$

VBS: dimer order parameter

$$D_x = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$$
$$D_y = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$$

Binder cumulants:

$$U_s = \frac{5}{2} \left(1 - \frac{1}{3} \frac{\langle M_z^4 \rangle}{\langle M_z^2 \rangle^2} \right) U_d = 2 \left(1 - \frac{1}{2} \frac{\langle D^4 \rangle}{\langle D^2 \rangle^2} \right)$$

- $U_s \rightarrow 1, U_d \rightarrow 0$ in AFM phase $U_s \rightarrow 0, U_d \rightarrow 1$ in VBS phase
- looks like continuous transition, but is weakly first-order
- signals of first-order transitions have been ambiguous

- a coexistence state should have long-ranged spin and dimer correlations

- a coexistence state should have long-ranged spin and dimer correlations

- a coexistence state should have long-ranged spin and dimer correlations

- a coexistence state should have long-ranged spin and dimer correlations

- a coexistence state should have long-ranged spin and dimer correlations

The J-Q_n models have first-order transitions - "pseudo critical" for n=2,3

- discontinuities increase with number of singlet projectors n

Critical scaling of order parameters? - spin and dimer correlations

Critical scaling of order parameters? - spin and dimer correlations

Derivatives have less effects from L-dependent contributions

- Nahum et al., PRX 2015, 3D loop model $dC(r)/dr \propto r^{-(2\Delta_{\phi}+1)}$

Critical scaling of order parameters? - spin and dimer correlations Derivatives have less effects from L-dependent contributions

- Nahum et al., PRX 2015, 3D loop model $dC(r)/dr \propto r^{-(2\Delta_{\phi}+1)}$

Critical scaling of order parameters? - spin and dimer correlations Derivatives have less effects from L-dependent contributions

- Nahum et al., PRX 2015, 3D loop model $dC(r)/dr \propto r^{-(2\Delta_{\phi}+1)}$

- Chester & Su, CFT numerical bootstrap, arXiv:2310.08343
- This scaling dim is consistent with tri-critical SO(5) point

 $\rightarrow \Delta_\phi \approx 0.63~$ agrees with loop model (but somewhat smaller error bars) Chester & Su, CFT numerical bootstrap, arXiv:2310.08343 - This scaling dim is consistent with tri-critical SO(5) point

 $\rightarrow \Delta_{\phi} \approx 0.63$ agrees with loop model (but somewhat smaller error bars) Chester & Su, CFT numerical bootstrap, arXiv:2310.08343 - This scaling dim is consistent with tri-critical SO(5) point

- Relevant SO(5) singlet
 - tuning this operator may correspond to going into 1st-order phase boundary
Critical scaling of order parameters? - spin and dimer correlations Derivatives have less effects from L-dependent contributions - Nahum et al., PRX 2015, 3D loop model $dC(r)/dr \propto r^{-(2\Delta_{\phi}+1)}$

 $\rightarrow \Delta_\phi \approx 0.63~$ agrees with loop model (but somewhat smaller error bars) Chester & Su, CFT numerical bootstrap, arXiv:2310.08343 - This scaling dim is consistent with tri-critical SO(5) point

	Δ_v	Δ_t	Δ_{t_3}	Δ_{t_4}	$\Delta_s \leftarrow$
Bootstrap	0.630*	1.519	2.598	3.884	2.359
10^{-2} barge N	0.630	1.497	2.552	3.770	
Lattice	0.630(3)	1.5	—	_	
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

- Relevant SO(5) singlet
 - tuning this operator may correspond to going into 1st-order phase boundary

Fuzzy sphere: Zhou, Hu, Zhu, He, arXiv:2306.16435

AFM and VBS orders coexist on phase boundary

AFM and VBS orders coexist on phase boundary

- should show critical scaling m ~ δ^{β} in thermodynamic limit

Phase diagram of J-Q2-Q6 model

AFM and VBS orders coexist on phase boundary

- should show critical scaling m ~ δ^β in thermodynamic limit
- exponent β that of tri-critical SO(5) point?

- using points where $m_{AFM}^2(L) = m_{VBS}^2(L)$

Negative Q_{6c} , tri-critical not accessible with sign-free QMC - large β , small overall m² values; system still near-critical

- using points where $m_{AFM}^2(L) = m_{VBS}^2(L)$

Negative Q_{6c} , tri-critical not accessible with sign-free QMC - large β , small overall m² values; system still near-critical - $Q_6 = 0 \sim 0.5$ is close enough to extract reliable exponent

$$\frac{1}{\ln(2)}\ln\left(\frac{U'(2L)}{U'(L)}\right) \to \frac{1}{\nu}$$

$$\frac{1}{\ln(2)} \ln\left(\frac{U'(2L)}{U'(L)}\right) \rightarrow \frac{1}{\nu} = 3 - \Delta$$

$$\frac{1}{\ln(2)} \ln\left(\frac{U'(2L)}{U'(L)}\right) \to \frac{1}{\nu} = 3 - \Delta$$

Binder cumulants slopes

$$\frac{1}{\ln(2)} \ln\left(\frac{U'(2L)}{U'(L)}\right) \rightarrow \frac{1}{\nu} = 3 - \Delta$$

We can also calculate correlations of the relevant J and Q terms in H

Binder cumulants slopes

 10^{-3}

 10^{-4}

 $C_Q(r)$

$$\frac{1}{\ln(2)} \ln\left(\frac{U'(2L)}{U'(L)}\right) \rightarrow \frac{1}{\nu} = 3 - \Delta$$

We can also calculate correlations of the relevant J and Q terms in H

=(x, 0), x = L/2 - 1

10

x

30 40

60

20

r = (x, 0), L = 256

5

40 50

30

100

L

200

400

Mutual consistency between two methods: $v = 0.455 \pm 0.002$, $\Delta = 0.80 \pm 0.01$

Mutual consistency between two methods: $v = 0.455 \pm 0.002$, $\Delta = 0.80 \pm 0.01$ - scaling dimension $\Delta = 0.80$ not in the SO(5) CFT spectrum

Mutual consistency between two methods: $v = 0.455 \pm 0.002$, $\Delta = 0.80 \pm 0.01$

- scaling dimension Δ = 0.80 not in the SO(5) CFT spectrum
- A length scale associated with some other criticality (before first-order flow)?

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

Consistent with AFM-VBS "cross-over" exponent - tuning the operater deforming the SO(5) sphere

	$ \Delta_v $	Δ_t	Δ_{t_3}	Δ_{t_4}	Δ_s
Bootstrap	0.630^{*}	1 .519	2.598	3.884	2.359
Large N	0.650	1 .49	2.552	3.770	_
Lattice	0.630(3	.5.		—	_
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

Consistent with AFM-VBS "cross-over" exponent - tuning the operator deforming the SO(5) sphere

	Δ_v		Δ_t		Δ_{t_3}	Δ_{t_4}	Δ_s
Bootstrap	0.630*		.51	9	2.598	3.884	2.359
Large N	0.650	-	49	7	2.552	3.770	_
Lattice	0.630(3)		.5				—
Fuzzy Sphere	0.584	1		4	2.565	3.885	2.845

All these scaling dimensions are consistent with the J-Q model

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

Consistent with AFM-VBS "cross-over" exponent - tuning the operater deforming the SO(5) sphere

	$ \Delta_v$		Δ_t		Δ_{t_3}	Δ_{t_4}	Δ_s
Bootstrap	0.630*		.51	9	2.598	3.884	2.359
Large N	0.630		.49	7	2.552	3.770	_
Lattice	0.630(3		.5			—	_
Fuzzy Sphere	0.584	1	454	4	2.565	3.885	2.845

All these scaling dimensions are consistent with the J-Q model

But additional mystery operator affecting the J-Q (and loop) model Phase diagrams; possible dqc scenarios

- in space of two relevant couplings (g,k)
Phase diagrams; possible dqc scenarios

- in space of two relevant couplings (g,k)

J-Q model with one tuning parameter crosses first-order line Phase diagrams; possible dqc scenarios - in space of two relevant couplings (g,k)

J-Q model with one tuning parameter crosses first-order line

