Fractionalization and Emergent Gauge Fields in Quantum Matter ICTP, December 4-8, 2023

Deconfined Quantum Criticality in J-Q Models

Anders W Sandvik, Boston University

BOSTON
UNIVERSITY

Fractionalization and Emergent Gauge Fields in Quantum Matter ICTP, December 4-8, 2023

Deconfined Quantum Criticality in J-Q Models

Anders W Sandvik, Boston University

Deconfined Quantum Criticality in J-Q Models

Anders W Sandvik, Boston University

Recent main collaborators
Hui Shao, Wenan Guo, Beijing Normal University Jon D'Emidio, Donostia International Physics Center, Spain

Jun Takahashi, University of New Mexico Bowen Zhao, BU \rightarrow Tencent Ltd

J-Q Models; Designer Hamiltonians for DQC physics

J-Q Models; Designer Hamiltonians for DQC physics

Heisenberg exchange $=$ singlet-projector

$$
P_{i j}=\frac{1}{4}-\mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad H_{\text {Heisenberg }}=-J \sum_{\langle i j\rangle} P_{i j}
$$

J-Q Models; Designer Hamiltonians for DQC physics

Heisenberg exchange $=$ singlet-projector

$$
P_{i j}=\frac{1}{4}-\mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad H_{\text {Heisenberg }}=-J \sum_{\langle i j\rangle} P_{i j}
$$

- Extended models with products of singlet projectors

J-Q Models; Designer Hamiltonians for DQC physics

Heisenberg exchange $=$ singlet-projector

$$
P_{i j}=\frac{1}{4}-\mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad H_{\text {Heisenberg }}=-J \sum_{\langle i j\rangle} P_{i j}
$$

- Extended models with products of singlet projectors

J-Q Models; Designer Hamiltonians for DQC physics

Heisenberg exchange $=$ singlet-projector

$$
P_{i j}=\frac{1}{4}-\mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad H_{\text {Heisenberg }}=-J \sum_{\langle i j\rangle} P_{i j}
$$

- Extended models with products of singlet projectors

+ all translations and rotations

J-Q Models; Designer Hamiltonians for DQC physics

Heisenberg exchange $=$ singlet-projector

$$
P_{i j}=\frac{1}{4}-\mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad H_{\text {Heisenberg }}=-J \sum_{\langle i j\rangle} P_{i j}
$$

- Extended models with products of singlet projectors

+ all translations and rotations
- no frustration in the conventional sense (no QMC sign problem)
- correlated singlet projection still competes with antiferromagnetism

J-Q Models; Designer Hamiltonians for DQC physics

Heisenberg exchange $=$ singlet-projector

$$
P_{i j}=\frac{1}{4}-\mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad H_{\text {Heisenberg }}=-J \sum_{\langle i j\rangle} P_{i j}
$$

- Extended models with products of singlet projectors

+ all translations and rotations
- no frustration in the conventional sense (no QMC sign problem)
- correlated singlet projection still competes with antiferromagnetism

The J-Q model with two projectors (Sandvik 2007):

$$
H_{J Q_{2}}=-J \sum_{\langle i j\rangle} P_{i j}-Q \sum_{\langle i j k l\rangle} P_{i j} P_{k l}
$$

J-Q Models; Designer Hamiltonians for DQC physics

Heisenberg exchange = singlet-projector

$$
P_{i j}=\frac{1}{4}-\mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad H_{\text {Heisenberg }}=-J \sum_{\langle i j\rangle} P_{i j}
$$

- Extended models with products of singlet projectors

+ all translations and rotations
- no frustration in the conventional sense (no QMC sign problem)
- correlated singlet projection still competes with antiferromagnetism

The J-Q model with two projectors (Sandvik 2007):

$$
H_{J Q_{2}}=-J \sum_{\langle i j\rangle} P_{i j}-Q \sum_{\langle i j k l\rangle} P_{i j} P_{k l}
$$

- Has Néel-VBS transition of ground state

- Sign-free in QMC simulations large-scale dqc tests possible

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

QMC simulations

- SSE, ground-state projector (valence bonds)

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:
AFM: staggered magnetization

$$
\vec{M}=\frac{1}{N} \sum_{i}(-1)^{x_{i}+y_{i}} \vec{S}_{i}
$$

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:
AFM: staggered magnetization

$$
\vec{M}=\frac{1}{N} \sum_{i}(-1)^{x_{i}+y_{i}} \vec{S}_{i}
$$

VBS: dimer order parameter

$$
\begin{aligned}
D_{x} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{x_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}} \\
D_{y} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{y_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{y}}
\end{aligned}
$$

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

$$
\vec{M}=\frac{1}{N} \sum_{i}(-1)^{x_{i}+y_{i}} \vec{S}_{i}
$$

VBS: dimer order parameter

$$
\begin{aligned}
D_{x} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{x_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}} \\
D_{y} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{y_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{y}}
\end{aligned}
$$

Binder cumulants:
$\left.U_{s}=\frac{5}{2}\left(1-\frac{1}{3}\left\langle M_{z}^{4}\right\rangle\right\rangle\left\langle M_{z}^{2}\right\rangle^{2}\right) \quad U_{d}=2\left(1-\frac{1}{2} \frac{\left\langle D^{4}\right\rangle}{\left\langle D^{2}\right\rangle^{2}}\right)$

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

$$
\vec{M}=\frac{1}{N} \sum_{i}(-1)^{x_{i}+y_{i}} \vec{S}_{i}
$$

VBS: dimer order parameter

$$
\begin{aligned}
D_{x} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{x_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}} \\
D_{y} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{y_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{y}}
\end{aligned}
$$

Binder cumulants:
$\left.U_{s}=\frac{5}{2}\left(1-\frac{1}{3}\left\langle M_{z}^{4}\right\rangle\right\rangle\left\langle M_{z}^{2}\right\rangle^{2}\right) U_{d}=2\left(1-\frac{1}{2} \frac{\left\langle D^{4}\right\rangle}{\left\langle D^{2}\right\rangle^{2}}\right)$
$\mathrm{U}_{\mathrm{s}} \rightarrow 1, \mathrm{U}_{\mathrm{d}} \rightarrow 0$ in AFM phase
$\mathrm{U}_{\mathrm{s}} \rightarrow 0, \mathrm{U}_{\mathrm{d}} \rightarrow 1$ in VBS phase

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

$$
\vec{M}=\frac{1}{N} \sum_{i}(-1)^{x_{i}+y_{i}} \vec{S}_{i}
$$

VBS: dimer order parameter

$$
\begin{aligned}
D_{x} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{x_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}} \\
D_{y} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{y_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{y}}
\end{aligned}
$$

Binder cumulants:
$U_{s}=\frac{5}{2}\left(1-\frac{1}{3} \frac{\left\langle M_{z}^{4}\right\rangle}{\left\langle M_{z}^{2}\right\rangle^{2}}\right) U_{d}=2\left(1-\frac{1}{2} \frac{\left\langle D^{4}\right\rangle}{\left\langle D^{2}\right\rangle^{2}}\right)$

$\mathrm{U}_{\mathrm{s}} \rightarrow 1, \mathrm{U}_{\mathrm{d}} \rightarrow 0$ in AFM phase
$\mathrm{U}_{\mathrm{s}} \rightarrow 0, \mathrm{U}_{\mathrm{d}} \rightarrow 1$ in VBS phase

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

$$
\vec{M}=\frac{1}{N} \sum_{i}(-1)^{x_{i}+y_{i}} \vec{S}_{i}
$$

VBS: dimer order parameter

$$
\begin{aligned}
D_{x} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{x_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}} \\
D_{y} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{y_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{y}}
\end{aligned}
$$

Binder cumulants:
$U_{s}=\frac{5}{2}\left(1-\frac{1}{3} \frac{\left\langle M_{z}^{4}\right\rangle}{\left\langle M_{z}^{2}\right\rangle^{2}}\right) U_{d}=2\left(1-\frac{1}{2} \frac{\left\langle D^{4}\right\rangle}{\left\langle D^{2}\right\rangle^{2}}\right)$
$\mathrm{U}_{\mathrm{s}} \rightarrow 1, \mathrm{U}_{\mathrm{d}} \rightarrow 0$ in AFM phase
$\mathrm{U}_{\mathrm{s}} \rightarrow 0, \mathrm{U}_{\mathrm{d}} \rightarrow 1$ in VBS phase
Z_{4} breaking $\quad \mathrm{O}(3)$ breaking

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

$$
\vec{M}=\frac{1}{N} \sum_{i}(-1)^{x_{i}+y_{i}} \vec{S}_{i}
$$

VBS: dimer order parameter

$$
\begin{aligned}
D_{x} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{x_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}} \\
D_{y} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{y_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{y}}
\end{aligned}
$$

Binder cumulants:
$U_{s}=\frac{5}{2}\left(1-\frac{1}{3} \frac{\left\langle M_{z}^{4}\right\rangle}{\left\langle M_{z}^{2}\right\rangle^{2}}\right) U_{d}=2\left(1-\frac{1}{2} \frac{\left\langle D^{4}\right\rangle}{\left\langle D^{2}\right\rangle^{2}}\right)$
$\mathrm{U}_{\mathrm{s}} \rightarrow 1, \mathrm{U}_{\mathrm{d}} \rightarrow 0$ in AFM phase $\mathrm{U}_{\mathrm{s}} \rightarrow 0, \mathrm{U}_{\mathrm{d}} \rightarrow 1$ in VBS phase

Z_{4} breaking $O(3)$ breaking

- looks like continuous transition, but is weakly first-order

Phase transition in the $\mathrm{J}-\mathrm{Q}_{2}$ model

QMC simulations

- SSE, ground-state projector (valence bonds)

Order parameters:

AFM: staggered magnetization

$$
\vec{M}=\frac{1}{N} \sum_{i}(-1)^{x_{i}+y_{i}} \overrightarrow{S_{i}}
$$

VBS: dimer order parameter

$$
\begin{aligned}
D_{x} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{x_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}} \\
D_{y} & =\frac{1}{N} \sum_{i=1}^{N}(-1)^{y_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{y}}
\end{aligned}
$$

Binder cumulants:
$U_{s}=\frac{5}{2}\left(1-\frac{1}{3} \frac{\left\langle M_{z}^{4}\right\rangle}{\left\langle M_{z}^{2}\right\rangle^{2}}\right) U_{d}=2\left(1-\frac{1}{2} \frac{\left\langle D^{4}\right\rangle}{\left\langle D^{2}\right\rangle^{2}}\right)$
$\mathrm{U}_{\mathrm{s}} \rightarrow 1, \mathrm{U}_{\mathrm{d}} \rightarrow 0$ in AFM phase
$\mathrm{U}_{\mathrm{s}} \rightarrow 0, \mathrm{U}_{\mathrm{d}} \rightarrow 1$ in VBS phase

Z_{4} breaking $\mathrm{O}(3)$ breaking

- looks like continuous transition, but is weakly first-order
- signals of first-order transitions have been ambiguous

Detection of phase coexistence; long-distance correlations

Detection of phase coexistence; long-distance correlations

- a coexistence state should have long-ranged spin and dimer correlations

Detection of phase coexistence; long-distance correlations

- a coexistence state should have long-ranged spin and dimer correlations

Detection of phase coexistence; long-distance correlations

- a coexistence state should have long-ranged spin and dimer correlations

Detection of phase coexistence; long-distance correlations

- a coexistence state should have long-ranged spin and dimer correlations

Detection of phase coexistence; long-distance correlations

- a coexistence state should have long-ranged spin and dimer correlations

The $\mathrm{J}-\mathrm{Q}_{\mathrm{n}}$ models have first-order transitions - "pseudo critical" for $\mathrm{n}=2,3$

- discontinuities increase with number of singlet projectors n

Critical scaling of order parameters? - spin and dimer correlations

Critical scaling of order parameters? - spin and dimer correlations

Derivatives have less effects from L-dependent contributions

- Nahum et al., PRX 2015, 3D loop model $\quad d C(r) / d r \propto r^{-\left(2 \Delta_{\phi}+1\right)}$

Critical scaling of order parameters? - spin and dimer correlations

 Derivatives have less effects from L-dependent contributions - Nahum et al., PRX 2015, 3D loop model $\quad d C(r) / d r \propto r^{-\left(2 \Delta_{\phi}+1\right)}$

Critical scaling of order parameters? - spin and dimer correlations Derivatives have less effects from L-dependent contributions - Nahum et al., PRX 2015, 3D loop model $\quad d C(r) / d r \propto r^{-\left(2 \Delta_{\phi}+1\right)}$

$\rightarrow \Delta_{\phi} \approx 0.63$

Critical scaling of order parameters? - spin and dimer correlations

 Derivatives have less effects from L-dependent contributions - Nahum et al., PRX 2015, 3D loop model $\quad d C(r) / d r \propto r^{-\left(2 \Delta_{\phi}+1\right)}$

$\rightarrow \Delta_{\phi} \approx 0.63$ agrees with loop model (but somewhat smaller error bars)

Critical scaling of order parameters? - spin and dimer correlations

Derivatives have less effects from L-dependent contributions - Nahum et al., PRX 2015, 3D loop model $\quad d C(r) / d r \propto r^{-\left(2 \Delta_{\phi}+1\right)}$

$\rightarrow \Delta_{\phi} \approx 0.63$ agrees with loop model (but somewhat smaller error bars)
Chester \& Su, CFT numerical bootstrap, arXiv:2310.08343

- This scaling dim is consistent with tri-critical $\mathrm{SO}(5)$ point

Critical scaling of order parameters? - spin and dimer correlations Derivatives have less effects from L-dependent contributions - Nahum et al., PRX 2015, 3D loop model $\quad d C(r) / d r \propto r^{-\left(2 \Delta_{\phi}+1\right)}$

$\rightarrow \Delta_{\phi} \approx 0.63$ agrees with loop model (but somewhat smaller error bars)
Chester \& Su, CFT numerical bootstrap, arXiv:2310.08343

- This scaling dim is consistent with tri-critical SO(5) point

	Δ_{v}	Δ_{t}	$\Delta_{t_{3}}$	$\Delta_{t_{4}}$	Δ_{s}
Bootstrap	0.630^{*}	1.519	2.598	3.884	2.359
Large N	0.630	1.497	2.552	3.770	-
Lattice	$0.630(3)$	1.5	-	-	-
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

Critical scaling of order parameters? - spin and dimer correlations Derivatives have less effects from L-dependent contributions - Nahum et al., PRX 2015, 3D loop model $\quad d C(r) / d r \propto r^{-\left(2 \Delta_{\phi}+1\right)}$

$\rightarrow \Delta_{\phi} \approx 0.63$ agrees with loop model (but somewhat smaller error bars)
Chester \& Su, CFT numerical bootstrap, arXiv:2310.08343

- This scaling dim is consistent with tri-critical SO(5) point

	Δ_{v}	Δ_{t}	$\Delta_{t_{3}}$	$\Delta_{t_{4}}$	$\Delta_{s} \leftarrow$
Bootstrap	0.630^{*}	1.519	2.598	3.884	2.359
Large N	0.630	1.497	2.552	3.770	-
Lattice	$0.630(3)$	1.5	-	-	-
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

Critical scaling of order parameters? - spin and dimer correlations Derivatives have less effects from L-dependent contributions - Nahum et al., PRX 2015, 3D loop model $\quad d C(r) / d r \propto r^{-\left(2 \Delta_{\phi}+1\right)}$

$\rightarrow \Delta_{\phi} \approx 0.63$ agrees with loop model (but somewhat smaller error bars)
Chester \& Su, CFT numerical bootstrap, arXiv:2310.08343

- This scaling dim is consistent with tri-critical SO(5) point

| | Δ_{v} | Δ_{t} | $\Delta_{t_{3}}$ | $\Delta_{t_{4}}$ | $\Delta_{s} \longleftarrow$ |
| :---: | :--- | :--- | :--- | :--- | :--- | Relevant SO(5) singlet

Fuzzy sphere: Zhou, Hu, Zhu, He, arXiv:2306.16435

Phase diagram of $\mathrm{J}-\mathrm{Q}_{2}-\mathrm{Q}_{6}$ model

Phase diagram of $J-Q_{2}-Q_{6}$ model

Phase diagram of $\mathrm{J}-\mathrm{Q}_{2}-\mathrm{Q}_{6}$ model

Phase diagram of $\mathrm{J}-\mathrm{Q}_{2}-\mathrm{Q}_{6}$ model

More clearly first-order

Phase diagram of $\mathrm{J}-\mathrm{Q}_{2}-\mathrm{Q}_{6}$ model

More clearly first-order

AFM and VBS orders coexist on phase boundary

Phase diagram of $\mathrm{J}-\mathrm{Q}_{2}-\mathrm{Q}_{6}$ model

More clearly first-order

AFM and VBS orders coexist on phase boundary

- should show critical scaling $m \sim \delta^{\beta}$ in thermodynamic limit

Phase diagram of $\mathrm{J}-\mathrm{Q}_{2}-\mathrm{Q}_{6}$ model

More clearly first-order

AFM and VBS orders coexist on phase boundary

- should show critical scaling $m \sim \delta^{\beta}$ in thermodynamic limit
- exponent β that of tri-critical SO(5) point?
$L \rightarrow \infty$ extrapolated order parameters on the coexistence curve
- using points where $m^{2}{ }^{\text {AFM }}(\mathrm{L})=\mathrm{m}^{2} \mathrm{vBs}(\mathrm{L})$
$L \rightarrow \infty$ extrapolated order parameters on the coexistence curve
- using points where $m^{2}{ }^{\text {AFM }}(\mathrm{L})=\mathrm{m}^{2} \mathrm{vBs}(\mathrm{L})$

$L \rightarrow \infty$ extrapolated order parameters on the coexistence curve
- using points where $m^{2}{ }^{\text {AFM }}(\mathrm{L})=\mathrm{m}^{2} \mathrm{vBs}(\mathrm{L})$

$L \rightarrow \infty$ extrapolated order parameters on the coexistence curve
- using points where $\mathrm{m}^{2}{ }_{\mathrm{AFM}}(\mathrm{L})=\mathrm{m}^{2} \mathrm{vBS}(\mathrm{L})$

$L \rightarrow \infty$ extrapolated order parameters on the coexistence curve
- using points where $\mathrm{m}^{2}{ }_{\mathrm{AFM}}(\mathrm{L})=\mathrm{m}^{2} \mathrm{vBS}(\mathrm{L})$

$L \rightarrow \infty$ extrapolated order parameters on the coexistence curve - using points where $\mathrm{m}^{2} \mathrm{AFM}(\mathrm{L})=\mathrm{m}^{2} \mathrm{VBS}(\mathrm{L})$

$L \rightarrow \infty$ extrapolated order parameters on the coexistence curve - using points where $\mathrm{m}^{2}{ }_{\mathrm{AFM}}(\mathrm{L})=\mathrm{m}^{2} \mathrm{vBS}(\mathrm{L})$

$L \rightarrow \infty$ extrapolated order parameters on the coexistence curve - using points where $\mathrm{m}^{2}{ }_{\mathrm{AFM}}(\mathrm{L})=\mathrm{m}^{2} \mathrm{vBS}(\mathrm{L})$

Negative Q6c, tri-critical not accessible with sign-free QMC
$L \rightarrow \infty$ extrapolated order parameters on the coexistence curve - using points where $\mathrm{m}^{2}{ }_{\mathrm{AFM}}(\mathrm{L})=\mathrm{m}^{2} \mathrm{vBS}(\mathrm{L})$

$$
2 \beta=\nu(1+\eta)=\frac{2 \Delta_{\phi}}{3-\Delta_{s}}=1.96 \text { from CFT bootstrap }
$$

Negative Q $_{60}$, tri-critical not accessible with sign-free QMC

- large β, small overall m^{2} values; system still near-critical
$L \rightarrow \infty$ extrapolated order parameters on the coexistence curve - using points where $\mathrm{m}^{2}{ }_{\mathrm{AFM}}(\mathrm{L})=\mathrm{m}^{2} \mathrm{vBS}(\mathrm{L})$

$$
\begin{aligned}
& 2 \beta=\nu(1+\eta)=\frac{2 \Delta_{\phi}}{3-\Delta_{s}}=1.96 \text { from CFT bootstrap }
\end{aligned}
$$

Negative $Q_{6 c}$, tri-critical not accessible with sign-free QMC

- large β, small overall m^{2} values; system still near-critical
- $Q_{6}=0 \sim 0.5$ is close enough to extract reliable exponent

Correlation-length exponent, J-Q2

Correlation-length exponent, J-Q2
Binder cumulants slopes

Sandvik \& Zhao, Chin. Phys. Lett. 2020

Correlation-length exponent, $\mathrm{J}-\mathrm{Q}_{2}$

Binder cumulants slopes

$$
\frac{1}{\ln (2)} \ln \left(\frac{U^{\prime}(2 L)}{U^{\prime}(L)}\right) \rightarrow \frac{1}{\nu}
$$

Sandvik \& Zhao, Chin. Phys. Lett. 2020

Correlation-length exponent, $\mathrm{J}-\mathrm{Q}_{2}$

Binder cumulants slopes

$$
\frac{1}{\ln (2)} \ln \left(\frac{U^{\prime}(2 L)}{U^{\prime}(L)}\right) \rightarrow \frac{1}{\nu}=3-\Delta
$$

Sandvik \& Zhao, Chin. Phys. Lett. 2020

Correlation-length exponent, $\mathrm{J}-\mathrm{Q}_{2}$

Binder cumulants slopes

$$
\frac{1}{\ln (2)} \ln \left(\frac{U^{\prime}(2 L)}{U^{\prime}(L)}\right) \rightarrow \frac{1}{\nu}=3-\Delta
$$

Sandvik \& Zhao, Chin. Phys. Lett. 2020

Correlation-length exponent, $\mathrm{J}-\mathrm{Q}_{2}$

Binder cumulants slopes

$$
\frac{1}{\ln (2)} \ln \left(\frac{U^{\prime}(2 L)}{U^{\prime}(L)}\right) \rightarrow \frac{1}{\nu}=3-\Delta
$$

We can also calculate correlations of the relevant J and Q terms in H

Sandvik \& Zhao, Chin. Phys. Lett. 2020

Correlation-length exponent, $\mathrm{J}-\mathrm{Q}_{2}$

Binder cumulants slopes

$$
\frac{1}{\ln (2)} \ln \left(\frac{U^{\prime}(2 L)}{U^{\prime}(L)}\right) \rightarrow \frac{1}{\nu}=3-\Delta
$$

We can also calculate correlations of the relevant J and Q terms in H

Correlation-length exponent, $\mathrm{J}-\mathrm{Q}_{2}$

Binder cumulants slopes

$$
\frac{1}{\ln (2)} \ln \left(\frac{U^{\prime}(2 L)}{U^{\prime}(L)}\right) \rightarrow \frac{1}{\nu}=3-\Delta
$$

We can also calculate correlations of the relevant J and Q terms in H

Correlation-length exponent, $\mathrm{J}-\mathrm{Q}_{2}$

Binder cumulants slopes

$$
\frac{1}{\ln (2)} \ln \left(\frac{U^{\prime}(2 L)}{U^{\prime}(L)}\right) \rightarrow \frac{1}{\nu}=3-\Delta
$$

We can also calculate correlations of the relevant J and Q terms in H

Mutual consistency between two methods: $v=0.455 \pm 0.002, \Delta=0.80 \pm 0.01$

Correlation-length exponent, $\mathrm{J}-\mathrm{Q}_{2}$

Binder cumulants slopes

$$
\frac{1}{\ln (2)} \ln \left(\frac{U^{\prime}(2 L)}{U^{\prime}(L)}\right) \rightarrow \frac{1}{\nu}=3-\Delta
$$

We can also calculate correlations of the relevant J and Q terms in H

Mutual consistency between two methods: $v=0.455 \pm 0.002, \Delta=0.80 \pm 0.01$

- scaling dimension $\Delta=0.80$ not in the SO(5) CFT spectrum

Correlation-length exponent, $\mathrm{J}-\mathrm{Q}_{2}$

Binder cumulants slopes

$$
\frac{1}{\ln (2)} \ln \left(\frac{U^{\prime}(2 L)}{U^{\prime}(L)}\right) \rightarrow \frac{1}{\nu}=3-\Delta
$$

We can also calculate correlations of the relevant J and Q terms in H

Mutual consistency between two methods: $v=0.455 \pm 0.002, \Delta=0.80 \pm 0.01$

- scaling dimension $\Delta=0.80$ not in the SO(5) CFT spectrum
- A length scale associated with some other criticality (before first-order flow)?

Correlations of staggered singlet projectors

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

Correlations of staggered singlet projectors

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

Correlations of staggered singlet projectors

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

Correlations of staggered singlet projectors

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

Consistent with AFM-VBS "cross-over" exponent

- tuning the operator deforming the $\mathrm{SO}(5)$ sphere

	Δ_{v}	Δ_{t}	$\Delta_{t_{3}}$	$\Delta_{t_{4}}$	Δ_{s}
Bootstrap	0.630^{*}	1.519	2.598	3.884	2.359
Large N	0.630	1.497	2.552	3.770	-
Lattice	$0.630(3)$	1.5	-	-	-
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

Correlations of staggered singlet projectors

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

Consistent with AFM-VBS "cross-over" exponent

- tuning the operator deforming the $\mathrm{SO}(5)$ sphere

	Δ_{v}	Δ_{t}	$\Delta_{t_{3}}$	$\Delta_{t_{4}}$	Δ_{s}
Bootstrap	0.630^{*}	1.519	2.598	3.884	2.359
Large N	0.630	1.497	2.552	3.770	-
Lattice	$0.630(3)$	1.5	-	-	-
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

All these scaling dimensions are consistent with the J-Q model

Correlations of staggered singlet projectors

[Zhao, Takahashi, Sandvik, PRL 2020] - new improved results

Consistent with AFM-VBS "cross-over" exponent

- tuning the operator deforming the $\mathrm{SO}(5)$ sphere

	Δ_{v}	Δ_{t}	$\Delta_{t_{3}}$	$\Delta_{t_{4}}$	Δ_{s}
Bootstrap	0.630^{*}	1.519	2.598	3.884	2.359
Large N	0.630	1.497	2.552	3.770	-
Lattice	$0.630(3)$	1.5	-	-	-
Fuzzy Sphere	0.584	1.454	2.565	3.885	2.845

All these scaling dimensions are consistent with the J-Q model

But additional mystery operator affecting the $\mathrm{J}-\mathrm{Q}$ (and loop) model

Phase diagrams; possible dqc scenarios

- in space of two relevant couplings (\mathbf{g}, k)

Phase diagrams; possible dqc scenarios

- in space of two relevant couplings (\mathbf{g}, k)

J-Q model with one tuning parameter crosses first-order line

Phase diagrams; possible dqc scenarios

- in space of two relevant couplings (\mathbf{g}, k)

$J-Q$ model with one tuning parameter crosses first-order line

Phase diagrams; possible dqc scenarios

- in space of two relevant couplings (\mathbf{g}, k)

$J-Q$ model with one tuning parameter crosses first-order line

Phase diagrams; possible dqc scenarios

- in space of two relevant couplings (\mathbf{g}, k)

$J-Q$ model with one tuning parameter crosses first-order line

Phase diagrams; possible dqc scenarios

- in space of two relevant couplings (\mathbf{g}, k)

$J-Q$ model with one tuning parameter crosses first-order line

