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Embedding of UV symmetries on IR theory
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How are the UV/microscopic symmetries implemented on the IR degrees of freedom ?

Text book example :

® Consider the nearest neighbour FM and AFM Ising model on square
lattice.

*Both lead to qb4 - theory in the coarse grained continuum limit.

e [ attice translations are differently implemented on the fields :
*FM :¢) — ¢ : Ferromagnetic oder

*AFM : @0 — — ¢ : Neel order

UV symmetry implementation is very important to understand
the nature of phases and their experimental signatures



Another well known example : Monolayer graphene

Low energy : SU(4) Dirac theory

The embedding of the lattice symmetries on the low energy Dirac
fermions y crucially depend on the position of the Dirac points in BZ

The above embedding then fixes the nature of all the phases
proximate to the semimetal that can be obtained by condensing
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This Talk : |=3/2 electrons on honeycomb lattice

Due to Atomic spin orbit coupling

Changes the position and number of the Dirac points

Hence changes the embedding of the Honeycomb lattice
symmetries on the low energy Dirac fermion



This Talk : |=3/2 electrons on honeycomb lattice

As a result :

(Non-interacting) low energy : SU(8) Dirac semimetal

The nature of proximate phases are completely dictated by the newer
embedding of UV symmetries

Provides much richer set of phases and possible phase transitions.



Spin-orbit coupled electronic d-orbitals

Octahedral CEF

d — orbitals

[Romhanyi et. al. (2017)]

d! : quarter filled J=3/2 orbitals

Put them on a corner sharing octahedral
geometry such that we get a honeycomb lattice

e.g.: Similar to a — ZrCl; but we shall consider

the general weak to intermediate coupling physics
[Yamada, Oshikawa, Jackeli (2018)]




Hopping Hamiltonian and SU(4) Symmetry

(1/11/2, Y_112:¥3/2s 1/1—3/2) !

Indirect Hopping Model

A
H=—— Z v (U () +h.c.
3 (rr)

[Yamada, Oshikawa, Jackeli (2018)]




Hopping Hamiltonian and SU(4) Symmetry

[Yamada, Oshikawa, Jackeli (2018)]

(1/11/2, Y_112:¥3/2s 1/1—3/2) '

[
H=-— Y y'@®U,pr)+h
3 (rr)

Indirect Hopping Model

H Urr’ - = |]4

r,r'e€ hexagon

The system has a SU(4) symmetry which becomes manifest in a local basis

P(r) = g(r)"y(r)

|
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H=-——Y n.¢'0px)+ hc. Il =

3 (rr’) r.r'e hexagon



Hopping Hamiltonian and SU(4) Symmetry : Band structure

[2304.07223, Mondal, Shenoy, SB]

4
H=-—Y n.¢'®¢r)+ h.c. I #ne=-1
\/g (rr’) r.r'e hexagon

Honeycomb lattice in 7 — flux

Choose a 4-site unit cell




Hopping Hamiltonian and SU(4) Symmetry : Band structure

My

My

+Q°

, for 1/4th filling there are two Dirac points at Q = =

e Also similar case for 3/4th filling

M3




Low energy Dirac Theory

The low energy physics is captured by the Dirac points and like graphene the
low energy Hamiltonian is obtained by expanding about the two Dirac points

particle—hole : 1/2
)(SU(4) . 1234 Valley : =

y . 16 component spinor
Hy=— ivF[dzr )(T(r)(axéx + aydy))((r)

Introduce three matrices for the three spaces

2, (p= 0,1---15) : 4 X 4 matrices that act in the SU(4) space

¢ (a = 0,1,2,3) : Pauli matrices acts in the valley space

o (a = 0,1,2,3) : Pauli matrices acts in the particle-hole space



Emergent Global Symmetry : SU(8) Dirac fermions

[2304.07223, Mondal, Shenoy, SB]
8o = Idzrdr )= 0,7y (r)

. SU@A) @ SUQ2)

The SU(4) “flavour” symmetry The “Chiral” symmetry (same as
arising from J=3/2 graphene) generated by
T i=1,,15 (€15 825 G)

(Combined rotations in valley
and particle/hole space)
 SU(8) Internal Symmetry : & = Zl{j (63 of them)

e Emergent SO(2,1) Lorentz Invariance (Same as Graphene)

e CPT symmetries

SOC enhances the symmetry



Implementation of Microscopic Symmetries

8o = szrdf FO)(=i0,7" )y (r)

IR Symmetry SUA4) ® SUR2) = SU(B)

However the microscopic symmetry group is much smaller

Need to understand how the low energy fermions transform under microscopic symmetries

This is involved and at the same time interesting for the following reason

e There is a m-flux : Transformations are projective

* Due to spin-orbit coupling the spatial and spin transformations get intermixed

This leads to unconventional symmetry implementation on the low energy modes



Proximate Phases : microscopic Symmetries

LY e

[2304.07223, Mondal, Shenoy, SB]

e Time reversal symmetry, 7 : y(r) — y'(r) = (iX3) ® (7, ® o) y(r) (T7%=—1]

« Two dimensional lattice translations of the honeycomb lattice : T4, T, :
Ty @ x() = Y(r) = (—12p3) ® (—i7, ® 6) y(T)

 Rotations by angle by angle 2z/3 about the centre of a honeycomb plaquette : Cy

» Rotations about the z axis by angle /3 followed by a reflection about the plane of xy plane :
Ce0h,

* Rotations by angle & about the axes lying on the plane of the honeycomb lattice and passing
through two opposite vertices of a honeycomb plaguette, Cé

* Reflections about planes that are parallel to the z axis and that bisect angle between two
consecutive C, axes, 6,

 Inversion about the centre of a honeycomb plaquette, ¥

All the symmetries non-trivially mixes the flavour and chiral sectors




Proximate Phases

8o = szm FO)(=i0,7" )y (r)

H,, = [d2rd2r’ Viap® = T02,(0) 1, (0) T, (0)x(r")

The semi-metal is perturbatively stable to short range 4-fermion interactions

But at large values of interactions fermion bilinears can condense

— Y P X) Charge Invariant for this talk
[2304.07223, Mondal, Shenoy, SB]

possibly gapping out the fermions

Question : What are these masses ?



Proximate Phases : The symmetry of the fermion bilinear

—UXPX)

These break SU(8) + Time Reversal in different ways = 64 ways (mass terms)

e SU(8) Scalar: —ijy

o SU(8) Adjoint multiplet :—iy< y a=1,---,63

Have same low energy correlations at the leading order

= Many apparently unrelated orders naturally can compete
Including competition between the symmetry broken and SPTs

What are these phases ?



e (1) Scalar: —iyy

[2304.07223, Mondal, Shenoy, SB]

e (63) Adjoint multiplet : =iy y

> 1=0,1,---,15 SU@4) Flavour
a Zlé’]

¢ j=0,1,23 SUQ2) Chiral

S

— Ly 1: Scalar (Integer Chern Insulator)
—i)?ZOCi)( 3 : Chiral Masses (Charge Density wave)
— 2oy 15 : Flavour Masses (Generalised QSH)

. Spin Density wave
—l)(ZiCj)( 45 : Mixed Masses  insulators and

Semimetals




Break up (Irreducible representations) under the UV symmetries

— Ly — {200, X — 2 CoX —UrEiGX
e 0O —_ AO e e e 0 0O _ A€ AS 17, =17
Alg Y A2g a A28 Alg Y Tlg = Tlg A28 ® A28 - Alg 8 @ '8 *
BeAn=T,  AeT=T.Om
1,045,=T;,  T®T=T, @7, &E®A
3, ®Ay, =T, 53, ®T, =T, & T;, & E; © Aj,
E¢® A3, = ES ,QT,=T,,&T;,® E © A},
T, @Ay, =T, Iy, @Tf, =T), ® T3, @ E; ® A7,
A : Singlet
E : Doublet

T : Triplet



Break up (Irreducible representations) under the UV symmetries

—iyy =iy 2oCix — 250X UG
AL @ AL, = AZ A5, @Ay, =Ar, A ®T,=1o
m @A =T,  EST,=T.om
I, ® Ay =T, Ly ®@ T, =11, ® 1, O£, S 4,
@A =T  T5,®T,=T,0T; &L ®A,
E; ® Ay, = E] N®T,=T,8T;,®E & A],
Iy, ® A3, =Ty, I;,®T,=T,&T;, @ E;® A,

A : Singlet
E : Doublet
T : Triplet



Singlet and Chiral Irreps

Three CHIRAL Masses — i ZoCix)

Such Chiral masses also exists for spinless graphene

(1) Sub-lattice mass

(2) VBS (Kekule) mass { <}

In Graphene 3=12

In the present case the Chiral triplet survives

A, ®T],=T], = Three Stripy CDW masses

The same Lattice symmetries act differently at low energy



Break up (Irreducible representations) under the UV symmetries

—iyy — Y200 — 2o UG
AL ®AL=AL AL eT =Ty, AL®4L=AL O hT
75, @45, =T, | E®T,=T,eT,
Ty, ® A3, = T, I, ® T, =Ti, ® T, ® E; @A,
@Ay =T, |TeT=T,0T0EA,
E;®A], = E] 7,eT,=T,&T;, ®E ®A;],

@4 =hy |\ T3,eT,=T,0T;,0E A,

u




Density wave masses

Te _TO ————————*

Stripy Octupolar DW

E;®ng=@ e,

Some of them : Density wave semi metals Zig-Zag Quadrupolar DW

A gapless Dirac mode is left at each valley

Doubly degenerate

protected by Inversion
and subgroup of SU(4)



Break up (Irreducible representations) under the UV symmetries

—iyy — 720X —i7Zlox IR

0 e _ o
Aleg ®A20g =A20g A2g ® Tlg _ T2g

E®T, =T8T,

u

TE, ®T¢, =T¢, @ Ts, @ EX @ Af,

T3, ®T5, = T7, ® T3, @ E @ A3,

I, @1y, =17, & T, ® E, © 4y,

I, ® Ty, =17, & T, O E, © A,

u

Time reversal and Inversion even



The generalised Spin-Hall masses

-2y

S = — inzxdf [)Z}//“‘aﬂ)(+ O - yMy
g: The triplet spin Hall order parameter

Gaps out all the fermions.

N,
Scg = iz—j; sgn(my) Jd3x e””ﬂAc,Maon,ﬂ = spin-Hall current

—>

Consider long wavelength fluctuations in @
Integrate out the fermions to obtain the boson field theory :
O(3) Non linear sigma model

S o= ijdzxduaﬁz
eff 28



: : 1 —
O(3) Non linear sigma model Sof = gjdzxdflacb &

However, the O(3) order parameter allows topological defects : Skyrmions

LN s P A R A AR RS
@Sky =L"d2r z. 0 E’Xa 5’ LA Nt s PN lbasco® it Poec, ..
topo A1 X y R A AL R SRR N
R et d AR B AP ERA AR S AR XN

Electric charge of skyrmions

Sky __ Sky
Q)" = eNF@mpo

(elementary skyrmions carry 4e charge)



Consider sitting in the quantum spin-octuple Hall phase

[Goldstone, Wilczek (1960s); Abanov, Weigmann (2000s); Grover, Senthil (2006)]
[2304.07223, Mondal, Shenoy, SB]

Destroy it by proliferating and condensing Skyrmions.

—
The single fermion gap survives because the ¢ is still locally non-zero

The resultant phase is therefore a charge 4e superconductor
o) # 0

Cannot be obtained directly from a fermion bilinear condensation

Non-BCS



Break up (Irreducible representations) under the UV symmetries

—iyy — 120G x —iy2.Cox —IY2CiX
e o __ (0] e o 0o __ e AO Te — TO
Alg 3 A2g - A28 Afg ® ng =1, A28 ® A2g - Alg 2 ® i 28
T, Q@ Ay, =T, E,®T,=1,® 1,

TE, ®T¢, =T¢, @ Ts, @ EX @ Af,

T3, ®T5, = T7, ® T3, @ E @ A3,

@1, =10 1, & £, ® 4,

I, ® Ty, =17, & T, O E, © A,

u

Two different time reversal and Inversion even triplets

Individual members are “non-compatible” {Zia Zj} 7& 0
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§ = — inZXdT [)Z)/”aﬂ + ¢ - yMy

For each individual triplet we can parametric the masses on the sphere, S 2

The special isolated points are gapless = Protected by UV symmetries.



Triplet -2

Triplet -1

Projection

85 ) 82

The special isolated points are gapless = Higher symmetry

= Unnecessary “Multi-critical point” [Bi et. al, 2020]
[2304.07223, Mondal, Shenoy, SB]



Summary

® Microscopic symmetries can be embedded non-trivially in much larger IR
symmetry group.

e This allows for many apparently unrelated orders to naturally compete and
occur in close proximity

e Example : d! or d’ systems on honeycomb lattice with SOC
e SOC coupled Dirac fermions
e Enlarged symmetry (good for materials where it is weakly broken)

e Natural starting point to understand host of competing orders both
symmetry broken and symmetry protected topological.

e |nteresting fallouts : 4e superconductivity, unconventional critical points

e Materials ? ZrCl; ........"7

Thank You






