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How are the UV/microscopic symmetries implemented on the IR degrees of freedom ?

Embedding of UV symmetries on IR theory

Text book example : 

• Consider the nearest neighbour FM and AFM Ising model on square 
lattice. 

•Both lead to  - theory in the coarse grained continuum limit.

•Lattice translations are differently implemented on the fields :

•FM :  : Ferromagnetic oder

•AFM :  : Neel order

ϕ4

ϕ → ϕ

ϕ → − ϕ

UV symmetry implementation is very important to understand 
the nature of phases and their experimental signatures

SGIR ≥ SGUV



Another well known example :  Monolayer graphene
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FIG. 4. (a) Band structure for Eq. 19 for the magnetic unit cell consisting of four sites (Fig. 3). Each band is four-fold
degenerate. For d1 lowest four bands are occupied with the chemical potential crossing the two Dirac point as shown. (b)
Position of the two Dirac points (Eq.22) in the chosen gauge (Fig. 3 and Eq. 21) in the magnetic Brillouin zone (in red). The
primitive Brillouin zone of the hexagonal lattice is also drawn in blue.fig:band structure

filling by particle-hole symmetry of the microscopic prob-
lem. Also note that there are four Dirac points at half
filling [58] as is shown if Fig. 4. In the rest of the dis-
cussion though we shall consider exclusively the vicinity
of quarter filling and the nature of the low energy Dirac
fermions at the two valleys at ±Q given by Eq. 22.

Turning back to the case of j = 3/2 orbitals in d1

configuration (Eq. 19), the band structure is now four-
fold degenerate due to the SU(4) symmetry such that
the lower four bands are completely filled with the chem-
ical potential again at the two Dirac cones given by Eq.
22. As remarked above, the similar Dirac cones are also
present for three-quarter filling and hence the rest of our
discussion is also applicable to materials with d3 elec-
tronic configuration.

At this point we would like to take a small detour by
discussing the above band structure in the global basis
(Eq. 7) which provides interesting complementary in-
sights into the results that follows in the rest of this
paper. This alternate insight arises from the observa-
tion that while for a single flavour ⇡-flux problem we are
forced to use the magnetic unit cell (Fig. 3), for the four
flavour version relevant to d1 or d3 systems, it is possible
to use to two-site primitive honeycomb unit-cell (Fig. 2)
by disgonalising the Hamiltonian in Eq. 10. However, in
this global basis neither the SU(4), nor the ⇡-flux is man-
ifest but are mixed together non-trivially. As a result,
while all the lattice symmetries (Table V), act in a lin-
ear fashion, i. e., they are non-projective despite the fact
that each hexagonal plaquette hosts a ⇡-flux as shown in
Eq. (14), to overcome the slightly more involved nature

(arising explicit mixing of the lattice symmetries and the
SU(4) in the global basis) we use the local basis for most
of our discussion the the rest of the main-texts. However,
the global basis is useful to understand certain structures
in our calculations which we refer to at relevant places
throughout the rest of the paper. The details of the cal-
culations in global basis – the summary of all the results
in local basis as in the main text– is presented in Ap-
pendix K. Bloch diagonalizing the hamiltonian in global
basis (Eq. 10) obtains four bands arising from the four
j = 3/2 orbitals (Eq. 7) and each two-fold degenerate
due to inversion symmetry. The first set of bands touch
the second set of bands at four at four distinct point with
Dirac cone structure, see Fig. 17. With quarter filling of
the bands the chemical potential is tuned to the Dirac
points at the four Qg vectors, �, M1, M2, M3 termed as
valleys, in the original honeycomb Brillouin zone. This is
to be contrasted with the local basis where one obtains
two valley due to the doubling of the unit cell, and the
concomitant folding of the bands. One of the central in-
sights of the global basis is that under lattice symmetries
such as S6 (Table V), only three of the Dirac cones sitting
at the three M points (Fig. 17) mix amongst themselves
while the Dirac cone at the BZ center, i.e. at �-point, re-
mains isolated. This naturally distinguishes between the
di↵erent valleys into two groups– one containing only the
� point cone and the the other containg the other three
at the three equivalent M points. As we shall see later
that that the above grouping is a fallout of the the fact
that the microscopic lattice symmetries gets embedded in
a larger low energy IR space group that allows upto three
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filling by particle-hole symmetry of the microscopic prob-
lem. Also note that there are four Dirac points at half
filling [58] as is shown if Fig. 4. In the rest of the dis-
cussion though we shall consider exclusively the vicinity
of quarter filling and the nature of the low energy Dirac
fermions at the two valleys at ±Q given by Eq. 22.

Turning back to the case of j = 3/2 orbitals in d1

configuration (Eq. 19), the band structure is now four-
fold degenerate due to the SU(4) symmetry such that
the lower four bands are completely filled with the chem-
ical potential again at the two Dirac cones given by Eq.
22. As remarked above, the similar Dirac cones are also
present for three-quarter filling and hence the rest of our
discussion is also applicable to materials with d3 elec-
tronic configuration.

At this point we would like to take a small detour by
discussing the above band structure in the global basis
(Eq. 7) which provides interesting complementary in-
sights into the results that follows in the rest of this
paper. This alternate insight arises from the observa-
tion that while for a single flavour ⇡-flux problem we are
forced to use the magnetic unit cell (Fig. 3), for the four
flavour version relevant to d1 or d3 systems, it is possible
to use to two-site primitive honeycomb unit-cell (Fig. 2)
by disgonalising the Hamiltonian in Eq. 10. However, in
this global basis neither the SU(4), nor the ⇡-flux is man-
ifest but are mixed together non-trivially. As a result,
while all the lattice symmetries (Table V), act in a lin-
ear fashion, i. e., they are non-projective despite the fact
that each hexagonal plaquette hosts a ⇡-flux as shown in
Eq. (14), to overcome the slightly more involved nature

(arising explicit mixing of the lattice symmetries and the
SU(4) in the global basis) we use the local basis for most
of our discussion the the rest of the main-texts. However,
the global basis is useful to understand certain structures
in our calculations which we refer to at relevant places
throughout the rest of the paper. The details of the cal-
culations in global basis – the summary of all the results
in local basis as in the main text– is presented in Ap-
pendix K. Bloch diagonalizing the hamiltonian in global
basis (Eq. 10) obtains four bands arising from the four
j = 3/2 orbitals (Eq. 7) and each two-fold degenerate
due to inversion symmetry. The first set of bands touch
the second set of bands at four at four distinct point with
Dirac cone structure, see Fig. 17. With quarter filling of
the bands the chemical potential is tuned to the Dirac
points at the four Qg vectors, �, M1, M2, M3 termed as
valleys, in the original honeycomb Brillouin zone. This is
to be contrasted with the local basis where one obtains
two valley due to the doubling of the unit cell, and the
concomitant folding of the bands. One of the central in-
sights of the global basis is that under lattice symmetries
such as S6 (Table V), only three of the Dirac cones sitting
at the three M points (Fig. 17) mix amongst themselves
while the Dirac cone at the BZ center, i.e. at �-point, re-
mains isolated. This naturally distinguishes between the
di↵erent valleys into two groups– one containing only the
� point cone and the the other containg the other three
at the three equivalent M points. As we shall see later
that that the above grouping is a fallout of the the fact
that the microscopic lattice symmetries gets embedded in
a larger low energy IR space group that allows upto three

KK′ 

↑ ↑↓↓

(χa, χb)T
σ,K′ 

(χa, χb)T
σ,K

The embedding of the lattice symmetries on the low energy Dirac 
fermions  crucially depend on the position of the Dirac points in BZχ

The above embedding then fixes the nature of all the phases  
proximate to the semimetal that can be obtained by condensing  

χ̄α χβ

Low energy : SU(4) Dirac theory



This Talk :  J=3/2 electrons on honeycomb lattice
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in local basis as in the main text– is presented in Ap-
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basis (Eq. 10) obtains four bands arising from the four
j = 3/2 orbitals (Eq. 7) and each two-fold degenerate
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at the three equivalent M points. As we shall see later
that that the above grouping is a fallout of the the fact
that the microscopic lattice symmetries gets embedded in
a larger low energy IR space group that allows upto three

ΓM3

Due to Atomic spin orbit coupling 
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discussion is also applicable to materials with d3 elec-
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the lower four bands are completely filled with the chem-
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22. As remarked above, the similar Dirac cones are also
present for three-quarter filling and hence the rest of our
discussion is also applicable to materials with d3 elec-
tronic configuration.
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forced to use the magnetic unit cell (Fig. 3), for the four
flavour version relevant to d1 or d3 systems, it is possible
to use to two-site primitive honeycomb unit-cell (Fig. 2)
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M2

M1

• Changes the position and number of the Dirac points

• Hence changes the embedding of the Honeycomb lattice 
symmetries on the low energy Dirac fermion
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Eq. (14), to overcome the slightly more involved nature

(arising explicit mixing of the lattice symmetries and the
SU(4) in the global basis) we use the local basis for most
of our discussion the the rest of the main-texts. However,
the global basis is useful to understand certain structures
in our calculations which we refer to at relevant places
throughout the rest of the paper. The details of the cal-
culations in global basis – the summary of all the results
in local basis as in the main text– is presented in Ap-
pendix K. Bloch diagonalizing the hamiltonian in global
basis (Eq. 10) obtains four bands arising from the four
j = 3/2 orbitals (Eq. 7) and each two-fold degenerate
due to inversion symmetry. The first set of bands touch
the second set of bands at four at four distinct point with
Dirac cone structure, see Fig. 17. With quarter filling of
the bands the chemical potential is tuned to the Dirac
points at the four Qg vectors, �, M1, M2, M3 termed as
valleys, in the original honeycomb Brillouin zone. This is
to be contrasted with the local basis where one obtains
two valley due to the doubling of the unit cell, and the
concomitant folding of the bands. One of the central in-
sights of the global basis is that under lattice symmetries
such as S6 (Table V), only three of the Dirac cones sitting
at the three M points (Fig. 17) mix amongst themselves
while the Dirac cone at the BZ center, i.e. at �-point, re-
mains isolated. This naturally distinguishes between the
di↵erent valleys into two groups– one containing only the
� point cone and the the other containg the other three
at the three equivalent M points. As we shall see later
that that the above grouping is a fallout of the the fact
that the microscopic lattice symmetries gets embedded in
a larger low energy IR space group that allows upto three
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filling by particle-hole symmetry of the microscopic prob-
lem. Also note that there are four Dirac points at half
filling [58] as is shown if Fig. 4. In the rest of the dis-
cussion though we shall consider exclusively the vicinity
of quarter filling and the nature of the low energy Dirac
fermions at the two valleys at ±Q given by Eq. 22.

Turning back to the case of j = 3/2 orbitals in d1

configuration (Eq. 19), the band structure is now four-
fold degenerate due to the SU(4) symmetry such that
the lower four bands are completely filled with the chem-
ical potential again at the two Dirac cones given by Eq.
22. As remarked above, the similar Dirac cones are also
present for three-quarter filling and hence the rest of our
discussion is also applicable to materials with d3 elec-
tronic configuration.

At this point we would like to take a small detour by
discussing the above band structure in the global basis
(Eq. 7) which provides interesting complementary in-
sights into the results that follows in the rest of this
paper. This alternate insight arises from the observa-
tion that while for a single flavour ⇡-flux problem we are
forced to use the magnetic unit cell (Fig. 3), for the four
flavour version relevant to d1 or d3 systems, it is possible
to use to two-site primitive honeycomb unit-cell (Fig. 2)
by disgonalising the Hamiltonian in Eq. 10. However, in
this global basis neither the SU(4), nor the ⇡-flux is man-
ifest but are mixed together non-trivially. As a result,
while all the lattice symmetries (Table V), act in a lin-
ear fashion, i. e., they are non-projective despite the fact
that each hexagonal plaquette hosts a ⇡-flux as shown in
Eq. (14), to overcome the slightly more involved nature

(arising explicit mixing of the lattice symmetries and the
SU(4) in the global basis) we use the local basis for most
of our discussion the the rest of the main-texts. However,
the global basis is useful to understand certain structures
in our calculations which we refer to at relevant places
throughout the rest of the paper. The details of the cal-
culations in global basis – the summary of all the results
in local basis as in the main text– is presented in Ap-
pendix K. Bloch diagonalizing the hamiltonian in global
basis (Eq. 10) obtains four bands arising from the four
j = 3/2 orbitals (Eq. 7) and each two-fold degenerate
due to inversion symmetry. The first set of bands touch
the second set of bands at four at four distinct point with
Dirac cone structure, see Fig. 17. With quarter filling of
the bands the chemical potential is tuned to the Dirac
points at the four Qg vectors, �, M1, M2, M3 termed as
valleys, in the original honeycomb Brillouin zone. This is
to be contrasted with the local basis where one obtains
two valley due to the doubling of the unit cell, and the
concomitant folding of the bands. One of the central in-
sights of the global basis is that under lattice symmetries
such as S6 (Table V), only three of the Dirac cones sitting
at the three M points (Fig. 17) mix amongst themselves
while the Dirac cone at the BZ center, i.e. at �-point, re-
mains isolated. This naturally distinguishes between the
di↵erent valleys into two groups– one containing only the
� point cone and the the other containg the other three
at the three equivalent M points. As we shall see later
that that the above grouping is a fallout of the the fact
that the microscopic lattice symmetries gets embedded in
a larger low energy IR space group that allows upto three
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filling by particle-hole symmetry of the microscopic prob-
lem. Also note that there are four Dirac points at half
filling [58] as is shown if Fig. 4. In the rest of the dis-
cussion though we shall consider exclusively the vicinity
of quarter filling and the nature of the low energy Dirac
fermions at the two valleys at ±Q given by Eq. 22.

Turning back to the case of j = 3/2 orbitals in d1

configuration (Eq. 19), the band structure is now four-
fold degenerate due to the SU(4) symmetry such that
the lower four bands are completely filled with the chem-
ical potential again at the two Dirac cones given by Eq.
22. As remarked above, the similar Dirac cones are also
present for three-quarter filling and hence the rest of our
discussion is also applicable to materials with d3 elec-
tronic configuration.

At this point we would like to take a small detour by
discussing the above band structure in the global basis
(Eq. 7) which provides interesting complementary in-
sights into the results that follows in the rest of this
paper. This alternate insight arises from the observa-
tion that while for a single flavour ⇡-flux problem we are
forced to use the magnetic unit cell (Fig. 3), for the four
flavour version relevant to d1 or d3 systems, it is possible
to use to two-site primitive honeycomb unit-cell (Fig. 2)
by disgonalising the Hamiltonian in Eq. 10. However, in
this global basis neither the SU(4), nor the ⇡-flux is man-
ifest but are mixed together non-trivially. As a result,
while all the lattice symmetries (Table V), act in a lin-
ear fashion, i. e., they are non-projective despite the fact
that each hexagonal plaquette hosts a ⇡-flux as shown in
Eq. (14), to overcome the slightly more involved nature

(arising explicit mixing of the lattice symmetries and the
SU(4) in the global basis) we use the local basis for most
of our discussion the the rest of the main-texts. However,
the global basis is useful to understand certain structures
in our calculations which we refer to at relevant places
throughout the rest of the paper. The details of the cal-
culations in global basis – the summary of all the results
in local basis as in the main text– is presented in Ap-
pendix K. Bloch diagonalizing the hamiltonian in global
basis (Eq. 10) obtains four bands arising from the four
j = 3/2 orbitals (Eq. 7) and each two-fold degenerate
due to inversion symmetry. The first set of bands touch
the second set of bands at four at four distinct point with
Dirac cone structure, see Fig. 17. With quarter filling of
the bands the chemical potential is tuned to the Dirac
points at the four Qg vectors, �, M1, M2, M3 termed as
valleys, in the original honeycomb Brillouin zone. This is
to be contrasted with the local basis where one obtains
two valley due to the doubling of the unit cell, and the
concomitant folding of the bands. One of the central in-
sights of the global basis is that under lattice symmetries
such as S6 (Table V), only three of the Dirac cones sitting
at the three M points (Fig. 17) mix amongst themselves
while the Dirac cone at the BZ center, i.e. at �-point, re-
mains isolated. This naturally distinguishes between the
di↵erent valleys into two groups– one containing only the
� point cone and the the other containg the other three
at the three equivalent M points. As we shall see later
that that the above grouping is a fallout of the the fact
that the microscopic lattice symmetries gets embedded in
a larger low energy IR space group that allows upto three

M2

M1

• (Non-interacting) low energy : SU(8) Dirac semimetal

• The nature of proximate phases are completely dictated by the newer 
embedding of UV symmetries

• Provides much richer set of phases and possible phase transitions.
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geometry such that we get a honeycomb lattice

e.g. :  Similar to  but we shall consider

the general weak to intermediate coupling physics

α − ZrCl3

[Yamada, Oshikawa, Jackeli (2018)]

[Romhanyi et. al. (2017)]
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Hopping Hamiltonian and SU(4) Symmetry

H = −
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3 ∑
⟨r,r′ ⟩

ψ†(r)Urr′ ψ(r′ ) + h . c .

Indirect Hopping Model
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(ψ1/2, ψ−1/2, ψ3/2, ψ−3/2)T

Hopping Hamiltonian and SU(4) Symmetry

H = −
t

3 ∑
⟨r,r′ ⟩

ψ†(r)Urr′ ψ(r′ ) + h . c .

∏
r,r′ ∈ hexagon

Urr′ = − 𝕀4

Indirect Hopping Model

The system has a SU(4) symmetry which becomes manifest in a local basis

ϕ(r) = g(r)†ψ(r)

H = −
t

3 ∑
⟨rr′ ⟩

ηrr′ ϕ†(r)ϕ(r′ ) +  h.c.  ∏
r,r′ ∈ hexagon

ηrr′ = − 1

[Yamada, Oshikawa, Jackeli (2018)]



Hopping Hamiltonian and SU(4) Symmetry : Band structure

H = −
t

3 ∑
⟨rr′ ⟩

ηrr′ ϕ†(r)ϕ(r′ ) +  h.c.  ∏
r,r′ ∈ hexagon

ηrr′ = − 1

Honeycomb lattice in π − f lux
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FIG. 4. (a) Band structure for Eq. 19 for the magnetic unit cell consisting of four sites (Fig. 3). Each band is four-fold
degenerate. For d1 lowest four bands are occupied with the chemical potential crossing the two Dirac point as shown. (b)
Position of the two Dirac points (Eq.22) in the chosen gauge (Fig. 3 and Eq. 21) in the magnetic Brillouin zone (in red). The
primitive Brillouin zone of the hexagonal lattice is also drawn in blue.fig:band structure

filling by particle-hole symmetry of the microscopic prob-
lem. Also note that there are four Dirac points at half
filling [58] as is shown if Fig. 4. In the rest of the dis-
cussion though we shall consider exclusively the vicinity
of quarter filling and the nature of the low energy Dirac
fermions at the two valleys at ±Q given by Eq. 22.

Turning back to the case of j = 3/2 orbitals in d1

configuration (Eq. 19), the band structure is now four-
fold degenerate due to the SU(4) symmetry such that
the lower four bands are completely filled with the chem-
ical potential again at the two Dirac cones given by Eq.
22. As remarked above, the similar Dirac cones are also
present for three-quarter filling and hence the rest of our
discussion is also applicable to materials with d3 elec-
tronic configuration.

At this point we would like to take a small detour by
discussing the above band structure in the global basis
(Eq. 7) which provides interesting complementary in-
sights into the results that follows in the rest of this
paper. This alternate insight arises from the observa-
tion that while for a single flavour ⇡-flux problem we are
forced to use the magnetic unit cell (Fig. 3), for the four
flavour version relevant to d1 or d3 systems, it is possible
to use to two-site primitive honeycomb unit-cell (Fig. 2)
by disgonalising the Hamiltonian in Eq. 10. However, in
this global basis neither the SU(4), nor the ⇡-flux is man-
ifest but are mixed together non-trivially. As a result,
while all the lattice symmetries (Table V), act in a lin-
ear fashion, i. e., they are non-projective despite the fact
that each hexagonal plaquette hosts a ⇡-flux as shown in
Eq. (14), to overcome the slightly more involved nature

(arising explicit mixing of the lattice symmetries and the
SU(4) in the global basis) we use the local basis for most
of our discussion the the rest of the main-texts. However,
the global basis is useful to understand certain structures
in our calculations which we refer to at relevant places
throughout the rest of the paper. The details of the cal-
culations in global basis – the summary of all the results
in local basis as in the main text– is presented in Ap-
pendix K. Bloch diagonalizing the hamiltonian in global
basis (Eq. 10) obtains four bands arising from the four
j = 3/2 orbitals (Eq. 7) and each two-fold degenerate
due to inversion symmetry. The first set of bands touch
the second set of bands at four at four distinct point with
Dirac cone structure, see Fig. 17. With quarter filling of
the bands the chemical potential is tuned to the Dirac
points at the four Qg vectors, �, M1, M2, M3 termed as
valleys, in the original honeycomb Brillouin zone. This is
to be contrasted with the local basis where one obtains
two valley due to the doubling of the unit cell, and the
concomitant folding of the bands. One of the central in-
sights of the global basis is that under lattice symmetries
such as S6 (Table V), only three of the Dirac cones sitting
at the three M points (Fig. 17) mix amongst themselves
while the Dirac cone at the BZ center, i.e. at �-point, re-
mains isolated. This naturally distinguishes between the
di↵erent valleys into two groups– one containing only the
� point cone and the the other containg the other three
at the three equivalent M points. As we shall see later
that that the above grouping is a fallout of the the fact
that the microscopic lattice symmetries gets embedded in
a larger low energy IR space group that allows upto three

[2304.07223, Mondal, Shenoy, SB]



Hopping Hamiltonian and SU(4) Symmetry : Band structure

• Each band is four fold degenerate due to the manifest SU(4)


• for 1/4th filling there are two Dirac points at 


• Also similar case for 3/4th filling

Q = ± [ π
6

, −
π

2 3 ]
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primitive Brillouin zone of the hexagonal lattice is also drawn in blue.fig:band structure

filling by particle-hole symmetry of the microscopic prob-
lem. Also note that there are four Dirac points at half
filling [58] as is shown if Fig. 4. In the rest of the dis-
cussion though we shall consider exclusively the vicinity
of quarter filling and the nature of the low energy Dirac
fermions at the two valleys at ±Q given by Eq. 22.

Turning back to the case of j = 3/2 orbitals in d1

configuration (Eq. 19), the band structure is now four-
fold degenerate due to the SU(4) symmetry such that
the lower four bands are completely filled with the chem-
ical potential again at the two Dirac cones given by Eq.
22. As remarked above, the similar Dirac cones are also
present for three-quarter filling and hence the rest of our
discussion is also applicable to materials with d3 elec-
tronic configuration.

At this point we would like to take a small detour by
discussing the above band structure in the global basis
(Eq. 7) which provides interesting complementary in-
sights into the results that follows in the rest of this
paper. This alternate insight arises from the observa-
tion that while for a single flavour ⇡-flux problem we are
forced to use the magnetic unit cell (Fig. 3), for the four
flavour version relevant to d1 or d3 systems, it is possible
to use to two-site primitive honeycomb unit-cell (Fig. 2)
by disgonalising the Hamiltonian in Eq. 10. However, in
this global basis neither the SU(4), nor the ⇡-flux is man-
ifest but are mixed together non-trivially. As a result,
while all the lattice symmetries (Table V), act in a lin-
ear fashion, i. e., they are non-projective despite the fact
that each hexagonal plaquette hosts a ⇡-flux as shown in
Eq. (14), to overcome the slightly more involved nature

(arising explicit mixing of the lattice symmetries and the
SU(4) in the global basis) we use the local basis for most
of our discussion the the rest of the main-texts. However,
the global basis is useful to understand certain structures
in our calculations which we refer to at relevant places
throughout the rest of the paper. The details of the cal-
culations in global basis – the summary of all the results
in local basis as in the main text– is presented in Ap-
pendix K. Bloch diagonalizing the hamiltonian in global
basis (Eq. 10) obtains four bands arising from the four
j = 3/2 orbitals (Eq. 7) and each two-fold degenerate
due to inversion symmetry. The first set of bands touch
the second set of bands at four at four distinct point with
Dirac cone structure, see Fig. 17. With quarter filling of
the bands the chemical potential is tuned to the Dirac
points at the four Qg vectors, �, M1, M2, M3 termed as
valleys, in the original honeycomb Brillouin zone. This is
to be contrasted with the local basis where one obtains
two valley due to the doubling of the unit cell, and the
concomitant folding of the bands. One of the central in-
sights of the global basis is that under lattice symmetries
such as S6 (Table V), only three of the Dirac cones sitting
at the three M points (Fig. 17) mix amongst themselves
while the Dirac cone at the BZ center, i.e. at �-point, re-
mains isolated. This naturally distinguishes between the
di↵erent valleys into two groups– one containing only the
� point cone and the the other containg the other three
at the three equivalent M points. As we shall see later
that that the above grouping is a fallout of the the fact
that the microscopic lattice symmetries gets embedded in
a larger low energy IR space group that allows upto three
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filling by particle-hole symmetry of the microscopic prob-
lem. Also note that there are four Dirac points at half
filling [58] as is shown if Fig. 4. In the rest of the dis-
cussion though we shall consider exclusively the vicinity
of quarter filling and the nature of the low energy Dirac
fermions at the two valleys at ±Q given by Eq. 22.

Turning back to the case of j = 3/2 orbitals in d1

configuration (Eq. 19), the band structure is now four-
fold degenerate due to the SU(4) symmetry such that
the lower four bands are completely filled with the chem-
ical potential again at the two Dirac cones given by Eq.
22. As remarked above, the similar Dirac cones are also
present for three-quarter filling and hence the rest of our
discussion is also applicable to materials with d3 elec-
tronic configuration.

At this point we would like to take a small detour by
discussing the above band structure in the global basis
(Eq. 7) which provides interesting complementary in-
sights into the results that follows in the rest of this
paper. This alternate insight arises from the observa-
tion that while for a single flavour ⇡-flux problem we are
forced to use the magnetic unit cell (Fig. 3), for the four
flavour version relevant to d1 or d3 systems, it is possible
to use to two-site primitive honeycomb unit-cell (Fig. 2)
by disgonalising the Hamiltonian in Eq. 10. However, in
this global basis neither the SU(4), nor the ⇡-flux is man-
ifest but are mixed together non-trivially. As a result,
while all the lattice symmetries (Table V), act in a lin-
ear fashion, i. e., they are non-projective despite the fact
that each hexagonal plaquette hosts a ⇡-flux as shown in
Eq. (14), to overcome the slightly more involved nature

(arising explicit mixing of the lattice symmetries and the
SU(4) in the global basis) we use the local basis for most
of our discussion the the rest of the main-texts. However,
the global basis is useful to understand certain structures
in our calculations which we refer to at relevant places
throughout the rest of the paper. The details of the cal-
culations in global basis – the summary of all the results
in local basis as in the main text– is presented in Ap-
pendix K. Bloch diagonalizing the hamiltonian in global
basis (Eq. 10) obtains four bands arising from the four
j = 3/2 orbitals (Eq. 7) and each two-fold degenerate
due to inversion symmetry. The first set of bands touch
the second set of bands at four at four distinct point with
Dirac cone structure, see Fig. 17. With quarter filling of
the bands the chemical potential is tuned to the Dirac
points at the four Qg vectors, �, M1, M2, M3 termed as
valleys, in the original honeycomb Brillouin zone. This is
to be contrasted with the local basis where one obtains
two valley due to the doubling of the unit cell, and the
concomitant folding of the bands. One of the central in-
sights of the global basis is that under lattice symmetries
such as S6 (Table V), only three of the Dirac cones sitting
at the three M points (Fig. 17) mix amongst themselves
while the Dirac cone at the BZ center, i.e. at �-point, re-
mains isolated. This naturally distinguishes between the
di↵erent valleys into two groups– one containing only the
� point cone and the the other containg the other three
at the three equivalent M points. As we shall see later
that that the above grouping is a fallout of the the fact
that the microscopic lattice symmetries gets embedded in
a larger low energy IR space group that allows upto three



Low energy Dirac Theory

The low energy physics is captured by the Dirac points and like graphene the 
low energy Hamiltonian is obtained by expanding about the two Dirac points

HD = − ivF ∫ d2r χ†(r)(αx∂x + αy∂y)χ(r)

 16 component spinorχ :

χparticle−hole : 1/2
SU(4) : 1234; Valley : ±

Introduce three matrices for the three spaces

 :  matrices that act in the SU(4) spaceΣp (p = 0,1⋯15) 4 × 4

 : Pauli matrices acts in the valley space τa (a = 0,1,2,3)

 : Pauli matrices acts in the particle-hole spaceσa (a = 0,1,2,3)



Emergent Global Symmetry : SU(8)  Dirac fermions

𝒮0 = ∫ d2rdτ χ(r)(−i∂μγμ)χ(r)

SU(4) ⊗ SU(2)

The SU(4) “flavour” symmetry 

arising from J=3/2

The “Chiral” symmetry (same as

graphene) generated by 

(Combined rotations in valley 

and particle/hole space)

• SU(8) Internal Symmetry :      (63 of them) 

• Emergent SO(2,1) Lorentz Invariance (Same as Graphene)


• CPT symmetries 

𝒫a = Σiζj

(ζ1, ζ2, ζ3)Σi i = 1,⋯,15

SOC enhances the symmetry

[2304.07223, Mondal, Shenoy, SB]
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FIG. 4. (a) Band structure for Eq. 19 for the magnetic unit cell consisting of four sites (Fig. 3). Each band is four-fold
degenerate. For d1 lowest four bands are occupied with the chemical potential crossing the two Dirac point as shown. (b)
Position of the two Dirac points (Eq.22) in the chosen gauge (Fig. 3 and Eq. 21) in the magnetic Brillouin zone (in red). The
primitive Brillouin zone of the hexagonal lattice is also drawn in blue.fig:band structure

filling by particle-hole symmetry of the microscopic prob-
lem. Also note that there are four Dirac points at half
filling [58] as is shown if Fig. 4. In the rest of the dis-
cussion though we shall consider exclusively the vicinity
of quarter filling and the nature of the low energy Dirac
fermions at the two valleys at ±Q given by Eq. 22.

Turning back to the case of j = 3/2 orbitals in d1

configuration (Eq. 19), the band structure is now four-
fold degenerate due to the SU(4) symmetry such that
the lower four bands are completely filled with the chem-
ical potential again at the two Dirac cones given by Eq.
22. As remarked above, the similar Dirac cones are also
present for three-quarter filling and hence the rest of our
discussion is also applicable to materials with d3 elec-
tronic configuration.

At this point we would like to take a small detour by
discussing the above band structure in the global basis
(Eq. 7) which provides interesting complementary in-
sights into the results that follows in the rest of this
paper. This alternate insight arises from the observa-
tion that while for a single flavour ⇡-flux problem we are
forced to use the magnetic unit cell (Fig. 3), for the four
flavour version relevant to d1 or d3 systems, it is possible
to use to two-site primitive honeycomb unit-cell (Fig. 2)
by disgonalising the Hamiltonian in Eq. 10. However, in
this global basis neither the SU(4), nor the ⇡-flux is man-
ifest but are mixed together non-trivially. As a result,
while all the lattice symmetries (Table V), act in a lin-
ear fashion, i. e., they are non-projective despite the fact
that each hexagonal plaquette hosts a ⇡-flux as shown in
Eq. (14), to overcome the slightly more involved nature

(arising explicit mixing of the lattice symmetries and the
SU(4) in the global basis) we use the local basis for most
of our discussion the the rest of the main-texts. However,
the global basis is useful to understand certain structures
in our calculations which we refer to at relevant places
throughout the rest of the paper. The details of the cal-
culations in global basis – the summary of all the results
in local basis as in the main text– is presented in Ap-
pendix K. Bloch diagonalizing the hamiltonian in global
basis (Eq. 10) obtains four bands arising from the four
j = 3/2 orbitals (Eq. 7) and each two-fold degenerate
due to inversion symmetry. The first set of bands touch
the second set of bands at four at four distinct point with
Dirac cone structure, see Fig. 17. With quarter filling of
the bands the chemical potential is tuned to the Dirac
points at the four Qg vectors, �, M1, M2, M3 termed as
valleys, in the original honeycomb Brillouin zone. This is
to be contrasted with the local basis where one obtains
two valley due to the doubling of the unit cell, and the
concomitant folding of the bands. One of the central in-
sights of the global basis is that under lattice symmetries
such as S6 (Table V), only three of the Dirac cones sitting
at the three M points (Fig. 17) mix amongst themselves
while the Dirac cone at the BZ center, i.e. at �-point, re-
mains isolated. This naturally distinguishes between the
di↵erent valleys into two groups– one containing only the
� point cone and the the other containg the other three
at the three equivalent M points. As we shall see later
that that the above grouping is a fallout of the the fact
that the microscopic lattice symmetries gets embedded in
a larger low energy IR space group that allows upto three



Implementation of Microscopic Symmetries

𝒮0 = ∫ d2rdτ χ(r)(−i∂μγμ)χ(r)

SU(4) ⊗ SU(2) ⇒ SU(8)

However the microscopic symmetry group is much smaller

Need to understand how the low energy fermions transform under microscopic symmetries

IR Symmetry

• There is a -flux : Transformations are projective


• Due to spin-orbit coupling the spatial and spin transformations get intermixed

π

This leads to unconventional symmetry implementation on the low energy modes

This is involved and at the same time interesting for the following reason



Proximate Phases : microscopic Symmetries 

• Time reversal symmetry,        [ ]


• Two dimensional lattice translations of the honeycomb lattice :  : 



• Rotations by angle by angle  about the centre of a honeycomb plaquette : 


• Rotations about the z axis by angle  followed by a reflection about the plane of xy plane : 



• Rotations by angle  about the axes lying on the plane of the honeycomb lattice and passing 
through two opposite vertices of a honeycomb plaquette, 


• Reflections about planes that are parallel to the z axis and that bisect angle between two 
consecutive  axes, 


• Inversion about the centre of a honeycomb plaquette, 

𝒯 : χ(r) → χ′ (r) = (iΣ13) ⊗ (τ1 ⊗ σ0) χ(r) 𝒯2 = − 1

T1, T2
T1 : χ(r) → χ′ (r) = (−iΣ23) ⊗ (−iτ2 ⊗ σ2) χ(r)

2π/3 C3

π/3
C6σh

π
C′ 2

C′ 2 σd

ℐ

All the symmetries non-trivially mixes the flavour and chiral sectors

[2304.07223, Mondal, Shenoy, SB]



Proximate Phases

𝒮0 = ∫ d2rdτ χ(r)(−i∂μγμ)χ(r)

The semi-metal is perturbatively stable to short range 4-fermion interactions 

Hint = ∫ d2rd2r′ Vμναβ(r − r′ )χμ(r)† χν(r′ )† χα(r)χβ(r′ )

But at large values of interactions fermion bilinears can condense

possibly gapping out the fermions

−i⟨ χ̄𝒫a χ⟩ Charge Invariant for this talk
[2304.07223, Mondal, Shenoy, SB]

Question : What are these masses ?



Proximate Phases : The symmetry of the fermion bilinear

−i⟨ χ̄𝒫a χ⟩

These break  + Time Reversal in different ways  ways (mass terms) SU(8) ⇒ 64

• SU(8) Scalar : 


• SU(8) Adjoint multiplet :

−iχ̄χ

−iχ̄𝒫a χ a = 1,⋯,63

Have same low energy correlations at the leading order

 Many apparently unrelated orders naturally can compete⇒

Including competition between the symmetry broken and SPTs

What are these phases ?



Group-4

1 : Scalar 

• (1)   Scalar : 


• (63)  Adjoint multiplet : 

−iχ̄χ

−iχ̄𝒫a χ

𝒫a = Σiζj
Σi i = 0,1,⋯,15 SU(4) Flavour

ζj j = 0,1,2,3 SU(2) Chiral

−iχ̄χGroup-1

Group-2 −iχ̄Σ0ζi χ 3 : Chiral Masses

Group-3 −iχ̄Σiζ0 χ 15 : Flavour Masses

−iχ̄Σiζj χ 45 : Mixed Masses

(Charge Density wave)

(Generalised QSH)

Spin Density wave 

insulators and 

Semimetals

[2304.07223, Mondal, Shenoy, SB]

(Integer Chern Insulator)



Break up (Irreducible representations) under the UV symmetries

Ae
1g ⊗ Ao

2g = Ao
2g Ae

1g ⊗ Te
1g = Te

1g
Ao

2g ⊗ Ao
2g = Ae

1g

To
2g ⊗ Ao

2g = Te
1g

To
1u ⊗ Ao

2g = Te
2u

To
2u ⊗ Ao

2g = Te
1u

Ee
u ⊗ Ao

2g = Eo
u

Te
1g ⊗ Ao

2g = To
2g

Ao
2g ⊗ Te

1g = To
2g

Ee
u ⊗ Te

1g = Te
1u ⊕ Te

2u

Te
1g ⊗ Te

1g = Te
1g ⊕ Te

2g ⊕ Ee
g ⊕ Ae

1g

To
2g ⊗ Te

1g = To
1g ⊕ To

2g ⊕ Eo
g ⊕ Ao

2g

To
1u ⊗ Te

1g = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

1u

To
2u ⊗ Te

1g = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

2u

Group-4

−iχ̄χ

Group-1 Group-2

−iχ̄Σ0ζi χ
Group-3

−iχ̄Σiζ0 χ −iχ̄Σiζj χ

A : Singlet
E : Doublet
T : Triplet



Break up (Irreducible representations) under the UV symmetries

Ae
1g ⊗ Ao

2g = Ao
2g Ae

1g ⊗ Te
1g = Te

1g
Ao

2g ⊗ Ao
2g = Ae

1g

To
2g ⊗ Ao

2g = Te
1g

To
1u ⊗ Ao

2g = Te
2u

To
2u ⊗ Ao

2g = Te
1u

Ee
u ⊗ Ao

2g = Eo
u

Te
1g ⊗ Ao

2g = To
2g

Ao
2g ⊗ Te

1g = To
2g

Ee
u ⊗ Te

1g = Te
1u ⊕ Te

2u

Te
1g ⊗ Te

1g = Te
1g ⊕ Te

2g ⊕ Ee
g ⊕ Ae

1g

To
2g ⊗ Te

1g = To
1g ⊕ To

2g ⊕ Eo
g ⊕ Ao

2g

To
1u ⊗ Te

1g = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

1u

To
2u ⊗ Te

1g = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

2u

Group-4

−iχ̄χ

Group-1 Group-2

−iχ̄Σ0ζi χ
Group-3

−iχ̄Σiζ0 χ −iχ̄Σiζj χ

A : Singlet
E : Doublet
T : Triplet



Singlet and Chiral Irreps

Such Chiral masses also exists for spinless graphene

3 = 1 ⊕ 2 (1) Sub-lattice mass

 (2) VBS (Kekule) mass

Three CHIRAL Masses −i⟨ χ̄Σ0ζi χ⟩

In Graphene

In the present case the Chiral triplet survives

Ae
1g ⊗ Te

1g = Te
1g  Three Stripy CDW masses⇒

The same Lattice symmetries act differently at low energy



Break up (Irreducible representations) under the UV symmetries

Ae
1g ⊗ Ao

2g = Ao
2g Ae

1g ⊗ Te
1g = Te

1g
Ao

2g ⊗ Ao
2g = Ae

1g

To
2g ⊗ Ao

2g = Te
1g

To
1u ⊗ Ao

2g = Te
2u

To
2u ⊗ Ao

2g = Te
1u

Ee
u ⊗ Ao

2g = Eo
u

Te
1g ⊗ Ao

2g = To
2g

Ao
2g ⊗ Te

1g = To
2g

Ee
u ⊗ Te

1g = Te
1u ⊕ Te

2u

Te
1g ⊗ Te

1g = Te
1g ⊕ Te

2g ⊕ Ee
g ⊕ Ae

1g

To
2g ⊗ Te

1g = To
1g ⊕ To

2g ⊕ Eo
g ⊕ Ao

2g

To
1u ⊗ Te

1g = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

1u

To
2u ⊗ Te

1g = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

2u

Group-4

−iχ̄χ

Group-1 Group-2

−iχ̄Σ0ζi χ
Group-3

−iχ̄Σiζ0 χ −iχ̄Σiζj χ



Density wave masses

Ao
2g ⊗ Te

1g = To
2g

Ee
u ⊗ Te

1g = Te
1u ⊕ Te

2u

Stripy Octupolar DW

irrep mp,↵� T I T1 T2 C3 C6 C 0
2

�d

T e
1u m5,03 (= Y1) Y1 �Y1 �Y1 �Y1 Y3 Y2 Y1 �Y1

p
3

2
m4,11 �

1

2
m5,11 (= Y2) Y2 �Y2 Y2 �Y2 �Y1 Y3 �Y3 Y3

�

p
3

2
m4,21 �

1

2
m5,21 (= Y3) Y3 �Y3 �Y3 Y3 �Y2 �Y1 �Y2 Y2

T e
2u m4,03 (= X1) X1 �X1 �X1 �X1 X3 X2 �X1 X1

�

p
3

2
m5,11 �

1

2
m4,11 (= X2) X2 �X2 X2 �X2 �X1 X3 X3 �X3

p
3

2
m5,21 �

1

2
m4,21 (= X3) X3 �X3 �X3 X3 �X2 �X1 X2 �X2

TABLE VII: The quadrupole density wave masses.

These masses are invariant under TR and are odd under inversion. These break

translation and they fo to each other under various lattice symmetries. These masses

have the same symmetry as the three zig-zag density wave patterns on a honeycomb

lattice. The operator that gets ordered for these three masses are

FIG. 8: Zig-zag Density wave pattern. The green and the red dots represent opposite

densities

⌃5,
1

2

⇣p
3⌃4 � ⌃5

⌘
,
1

2

⇣p
3⌃4 + ⌃5

⌘
, (85)

respectively. Here,

⌃4 =
1
p
3
(S2

x � S2

y), and ⌃5 = S2

z �
5

4
. (86)
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Zig-Zag Quadrupolar DWSome of them : Density wave semi metals

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

even �1: 3rd triplet, mass 1

5. TR even �2 masses

6. Spin-3/2 matrices and the � matrices

Following Reference10, here we define a basis for the set of 4-dimensional hermitian ma-

trices using the spin-3/2 matrices. The three spin-3/2 matrices written in the Sz eigen basis

49

A gapless Dirac mode is left at each valley

Doubly degenerate

protected by Inversion

and subgroup of SU(4)



Break up (Irreducible representations) under the UV symmetries

Ae
1g ⊗ Ao

2g = Ao
2g Ae

1g ⊗ Te
1g = Te

1g
Ao

2g ⊗ Ao
2g = Ae

1g

To
2g ⊗ Ao

2g = Te
1g

To
1u ⊗ Ao

2g = Te
2u

To
2u ⊗ Ao

2g = Te
1u

Ee
u ⊗ Ao

2g = Eo
u

Te
1g ⊗ Ao

2g = To
2g

Ao
2g ⊗ Te

1g = To
2g

Ee
u ⊗ Te

1g = Te
1u ⊕ Te

2u

Te
1g ⊗ Te

1g = Te
1g ⊕ Te

2g ⊕ Ee
g ⊕ Ae

1g

To
2g ⊗ Te

1g = To
1g ⊕ To

2g ⊕ Eo
g ⊕ Ao

2g

To
1u ⊗ Te

1g = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

1u

To
2u ⊗ Te

1g = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

2u

Group-4

−iχ̄χ

Group-1 Group-2

−iχ̄Σ0ζi χ
Group-3

−iχ̄Σiζ0 χ −iχ̄Σiζj χ

Time reversal and Inversion even



The generalised Spin-Hall masses

SCS = i
Nf

2π
sgn(m0) ∫ d3x ϵμνλAc,μ∂νAo,λ  spin-Hall current⇒

𝒮 = − i∫ d2xdτ [χ̄γμ∂μχ + ⃗ϕ ⋅ χ̄ ⃗Mχ]
 :  The triplet spin Hall order parameter⃗ϕ

Gaps out all the fermions. 

Consider long wavelength fluctuations in ⃗ϕ

Integrate out the fermions to obtain the boson field theory  :
O(3) Non linear sigma model

𝒮eff =
1
2g ∫ d2xdτ |∂ ⃗ϕ |2



O(3) Non linear sigma model 𝒮eff =
1
2g ∫ d2xdτ |∂ ⃗ϕ |2

However, the O(3) order parameter allows topological defects : Skyrmions

Electric charge of skyrmions

𝒬Sky
e = eNF𝒬Sky

topo

(elementary skyrmions carry 4e charge)

𝒬Sky
topo =

1
4π ∫ d2r ⃗ϕ ⋅ ∂x

⃗ϕ × ∂y
⃗ϕ



Consider sitting in the quantum spin-octuple Hall phase

Destroy it by proliferating and condensing Skyrmions.

The single fermion gap survives because the  is still locally non-zero⃗ϕ

The resultant phase is therefore a charge 4e superconductor

⟨χχχχ⟩ ≠ 0

Cannot be obtained directly from a fermion bilinear condensation

Non-BCS

[Goldstone, Wilczek (1960s); Abanov, Weigmann (2000s); Grover, Senthil (2006)]

[2304.07223, Mondal, Shenoy, SB]



Break up (Irreducible representations) under the UV symmetries

Ae
1g ⊗ Ao

2g = Ao
2g Ae

1g ⊗ Te
1g = Te

1g
Ao

2g ⊗ Ao
2g = Ae

1g

To
2g ⊗ Ao

2g = Te
1g

To
1u ⊗ Ao

2g = Te
2u

To
2u ⊗ Ao

2g = Te
1u

Ee
u ⊗ Ao

2g = Eo
u

Te
1g ⊗ Ao

2g = To
2g

Ao
2g ⊗ Te

1g = To
2g

Ee
u ⊗ Te

1g = Te
1u ⊕ Te

2u

Te
1g ⊗ Te

1g = Te
1g ⊕ Te

2g ⊕ Ee
g ⊕ Ae

1g

To
2g ⊗ Te

1g = To
1g ⊕ To

2g ⊕ Eo
g ⊕ Ao

2g

To
1u ⊗ Te

1g = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

1u

To
2u ⊗ Te

1g = To
1u ⊕ To

2u ⊕ Eo
u ⊕ Ao

2u

Group-4

−iχ̄χ

Group-1 Group-2

−iχ̄Σ0ζi χ
Group-3

−iχ̄Σiζ0 χ −iχ̄Σiζj χ

Two different time reversal and Inversion even triplets

Individual members are “non-compatible” {Σi, Σj} ≠ 0



𝒮 = − i∫ d2xdτ [χ̄γμ∂μ + ⃗ϕ ⋅ χ̄ ⃗Mχ]
For each individual triplet we can parametric the masses on the sphere, S2

23

FIG. 8. Figure shows the energy spectrum of low-energy fermions along the kx = ky line for di↵erent combinations of the
masses in a triplet. Any linear combination of the masses in a particular triplet can be represented on the surface of a unit
sphere shown at the center. The energy spectrum shown in the upper panel of this figure corresponds to the T

e
1u triplets in

Eq. 86, 118 and the T
e
2u triplets in Eq. 87, 120. The spectrum in (a), (b) and (c) in the upper panel correspond to the spectrum

at the points A, C and B on the sphere. Similarly, the spectrum in the bottom panel corresponds to the T
o
1u and T

o
2u triplets

in Eq. 124, 125, 132, 133. Here again, the spectrum in (d), (e) and (f) correspond to the spectrum at the points A, C, and B
on the sphere.

sphere joining the same two gapped end-points (C and D)
as shown on the sphere in the middle panel of Fig. 8, one
not passing through the special point (the black path)
and the other passing through the special point, B (the
red path).

For the second path, one would naively conclude that
the system goes through a phase transition via a critical
point with higher symmetry. The situation can be un-
derstood by going back to the six inversion odd masses
in Eq. 51 and reminding ourselves that the six masses
in T

e
1u and T

e
2u are mutually incompatible and together

form a reducible representation (Eqs. 56 and 57) of a
U(1) ⌦ SU(2) subgroup of SO(5). A generic linear com-
bination of the six masses in this case can be represented
as points on the surface of a 5-dimensional sphere, S5, by
extending Eq. 90 to all the six masses. On this S

5 due
to the incompatibility, there are extended lower dimen-
sional regions of parameter space where the fermions are
partially gapless that separates the fully gapped regions
as schematically depicted in Fig. 9. Projection of the

gapless regions from S
5 to S

2 for the above two triplets
results in the isolated special points. This is most eas-
ily seen by sitting at one of the special partially gapless
points on the S

2 for a particular triplet (say T
e
1u) and

performing the U(1) ⌦ SU(2) transformation generated
by Eq. 54 and 55 as discussed above. The resultant mass
necessarily involves the other triplet, Te

2u and hence does
not lie on the S

2 anymore but on the gapless manifold
of S5. This is schematically shown in Fig. 9. Thus the
special point B is the projected image of the gapless man-
ifold on S

5 to S
2 and the two classes of paths between C

and D mentioned above have a natural interpretation on
S

5 where the black (red) path avoiding (touching) the
special isolated point corresponds to paths on S

5 that
lies within a single gapped phase but avoids (touches)
the gapless manifold. Very importantly, the special point
is mandated to exist under the microscopic symmetries
such that a system tuned to pass through the special
point B undergoes an unnecessary phase transition [66].
In this sense, the special points can be thought of as ex-

The special isolated points are gapless  Protected by UV symmetries. ⇒
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FIG. 9. The six masses in Eq. 51 are mutually incompatible. A generic linear combination of such masses (similar to Eq. 90
extended to the six masses) can be represented on a five-dimensional sphere, S5, as shown in the left-hand figure which has
extended gapless critical hyper-lines (in magenta) separating two di↵erent phases described by the two triplets T

e
1u and T

e
2u

(Eqs. 56 and 57). The pink line on S
5 represents a hypersurface on which the fermionic spectrum is gapless (Fig. 8(c,f)). This

hypersurface projects to the point B on S
2 as shown by the dotted lines. The images of the two paths from C to D are also

shown in S
5.

two doublets and the other two triplets with a multiplic-
ity of two, i.e., (2To

1u, 2T
o
2u) only give rise to three distinct

phases since members of the same representation can be
mixed without breaking any further symmetries. Thus
they give rise to a total of eight distinct flavour density
wave insulating phases – two of which have edge modes.

1. Ising ferro spin-quadrupolar insulator

The TR even mass for the A
e
1g lattice singlet in Eq.

61c is given by

� = �i h�̄ (⌃3⇣1 � ⌃1⇣3 � ⌃2⇣2)�i /
p
3 (104)

While it is a lattice singlet, it breaks the flavour SU(4)
down to U(1) (generated by ⌃45) and the chiral SU(2)
down to Z2.

This mass corresponds to a uniform ferro ordering in
the spin-quadrupole density (in the global basis)

⌃1 + ⌃2 + ⌃3 =
1p
3
({Jx, Jy}+ {Jy, Jz}+ {Jz, Jx}) ,

(105)

as can be explicitly checked starting with the underlying
lattice fermion bilinear similar to the case of CDW (Eq.
73). In addition, this singlet supports non-zero quan-
tized spin-octupolar Hall response somewhat similar to
that of the A

e
1g mass in Eq. 75. To understand this, we

write an action similar to that in Eq. 77 and integrate
out the fermions. This produces a mutual CS action of

the form

S
mutual
CS = i

NF

2

1

2⇡
sgn(�)

Z
d
3
x✏

µ⌫�
Ac,µ@⌫Ao,�.

(106)

Here NF = 4 is the number of fermions flavors and Ac,µ,
Ao,µ are respectively electromagnetic and octupole probe
gauge fields as used in Eq. 78. Thus, this mass too pro-
duces quantum octupolar Hall response, but the CS level
is half compared to that for the mass in Eq. 75. The
resultant counter-propagating edge modes (not shown)
can be obtained for appropriate lattice models. These
edge modes are protected by the U(1) symmetry gen-
erated by ⌃45 ⇥ Z

TR
2

which commutes with the mass.
Hence this corresponds to a gapped Ising ferroquadrupo-
lar phase with counter-propagating spin-octupole filtered
edge modes.

2. Ising ferro spin-octupolar insulator

Similarly, the TR odd mass for the A
o
2g lattice singlet

in Eq. 61d given by

�̃ = �i h�̄ (⌃12⇣1 � ⌃23⇣3 + ⌃13⇣2)�i /
p
3 (107)

corresponds to uniform ordering for the spin-octupole
density in

⌃12 � ⌃13 + ⌃23 =
7

3
(Jx + Jy + Jz)�

4

3

�
J
3

x + J
3

y + J
3

z

�

(108)

Triplet -1

Triplet -2

The special isolated points are gapless  Higher symmetry ⇒

 Unnecessary “Multi-critical point”⇒ [Bi et. al, 2020] 

[2304.07223, Mondal, Shenoy, SB]



Summary
• Microscopic symmetries can be embedded non-trivially in much larger IR 

symmetry group.

• This allows for many apparently unrelated orders to naturally compete and 
occur in close proximity

• Example : d  or d  systems on honeycomb lattice with SOC

• SOC coupled Dirac fermions 

• Enlarged symmetry (good for materials where it is weakly broken)

• Natural starting point to understand host of competing orders both 
symmetry broken and symmetry protected topological.

• Interesting fallouts : 4e superconductivity, unconventional critical points

• Materials ? ZrCl  …….. ?

1 3

3

Thank You




