Multipolar Spin Liquids

Hae-Young Kee University of Toronto

Conference on Fractionalization and Emergent Gauge Fields in Quantum Matter International Center for Theoretical Physics December 4, 2023

Derek Churchill

Ahmed Rayyan

References:

- G. Khaliullin, D. Churchill, P. P. Stavropoulos, HYK, Phys. Rev. Research 3, 033163 (2021)
- D. Churchill, HYK, Phys. Rev. B 105, 014438 (2022)
- A. Rayyan, D. Churchill, HYK, Phys. Rev. B 107, L020408 (2023)

Collaborators

Giniyat Khaliullin (MPI)

P. Stavropoulos (Univ. of Minnesota)

Kitaev model and Kitaev spin liquid in S=1/2 systems

A. Kitaev, Annals of Physics 321, 2 (2006): Anyones in exactly solved model and beyond

Kitaev model and Kitaev spin liquid in S=1/2 systems

Emergent particles: Majorana Fermions & vortex

A. Kitaev, Annals of Physics 321, 2 (2006): Anyones in exactly solved model and beyond

particle = its own antiparticle

Can we realize Kitaev model and quantum spin liquids in multipolar systems ?

Question:

even number of electrons — free from Kramer's theorem

- even number of electrons free from Kramer's theorem
 - Hund's rule + crystal field theory : non-Kramer doublet

- even number of electrons free from Kramer's theorem
 - Hund's rule + crystal field theory : non-Kramer doublet

example:
$$f^2$$
 $S = 1, L = 5, J = 4$

- even number of electrons free from Kramer's theorem
 - Hund's rule + crystal field theory : non-Kramer doublet

even number of electrons — free from Kramer's theorem Hund's rule + crystal field theory : non-Kramer doublet

example: f^2 S = 1, L = 5, J = 4Under cubic crystal field $\Gamma_{J=4} = \Gamma_1 \oplus \Gamma_3 \oplus \Gamma_4 \oplus \Gamma_5$

	Dipole	Quadru -pole	Octu- pole
Γ_5	0	0	×
Γ_4	0	0	×
Γ ₃	×	0	0
Γ_1	×	×	×

- of electrons free from Kramer's theorem
 - stal field theory : non-Kramer doublet

 $\oplus \Gamma_3 \oplus \Gamma_4 \oplus \Gamma_5$

	Dipole	Quadru -pole	Octu- pole
Γ_5	0	0	×
Γ_4	0	0	×
Γ_3	×	0	0
Γ_1	×	×	×

 $\langle \mathbf{J} \rangle = 0$ $\langle Q_{ij} \rangle = \langle \frac{1}{2} \left(J_i J_j + J_j J_i \right) - J^2 \delta_{ij} \rangle$

Introduction: multipolar systems

number of electrons — free from Kramer's theorem

stal field theory : non-Kramer doublet

 $\Gamma_1 \oplus \Gamma_3 \oplus \Gamma_4 \oplus \Gamma_5$

 $Q_{zz} \propto 3J_z^2 - J^2$ $(Q_{xx} - Q_{yy}) \propto (J_x^2 - J_y^2)$

G. Chen and L. balents, PRB 84, -94420 (2011); D. D. Mahraj, et al, PRL 124, 087206 (2020);

Focus: 5d² systems

G. Chen and L. balents, PRB 84, -94420 (2011); D. D. Mahraj, et al, PRL 124, 087206 (2020);

Focus: 5d² systems

G. Chen and L. balents, PRB 84, -94420 (2011); D. D. Mahraj, et al, PRL 124, 087206 (2020);

Focus: 5d² systems

octahedral crystal field

octahedral crystal field

G. Chen and L. balents, PRB 84, -94420 (2011); D. D. Mahraj, et al, PRL 124, 087206 (2020);

Focus: 5d² systems

octahedral crystal field

G. Chen and L. balents, PRB 84, -94420 (2011); D. D. Mahraj, et al, PRL 124, 087206 (2020);

Focus: 5d² systems

Hund's rule: S = I, L = I, J = 2

octahedral crystal field

G. Chen and L. balents, PRB 84, -94420 (2011); D. D. Mahraj, et al, PRL 124, 087206 (2020);

Focus: 5d² systems

Hund's rule: S = I, L = I, J = 2

Non-Kramer doublet

Focus: 5d² systems

Hund's rule: S = I, L = I, J = 2

octahedral crystal field

$$\left| + \right\rangle = \frac{1}{\sqrt{2}} (|1, 1\rangle + |-1, -1\rangle),$$

$$- \right\rangle = \frac{1}{\sqrt{6}} (|1, -1\rangle + 2|0, 0\rangle + |-1, 1\rangle).$$

Non-Kramer doublet

G. Chen and L. balents, PRB 84, -94420 (2011); D. D. Mahraj, et al, PRL 124, 087206 (2020);

G. Chen and L. balents, PRB 84, -94420 (2011); D. D. Mahraj, et al, PRL 124, 087206 (2020);

Focus: 5d² systems

Hund's rule: S = I, L = I, J = 2

octahedral crystal field

$$\left| + \right\rangle = \frac{1}{\sqrt{2}} (|1, 1\rangle + |-1, -1\rangle), - \right\rangle = \frac{1}{\sqrt{6}} (|1, -1\rangle + 2|0, 0\rangle + |-1, 1\rangle).$$

Non-Kramer doublet

$$\langle \mathbf{J} \rangle = 0$$

Quadrupole operators

$$O_3 = \frac{1}{6} (2J_z^2 - J_x^2 - J_y^2) \qquad (\pm O_2) = \frac{1}{2\sqrt{3}} (J_x^2 - J_y^2) \qquad (\pm O_2) = \frac{1}{2\sqrt{3}} (J_y^2 - J_y^2) \qquad (\pm$$

Octuploar operator

$$T_{xyz} = \frac{1}{\sqrt{3}} \overline{J_x J_y J_z} \qquad \qquad \langle \pm \frac{1}{2} | T_{xy} \rangle$$

 $\pm |O_3| \pm \rangle = \pm 1$ $\pm |O_2| \mp \rangle = 1$

 $\frac{1}{2}|T_{xyz}| \mp \frac{1}{2}\rangle = \mp i$

Quadrupole operators

$$O_3 = \frac{1}{6} (2J_z^2 - J_x^2 - J_y^2) \qquad (\pm O_2) = \frac{1}{2\sqrt{3}} (J_x^2 - J_y^2) \qquad (\pm O_3) = \frac{1}{2\sqrt{3}} (J_y^2 - J_y^2) \qquad (\pm$$

Octuploar operator

$$T_{xyz} = \frac{1}{\sqrt{3}} \overline{J_x J_y J_z} \qquad \qquad \langle \pm \frac{1}{2} | T_{xy} \rangle$$

Pauli matrix

$$s^{z} = \frac{1}{2}O_{3} \qquad s^{y}$$
$$s^{y} = \frac{1}{2}T_{xyz}$$

 $\pm |O_3| \pm \rangle = \pm 1$ $\pm |O_2| \mp \rangle = 1$

 $T_{xyz}|\mp\frac{1}{2}\rangle=\mp i$

 $S^x = \frac{1}{2}O_2$

Non-Kramer doublet

Quadrupole operators

$$O_3 = \frac{1}{6} (2J_z^2 - J_x^2 - J_y^2) \qquad (\pm O_2) = \frac{1}{2\sqrt{3}} (J_x^2 - J_y^2) \qquad (\pm O_3) = \frac{1}{2\sqrt{3}} (J_y^2 - J_y^2) \qquad (\pm$$

Octuploar operator

$$T_{xyz} = \frac{1}{\sqrt{3}} \overline{J_x J_y J_z} \qquad \qquad \langle \pm \frac{1}{2} | T_{xy} \rangle$$

Pauli matrix

$$s^{z} = \frac{1}{2}O_{3} \qquad s^{x}$$
$$s^{y} = \frac{1}{2}T_{xyz}$$

Non-Kramer doublet

intersite H

 \mathcal{H}_{ij}

Microscopic Theory of 5d² systems

Recall : there are 2 electrons in t_{2g} orbitals at a site

Consider hopping integrals between two sites (z bond)

 $t_{ij} = \begin{array}{c} c_{i,xy}^{\dagger} & c_{j,xz} & c_{j,yz} \\ c_{i,xz}^{\dagger} & \begin{pmatrix} t_3 & 0 & 0 \\ 0 & t_1 & t_2 \\ 0 & t_2 & t_1 \end{pmatrix}$

$$t_{ij} = \begin{array}{c} c_{i,xy}^{\dagger} & c_{j,xz} & c_{j,yz} \\ c_{i,xz}^{\dagger} & \begin{pmatrix} t_3 & 0 & 0 \\ 0 & t_1 & t_2 \\ 0 & t_2 & t_1 \end{pmatrix}$$

 $\mathcal{H}_{ij}(90^{\circ}) = J\left(s_i^y s_j^y - s_i^x s_j^x - s_i^z s_j^z\right), \quad J = \frac{2t_2^2}{3U}$

$$(90^{\circ}) = J \left((s_i^y s_j^y - s_i^x s_j^x - s_i^z s_j^z), \quad J = \frac{2t_2^2}{3U} \right)$$

1/2(Pauli matrix) for non-Kramer doublet

$$(90^{\circ}) = J \left((s_i^y s_j^y - s_i^x s_j^x - s_i^z s_j^z), \quad J = \frac{2t_2^2}{3U} \right)$$

1/2(Pauli matrix) for non-Kramer doublet

AFM octupolar and FM quadrupolar interaction support AF Octupolar Order when J is large

$$\begin{pmatrix} c_{j,xy} & c_{j,xz} & c_{j,yz} \\ (t_3 & 0 & 0) \\ 0 & t_1 & t_2 \\ 0 & t_2 & t_1 \end{pmatrix}$$

$$egin{array}{ccc} c_{j,xz} & c_{j,yz} \ (t_3 & 0 & 0) \ 0 & t_1 & t_2 \ 0 & t_2 & t_1 \end{pmatrix}$$

 $\mathcal{H}_{ij}^{(\gamma)}(d)$

 $\tau_{\gamma} = co$

 $\phi_{\gamma} =$

$$egin{array}{cccc} c_{j,xz} & c_{j,yz} \ (t_3 & 0 & 0) \ 0 & t_1 & t_2 \ 0 & t_2 & t_1 \end{pmatrix}$$

$$= J_{\tau} \ \tau_{i\gamma} \tau_{j\gamma}, \quad J_{\tau} = \frac{4t_3^2}{9U}$$

$$\operatorname{os}\phi_{\gamma}\,s^{z}+\sin\phi_{\gamma}\,s^{x},$$

$$(0, 2\pi/3, 4\pi/3)$$

 $\gamma = (z, x, y)$

bond-dependent quadrupole-quadrupole interaction

$$egin{array}{cc} c_{j,xz} & c_{j,yz} \ (t_3 & 0 & 0) \ 0 & t_1 & t_2 \ 0 & t_2 & t_1 \end{pmatrix}$$

$$= J_{\tau} \ \tau_{i\gamma} \tau_{j\gamma}, \quad J_{\tau} = \frac{4t_3^2}{9U}$$

$$\operatorname{os}\phi_{\gamma} s^{z} + \sin\phi_{\gamma} s^{x},$$

$$(0, 2\pi/3, 4\pi/3)$$

$$\gamma = (z, x, y)$$

t₂+t₃ processes together:

$$\begin{aligned} H_{ij}^{\gamma} &= \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y \\ &+ \frac{J_{\tau}}{2} \left(\cos \phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin \phi_{\gamma} \left(s_i^z s_j^x + s_i^x s_j^z\right)\right) \end{aligned} \qquad \begin{aligned} \tau_{\gamma} &= \cos \phi_{\gamma} \ s^z + \sin \phi_{\gamma}$$

G. Khaliullin, D. Churchill, P. Stavropoulos, HYK, PRR 3, 033163 (2021)

t₂+t₃ processes together:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_j^z s_j^z - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_j^z s_j^x - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_j^x s_j^x - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos\phi_{$$

 $\tau_{\gamma} = \cos \phi_{\gamma} \ s^z + \sin \phi_{\gamma} \ s^x,$ $+ Js_i^y s_j^y$ $\phi_{\gamma} = (0, 2\pi/3, 4\pi/3)$ $-\sin\phi_{\gamma}\left(s_{i}^{z}s_{j}^{x}+s_{i}^{x}s_{j}^{z}\right)\right)$ $\gamma = (z, x, y)$

G. Khaliullin, D. Churchill, P. Stavropoulos, HYK, PRR 3, 033163 (2021)

t₂+t₃ processes together:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_j^z s_j^z - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_j^z s_j^x - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_j^x s_j^x - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos\phi_{$$

: Reminds the generic model in honeycomb lattice

G. Khaliullin, D. Churchill, P. Stavropoulos, HYK, PRR 3, 033163 (2021)

 $\tau_{\gamma} = \cos \phi_{\gamma} \ s^{z} + \sin \phi_{\gamma} \ s^{x},$ $+Js_i^y s_j^y$ $\phi_{\gamma} = (0, 2\pi/3, 4\pi/3)$ $-\sin\phi_{\gamma}\left(s_{i}^{z}s_{j}^{x}+s_{i}^{x}s_{j}^{z}\right)\right)$ $\gamma = (z, x, y)$

Generic Spin Model in 2D honeycomb $J - K - \Gamma \mod d$

nearest neighbour: ideal honeycomb

$H^{z} = \sum \left[K_{z} S_{i}^{z} S_{j}^{z} + \Gamma_{z} (S_{i}^{x} S_{j}^{y} + S_{i}^{y} S_{j}^{x}) \right] + \tilde{J} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$ $\langle ij \rangle \in z - bond$

J. Rau, E. Lee, HYK, PRL (2014)

 $H^x = H^z(x \to y \to z \to x)$

Generic Spin Model in 2D honeycomb $J - K - \Gamma$ model

nearest neighbour: ideal honeycomb

 $H^x = H^z(x)$

bond-dep. interaction

$$\Gamma_z (S_i^x S_j^y + S_i^y S_j^x)] + \tilde{J} \mathbf{S}_i \cdot \mathbf{S}_j$$

$$x \to y \to z \to x)$$

J. Rau, E. Lee, HYK, PRL (2014)

Generic Spin Model in 2D honeycomb $J - K - \Gamma$ model

ideal honeycomb

 $H^x = H^z(x)$

J. Rau, E. Lee, HYK, PRL (2014)

$$x \to y \to z \to x)$$

$H^{z} = \sum_{\langle ij \rangle \in z-bond} \left[K_{z} S_{i}^{z} S_{j}^{z} + \Gamma_{z} (S_{i}^{x} S_{j}^{y} + S_{i}^{y} S_{j}^{x}) \right] + \tilde{J} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$

(xyz)-coordinate

$$H^{z} = \sum_{\langle ij \rangle \in z-bond} [K_{z}S_{i}^{z}]$$

- . .

(xyz)-coordinate

$\left[S_j^z + \Gamma_z \left(S_i^x S_j^y + S_i^y S_j^x\right)\right] + \tilde{J} \mathbf{S}_i \cdot \mathbf{S}_j$

 $\langle ij \rangle \in z - bond$

Compass model

(xyz)-coordinate

$H^{z} = \sum \left[K_{z} S_{i}^{z} S_{j}^{z} + \Gamma_{z} (S_{i}^{x} S_{j}^{y} + S_{i}^{y} S_{j}^{x}) \right] + \tilde{J} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$

(abc)-coordinate

 $H_{ij}^{\gamma} = J_{xy}(S_{i}^{x}S_{j}^{x} + S_{i}^{y}S_{j}^{y}) + J_{z}S_{i}^{z}S_{j}^{z}$ $+A\left[\cos(\phi_{\gamma})(S_{i}^{x}S_{j}^{x} - S_{i}^{y}S_{j}^{y}) - \sin(\phi_{\gamma})(S_{i}^{x}S_{j}^{y} + S_{i}^{y}S_{j}^{x})\right]$

 $-B\sqrt{2}\left[\cos(\phi_{\gamma})\left(S_{i}^{x}S_{j}^{z}+S_{i}^{z}S_{j}^{x}\right)+\sin(\phi_{\gamma})\left(S_{i}^{y}S_{j}^{z}+S_{i}^{z}S_{j}^{y}\right)\right]$

 $\langle ij \rangle \in z - bond$

Compass model

(xyz)-coordinate

$H^{z} = \sum \left[K_{z} S_{i}^{z} S_{j}^{z} + \Gamma_{z} (S_{i}^{x} S_{j}^{y} + S_{i}^{y} S_{j}^{x}) \right] + \tilde{J} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$

(abc)-coordinate

$$H_{ij}^{\gamma} = J_{xy}(S_{i}^{x}S_{j}^{x} + S_{i}^{y}S_{j}^{y}) + J_{z}S_{i}^{z}S_{j}^{z}$$
$$+A\left[\cos(\phi_{\gamma})(S_{i}^{x}S_{j}^{x} - S_{i}^{y}S_{j}^{y}) - \sin(\phi_{\gamma})(S_{i}^{x}S_{j}^{y} + S_{i}^{y}S_{j}^{x})\right]$$
$$-B\sqrt{2}\left[\cos(\phi_{\gamma})(S_{i}^{x}S_{j}^{z} + S_{i}^{z}S_{j}^{x}) + \sin(\phi_{\gamma})(S_{i}^{y}S_{j}^{z} + S_{i}^{z}S_{j}^{y})\right]$$

$$J_{XY} = \tilde{J} + B \qquad J_Z = \tilde{J} + A$$
$$A = \frac{1}{3}(K + 2\Gamma) \qquad B = \frac{1}{3}(K - \Gamma)$$

In this model: Kitaev limit $J_{xy} = J_z = A = B$

J. Chaloupka, G. Khaliullin PRB 92, 024413 (2015)

Our model is a special line of JKGamma model

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin\phi_{\gamma} \left(s_i^z s_j^x + s_j^y\right)\right)$$

-J

Our model is a special line of JKGamma model

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin\phi_{\gamma} \left(s_i^z s_j^x + s_j^y\right)\right)$$

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin\phi_{\gamma} \left(s_i^z s_j^x + s_j^y\right)\right)$$

 $\lambda = 2J/J_{\tau}$

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin\phi_{\gamma} \left(s_i^z s_j^x + s_j^y\right)\right)$$

 $\lambda = 2J/J_{\tau}$

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin\phi_{\gamma} \left(s_i^z s_j^x + s_j^y\right)\right)$$

 $\lambda = 2J/J_{\tau}$

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin\phi_{\gamma} \left(s_i^z s_j^x + s_j^y\right)\right)$$

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin\phi_{\gamma} \left(s_i^z s_j^x + s_j^y\right)\right)$$

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin\phi_{\gamma} \left(s_i^z s_j^x + s_j^y\right)\right)$$

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} - J\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin\phi_{\gamma} \left(s_i^z s_j^x + s_j^y\right)\right)$$

• Kitaev limit $J_{xy} = J_z = A$; cannot be satisfied

$$H_{ij}^{\gamma} = \underbrace{\left(\frac{J_{\tau}}{2} - J\right)}_{2} \left(s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}\right) + Js_{i}^{y}s_{j}^{y} + \frac{J_{\tau}}{2} \left(\cos\phi_{\gamma}\left(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}\right) - \sin\phi_{\gamma}\left(s_{i}^{z}s_{j}^{x} + s_{j}^{x}\right)\right)$$

• Kitaev limit $J_{xy} = J_z = A$; cannot be satisfied

$$H_{ij}^{\gamma} = \underbrace{\begin{pmatrix} J_{\tau} \\ 2 \end{pmatrix}}_{k} \left(s_i^z s_j^z + s_i^x s_j^x\right) + J s_i^y s_j^y + \frac{J_{\tau}}{2} \left(\cos \phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin \phi_{\gamma} \left(s_i^z s_j^x + s_j^x\right)\right)$$

• Kitaev limit $J_{xy} = J_z = A$; cannot be satisfied

$$H_{ij}^{\gamma} = \begin{bmatrix} J_{\tau} \\ 2 \end{bmatrix} (s_i^z s_j^z + s_i^x s_j^x) + J s_i^y s_j^y \\ + \frac{J_{\tau}}{2} \left(\cos \phi_{\gamma} \left(s_i^z s_j^z - s_i^x s_j^x \right) - \sin \phi_{\gamma} \left(s_i^z s_j^x + s_j^x \right) \right) \\ \mathbf{A} = \begin{bmatrix} J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^z - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^x - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^x - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^x - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J_{\tau} \\ J_{\tau} \\ J_{\tau} \\ \mathbf{A} \end{bmatrix} (s_i^z s_j^x - s_i^x s_j^x) + S = \begin{bmatrix} J_{\tau} \\ J$$

• Kitaev limit $J_{xy} = J_z = A$; cannot be satisfied

Missing B term

$$\mathbf{J}_{xy} \qquad \mathbf{J}_{z}$$

$$H_{ij}^{\gamma} = \underbrace{\left(\frac{J_{\tau}}{2} - J\right)}_{\gamma} \left(s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}\right) + \underbrace{J}_{s}s_{i}^{y}s_{j}^{y}$$

$$+ \underbrace{\frac{J_{\tau}}{2}}_{\gamma} \left(\cos \phi_{\gamma} \left(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}\right) - \sin \phi_{\gamma} \left(s_{i}^{z}s_{j}^{x} + s_{i}^{z}s_{j}^{x}\right) - \frac{1}{2} \int_{\gamma} \frac{1}{2} \left[\cos(\phi_{\gamma})(S_{i}^{x}S_{j}^{z} + S_{i}^{z}S_{j}^{x}) + \sin(\phi_{\gamma})(S_{i}^{y}S_{j}^{z} + s_{i}^{z}S_{j}^{x}) + \sin(\phi_{\gamma})(S_{i}^{y}S_{j}^{z} + s_{i}^{z}S_{j}^{x}) + \frac{1}{2} \int_{\gamma} \frac{1}{2} \int_{\gamma}$$

• Kitaev limit $J_{xy} = J_z = A$; cannot be satisfied

Missing B term

 $t_{ij} = \begin{array}{c} c_{j,xy} & c_{j,xz} & c_{j,yz} \\ c_{i,xz}^{\dagger} & \begin{pmatrix} t_3 & 0 & 0 \\ 0 & t_1 & t_2 \\ 0 & t_2 & t_1 \end{pmatrix} & \text{do not change the allowed interactions,} \\ \text{but ratio between } J_{q} \text{ and } J_{o} \text{ is no longer limited} \end{array}$

D. Churchill, HYK, PRB 105, 014438 (2022)

 $t_{ij} = \begin{array}{c} c_{j,xy} & c_{j,xz} & c_{j,yz} \\ c_{i,xz}^{\dagger} & \begin{pmatrix} t_3 & 0 & 0 \\ 0 & t_1 & t_2 \\ 0 & t_2 & t_1 \end{pmatrix}$

do not change the allowed interactions, but ratio between J_q and J_o is no longer limited

D. Churchill, HYK, PRB 105, 014438 (2022)

I+2+3, all together:

D. Churchill, HYK, PRB 105, 014438 (2022)

do not change the allowed interactions, but ratio between J_q and J_o is no longer limited

$$J_q \left(s_i^z s_j^z + s_i^x s_j^x) + J_o s_i^y s_j^y \right)$$

$$ps(\phi_\gamma) \left(s_i^z s_j^z - s_i^x s_j^x) - \sin(\phi_\gamma) \left(s_i^z s_j^x + s_i^x s_j^z) \right)$$

$$\phi_\gamma = \left(0, 2\pi/3, 4\pi/3 \right) \qquad \gamma = (z, x, y)$$

$t_{ij} = \begin{array}{c} c_{j,xy} & c_{j,xz} & c_{j,yz} \\ c_{i,xz}^{\dagger} & \begin{pmatrix} t_3 & 0 & 0 \\ 0 & t_1 & t_2 \\ 0 & t_2 & t_1 \end{pmatrix}$

I+2+3, all together:

$$J_{\tau} = \frac{4(t_1 - t_3)^2}{9U}$$

do not change the allowed interactions, but ratio between J_{q} and J_{o} is no longer limited

$$J_{q} \left(s_{i}^{z} s_{j}^{z} + s_{i}^{x} s_{j}^{x} \right) + J_{o} s_{i}^{y} s_{j}^{y}$$

$$ps(\phi_{\gamma}) (s_{i}^{z} s_{j}^{z} - s_{i}^{x} s_{j}^{x}) - sin(\phi_{\gamma}) (s_{i}^{z} s_{j}^{x} + s_{i}^{x} s_{j}^{z}) \right)$$

$$\phi_{\gamma} = (0, 2\pi/3, 4\pi/3) \qquad \gamma = (z, x, y)$$

$$t_{1} + 2t_{3}) + t_{2}^{2} J_{q} = \underbrace{\frac{2[t_{1}(t_{1} + 2t_{3}) - t_{2}^{2}]}{3U}} J_{q} \neq J_{q} \neq J_{q}$$

D. Churchill, HYK, PRB 105, 014438 (2022)

Compass model:

Our model:

 $+A\left[\cos(\phi_{\gamma})(S_i^x S_j^x - S_i^y S_j^y) - \sin(\phi_{\gamma})(S_i^x S_j^y + S_i^y S_j^x)\right]$ $-B\sqrt{2}\left[\cos(\phi_{\gamma})(S_i^x S_j^z + S_i^z S_j^x) + \sin(\phi_{\gamma})(S_i^y S_j^z + S_i^z S_j^y)\right]$

Compass model: $H_{ij}^{\gamma} = J_{xy}(S_i^x S_j^x + S_i^y) + A \left[\cos(\phi_{\gamma})(S_i^x - B\sqrt{2} \left[\cos(\phi_{\gamma})(S_i^x + S_i^y)\right]\right]$

Our model:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} + J_{q}\right)(s) + \frac{J_{\tau}}{2}\left(\cos(\phi_{\gamma})\right)$$

$$S_{i}^{y}S_{j}^{y}) + J_{z}S_{i}^{z}S_{j}^{z}$$

$$xS_{j}^{x} - S_{i}^{y}S_{j}^{y}) - \sin(\phi_{\gamma})(S_{i}^{x}S_{j}^{y} + S_{i}^{y}S_{j}^{x})]$$

$$(S_{i}^{x}S_{j}^{z} + S_{i}^{z}S_{j}^{x}) + \sin(\phi_{\gamma})(S_{i}^{y}S_{j}^{z} + S_{i}^{z}S_{j}^{y})]$$

 $s_i^z s_j^z + s_i^x s_j^x) + J_o s_i^y s_j^y$

 $)\left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin(\phi_\gamma)\left(s_i^z s_j^x + s_i^x s_j^z\right)\right)$

Compass model:

$$\begin{aligned} H_{ij}^{\gamma} = & \int_{xy} (S_i^x S_j^x + S_i^y S_j^y) + J_z S_i^z S_j^z \\ & + A \left[\cos(\phi_{\gamma}) (S_i^x S_j^x - S_i^y S_j^y) - \sin(\phi_{\gamma}) (S_i^x S_j^y + S_i^y S_j^x) \right] \\ & - B \sqrt{2} \left[\cos(\phi_{\gamma}) (S_i^x S_j^z + S_i^z S_j^x) + \sin(\phi_{\gamma}) (S_i^y S_j^z + S_i^z S_j^y) \right] \end{aligned}$$

Our model:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} + J_q\right) \left(s_i^z s_j^z + s_i^x s_j^x\right) + J_o s_i^y s_j^y$$
$$+ \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma}) \left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin(\phi_{\gamma}) \right) \left(s_i^z s_j^z - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma}) \left(s_i^z s_j^z - s_j^x s_j^x\right) - \sin(\phi_{\gamma}) \right) \left(s_i^z s_j^z - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma}) \left(s_i^z s_j^z - s_j^x s_j^x\right) - \sin(\phi_{\gamma}) \right) \left(s_j^z s_j^z - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma}) \left(s_j^z s_j^z - s_j^x s_j^x\right) - \sin(\phi_{\gamma}) \right) \left(s_j^z s_j^z - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma}) \left(s_j^z s_j^z - s_j^x s_j^x\right) - \sin(\phi_{\gamma}) \right) \left(s_j^z s_j^z - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma}) \left(s_j^z s_j^z - s_j^x s_j^x\right) - \sin(\phi_{\gamma}) \right) \left(s_j^z s_j^z - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma}) \left(s_j^z s_j^z - s_j^x s_j^x\right) - \sin(\phi_{\gamma}) \right) \left(s_j^z s_j^z - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma}) \left(s_j^z s_j^z - s_j^x s_j^x\right) - \sin(\phi_{\gamma}) \right) \left(s_j^z s_j^z - s_j^x s_j^x\right) + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma}) \left(s_j^z s_j^z - s_j^x s_j^x\right) - \sin(\phi_{\gamma}) \right) \right)$$

 $\left(s_i^z s_j^z - s_i^x s_j^x\right) - \sin(\phi_\gamma) \left(s_i^z s_j^x + s_i^x s_j^z\right)\right)$

Compass model:

$$\begin{aligned} H_{ij}^{\gamma} = & \int_{xy} (S_i^x S_j^x + S_i^y S_j^y) + J_z S_i^z S_j^z \\ & + A \left[\cos(\phi_{\gamma}) (S_i^x S_j^x - S_i^y S_j^y) - \sin(\phi_{\gamma}) (S_i^x S_j^y + S_i^y S_j^x) \right] \\ & - B \sqrt{2} \left[\cos(\phi_{\gamma}) (S_i^x S_j^z + S_i^z S_j^x) + \sin(\phi_{\gamma}) (S_i^y S_j^z + S_i^z S_j^y) \right] \end{aligned}$$

Our model:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} + J_{q}\right) (s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}) + J_{o}s_{i}^{y}s_{j}^{y} + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma})(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}) - \sin(\phi_{\gamma})(s_{i}^{z}s_{j}^{x} + s_{i}^{x}s_{j}^{z})\right)$$

Compass model:

$$\begin{aligned} H_{ij}^{\gamma} = & \int_{xy} (S_i^x S_j^x + S_i^y S_j^y) + \int_z S_i^z S_j^z \\ & + A \left[\cos(\phi_{\gamma}) (S_i^x S_j^x - S_i^y S_j^y) - \sin(\phi_{\gamma}) (S_i^x S_j^y + S_i^y S_j^x) \right] \\ & - B \sqrt{2} \left[\cos(\phi_{\gamma}) (S_i^x S_j^z + S_i^z S_j^x) + \sin(\phi_{\gamma}) (S_i^y S_j^z + S_i^z S_j^y) \right] \end{aligned}$$

Our model:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} + J_{q}\right) (s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}) + J_{o}s_{i}^{y}s_{j}^{y} + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma})(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}) - \sin(\phi_{\gamma})(s_{i}^{z}s_{j}^{x} + s_{i}^{x}s_{j}^{z})\right)$$
Compass model:

$$\begin{aligned} H_{ij}^{\gamma} = & \int_{xy} (S_i^x S_j^x + S_i^y S_j^y) + \int_z S_i^z S_j^z \\ & + A \left[\cos(\phi_{\gamma}) (S_i^x S_j^x - S_i^y S_j^y) - \sin(\phi_{\gamma}) (S_i^x S_j^y + S_i^y S_j^x) \right] \\ & - B \sqrt{2} \left[\cos(\phi_{\gamma}) (S_i^x S_j^z + S_i^z S_j^x) + \sin(\phi_{\gamma}) (S_i^y S_j^z + S_i^z S_j^y) \right] \end{aligned}$$

Our model:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} + J_{q}\right) \left(s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}\right) + J_{o}s_{i}^{y}s_{j}^{y} + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma})\left(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}\right) - \sin(\phi_{\gamma})\left(s_{i}^{z}s_{j}^{x} + s_{i}^{x}s_{j}^{z}\right)\right)$$

Compass model:

$$H_{ij}^{\gamma} = \int_{xy} (S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y}) + \int_{z} S_{i}^{z} S_{j}^{z}$$
$$+ A \left[\cos(\phi_{\gamma}) (S_{i}^{x} S_{j}^{x} - S_{i}^{y} S_{j}^{y}) - \sin(\phi_{\gamma}) (S_{i}^{x} S_{j}^{y} + S_{i}^{y} S_{j}^{x}) \right]$$
$$- B \sqrt{2} \left[\cos(\phi_{\gamma}) (S_{i}^{x} S_{j}^{z} + S_{i}^{z} S_{i}^{x}) + \sin(\phi_{\gamma}) (S_{i}^{y} S_{i}^{z} + S_{i}^{z} S_{i}^{y}) \right]$$

Our model:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} + J_{q}\right) (s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}) + J_{o}s_{i}^{y}s_{j}^{y} + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma})(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}) - \sin(\phi_{\gamma})(s_{i}^{z}s_{j}^{x} + s_{i}^{x}s_{j}^{z})\right)$$

 $S\sqrt{2}\left[\cos(\phi_{\gamma})\left(S_{i}^{x}S_{j}^{z}+S_{i}^{z}S_{j}^{x}\right)+\sin(\phi_{\gamma})\left(S_{i}^{y}S_{j}^{z}+S_{i}^{z}S_{j}^{y}\right)\right]$

Compass model:

$$H_{ij}^{\gamma} = \int_{xy} (S_i^x S_j^x + S_i^y S_j^y) + \int_z S_i^z S_j^z \\ + A \left[\cos(\phi_{\gamma}) (S_i^x S_j^x - S_i^y S_j^y) - \sin(\phi_{\gamma}) (S_i^x S_j^y + S_i^y S_j^x) \right] \\ - B \sqrt{2} \left[\cos(\phi_{\gamma}) (S_i^x S_j^z + S_i^z S_j^x) + \sin(\phi_{\gamma}) (S_i^y S_j^z + S_i^z S_j^y) \right]$$

Our model:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} + J_{q}\right) \left(s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}\right) + J_{o}s_{i}^{y}s_{j}^{y} + J_{o}s_{i}^{y}s_{j}^{y} + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma})\left(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}\right) - \sin(\phi_{\gamma})\left(s_{i}^{z}s_{j}^{x} + s_{i}^{x}s_{j}^{z}\right)\right)$$

 $-B\sqrt{2}\left[\cos(\phi_{\gamma})(S_i^x S_j^z + S_i^z S_j^x) + \sin(\phi_{\gamma})(S_i^y S_j^z + S_i^z S_j^y)\right]$

Compass model:

Our model:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} + J_{q}\right) (s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}) + J_{o}s_{i}^{y}s_{j}^{y} + J_{o}s_{i}^{y}s_{j}^{y} + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma})(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}) - \sin(\phi_{\gamma})(s_{i}^{z}s_{j}^{x} + s_{i}^{x}s_{j}^{z})\right)$$

$$S_i^y S_j^y + J_z S_i^z S_j^z$$

$$\sum_{j=1}^{x} S_j^x - S_i^y S_j^y) - \sin(\phi_\gamma) (S_i^x S_j^y + S_i^y S_j^x)]$$

$$(S_i^x S_j^z + S_i^z S_j^x) + \sin(\phi_\gamma) (S_i^y S_j^z + S_i^z S_j^y)]$$

Compass model:

Our model:

$$H_{ij}^{\gamma} = \left(\frac{J_{\tau}}{2} + J_{q}\right) (s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}) + J_{o}s_{i}^{y}s_{j}^{y} + J_{o}s_{i}^{y}s_{j}^{y} + \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma})(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}) - \sin(\phi_{\gamma})(s_{i}^{z}s_{j}^{x} + s_{i}^{x}s_{j}^{z})\right)$$

missing B term : couple between quadrupole and octupole

$$S_i^y S_j^y + J_z S_i^z S_j^z$$

$$S_i^x S_j^x - S_i^y S_j^y) - \sin(\phi_\gamma) (S_i^x S_j^y + S_i^y S_j^x)]$$

$$(S_i^x S_j^z + S_i^z S_j^x) + \sin(\phi_\gamma) (S_i^y S_j^z + S_i^z S_j^y)]$$

Kitaev model via magnetic field

missing B term : couple between quadrupole and octupole

Kitaev model via magnetic field

missing B term : couple between quadrupole and octupole

 $H^{\mathbf{Z}} = g_{I} \mu_{B} \mathbf{J} \cdot \mathbf{h}$ along [111]//c-axis $=g_{J}\mu_{B}\begin{pmatrix} 0 & 0 & \frac{1}{\sqrt{2}}h^{+} & \frac{1}{\sqrt{2}}h^{-} & 2h_{z} \\ 0 & 0 & \frac{\sqrt{3}}{2}h^{-} & \frac{\sqrt{3}}{2}h^{+} & 0 \\ \frac{1}{\sqrt{2}}h^{-} & \frac{\sqrt{3}}{2}h^{+} & -h_{z} & 0 & -\frac{1}{\sqrt{2}}h^{-} \\ \frac{1}{\sqrt{2}}h^{+} & \frac{\sqrt{3}}{2}h^{-} & 0 & h_{z} & \frac{1}{\sqrt{2}}h^{+} \\ 2h_{z} & 0 & -\frac{1}{\sqrt{2}}h^{+} & \frac{1}{\sqrt{2}}h^{-} & 0 \end{pmatrix}$

$$h^{\pm} = h_x + ih_y$$

Project to E_g doublet:

$$\begin{split} H_{ij}^{\gamma} &= \left(\frac{J_{\tau}}{2} + J_{q}\right) (s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}) + J_{o}s_{i}^{y}s_{j}^{y} \\ &+ \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma})(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}) - \sin(\phi_{\gamma})\right) \\ &- \sqrt{2}J_{B} \left(\tau_{i}^{\gamma}s_{j}^{y} + s_{i}^{y}\tau_{j}^{\gamma}\right) - h_{\text{eff}} \sum_{\gamma} \\ &\tau_{\gamma} &= \cos\phi_{\gamma} \ s^{z} + \sin\phi_{\gamma} \ s^{x}, \end{split}$$

Bond-dependent quadrupole-octupole interaction

Field is perp to the plane // sy (octuploar moment)

 $(\phi_{\gamma})(s_i^z s_j^x + s_i^x s_j^z))$

 s_i^y

Project to E_g doublet:

$$\begin{split} H_{ij}^{\gamma} &= \left(\frac{J_{\tau}}{2} + J_{q}\right) (s_{i}^{z}s_{j}^{z} + s_{i}^{x}s_{j}^{x}) + J_{o}s_{i}^{y}s_{j}^{y} \\ &+ \frac{J_{\tau}}{2} \left(\cos(\phi_{\gamma})(s_{i}^{z}s_{j}^{z} - s_{i}^{x}s_{j}^{x}) - \sin(\phi_{\gamma})\right) \\ &- \sqrt{2}J_{B} \left(\tau_{i}^{\gamma}s_{j}^{y} + s_{i}^{y}\tau_{j}^{\gamma}\right) - h_{\text{eff}} \sum_{\gamma} \left(\tau_{\gamma}^{\gamma}s_{j}^{y} + s_{i}^{\gamma}s_{j}^{\gamma}\right) + \frac{1}{2} \left(\tau_{\gamma}^{\gamma}s_{j}^{y} + s_{i}^{y}s_{j}^{\gamma}\right) + \frac{$$

Bond-dependent quadrupole-octupole interaction

$$J_B \sim \frac{t_2 \left(2t_1 + t_3\right)}{U} \frac{g_J \mu_B h}{\Delta} \qquad \qquad h_{eff}^c \sim \frac{t_2 \left(t_1 - t_3\right)}{U} \frac{g_J \mu_B h}{\Delta}$$

Field is perp to the plane // sy (octuploar moment)

 $(\phi_{\gamma})(s_i^z s_j^x + s_i^x s_j^z))$

 s_i^y

 $_{1}-\underline{t_{3}}) \underline{g_{J}\mu_{B}h} + \dots$ Δ

 $J_B = 0$

 $J_{\tau} = \cos \theta$ $J_Q = \sin\theta\cos\phi$ $J_O = \sin\theta\sin\phi$

Classical phase diagram (Monte Carlo simulated annealing): 5d² honeycomb lattice

$\pi - J_Q$ $\pi - J_Q$

Classical phase diagram (Monte Carlo simulated annealing): 5d² honeycomb lattice

 $J_B = 0$

 $J_{\tau} = \cos \theta$ $J_{Q} = \sin \theta \cos \phi$ $J_{O} = \sin \theta \sin \phi$

$\frac{\pi}{2}+J_O$ AFO $\frac{\pi}{4}$ ふ 3π VQ FQ' $\overrightarrow{\text{AFQ}}_{+J_Q} \phi = 0$ 1 π $-J_Q$ $+J_{\tau}$

 $J_B = 0$

 $J_{\tau} = \cos \theta$ $J_Q = \sin\theta\cos\phi$ $J_O = \sin\theta\sin\phi$

Classical phase diagram (Monte Carlo simulated annealing): 5d² honeycomb lattice

 $J_B \neq 0$

 $J_B = 0$

 $J_{\tau} = \cos \theta$ $J_{Q} = \sin \theta \cos \phi$ $J_{O} = \sin \theta \sin \phi$

 $J_B \neq 0$

 $J_B = 0$

 $J_{\tau} = \cos \theta$ $J_{Q} = \sin \theta \cos \phi$ $J_{O} = \sin \theta \sin \phi$

magnetic field introduces frustration

$J_B \neq 0$

 $J_O = \sin\theta\sin\phi$

magnetic field introduces frustration

Quantum phase diagram (24-site ED)

A. Rayyan, D. Churchill, HYK, PRB 107, L020408 (2023)

		Sı

- the Kitaev + field limit
- $5d^2$ honeycomb Mott insulator offers Kitaev Multipolar liquids

ummary

• In $5d^2$ honeycomb Mott insulators, magnetic field introduces the frustration & moves toward