Dynamical fractal in a clean magnet

Roderich Moessner

J. Hallen, S. Grigera, A. Tennant, C. Castelnovo, R.M. Science **378**, 1218 (2022)+unpublished

Emergent gauge fields in condensed matter

- ► ubiquitous
 - often arise from constraints
- physical consequences?
 - very rich, currently being explored topological physics
- Spin ice: emergent QED
 - history and material
 - effective theory and consequences
 - emergence of dynamical fractal
 - persistent dynamical dichotomy
 - strong-coupling QED

э.

Geometrical Frustration in the Ferromagnetic Pyrochlore Ho₂Ti₂O₇

M. J. Harris,¹ S. T. Bramwell,² D. F. McMorrow,³ T. Zeiske,⁴ and K. W. Godfrey⁵ ¹ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX110QX, United Kingdom ²Department of Chemistry, University College London, 20 Gordon Street, London, WCHHOAJ, United Kingdom

Spin ice compounds $Dy/Ho_2Ti_2O_7$

- \blacktriangleright local [111] crystal field \sim 200 K
- ▶ Ising spins $\sigma = \pm 1$
- classical spins (15/2 and 8)
 - magnetic moment $|\vec{\mu}| pprox 10 \, \mu_B$

Geometrical Frustration in the Ferromagnetic Pyrochlore Ho₂Ti₂O₇

M. J. Harris,¹ S. T. Bramwell,² D. F. McMorrow,³ T. Zeiske,⁴ and K. W. Godfrey⁵ ¹ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX110QX, United Kingdom ²Department of Chemistry, University College London, 20 Gordon Street, London, WCIH0AJ, United Kingdom

- Spin ice compounds $\text{Dy}/\text{Ho}_2\text{Ti}_2\text{O}_7$
 - $\blacktriangleright\,$ local [111] crystal field ~ 200 K
 - ▶ Ising spins $\sigma = \pm 1$
 - classical spins (15/2 and 8)
 - magnetic moment $|ec{\mu}| pprox 10 \, \mu_B$

Ising model on pyrochlore lattice Anderson 1956

- ▶ ice rule: two-in two-out
- extensive ground state degeneracy
 - topological magnet

Classically: emergent magnetostatics

 fractionalised excitations-magnetic monopoles

Quantumly: emergent QED

• strong coupling: $\alpha_e \sim 0.1 \gg 1/137$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

extensive degeneracy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

extensive degeneracy

Not disordered like a paramagnet

- extensive degeneracy
- Not disordered like a paramagnet
 - ice rules \Rightarrow conservation law

extensive degeneracy

Not disordered like a paramagnet

• ice rules \Rightarrow conservation law

Magnetic moments $\vec{\mu}_i \Leftrightarrow$ (lattice) 'flux'

 $\blacktriangleright \text{ lce rules } \Leftrightarrow \nabla \cdot \vec{\mu} = 0 \ \Rightarrow \ \vec{\mu} = \nabla \times \vec{A}$

Local constraint

- \Rightarrow emergent gauge structure
 - $\rightarrow\,$ algebraic spin correlations
 - $\rightarrow~$ 'bow-tie' structure factor

Effective action: $S = (K/2) \int d^3r |\nabla \times \vec{A}|^2$

Fractionalisation: emergent magnetic monopoles

Flipping spin \Rightarrow pair of defects

separated by further spin flips

Magnetic Coulomb interaction

 $E(r) = -\frac{\mu_0}{4\pi} q_m^2 / r$ $q_m = 2|\vec{\mu}| / a_d \approx q_D / 8000$ $\blacktriangleright \text{ deconfined monopoles}$

Fractionalisation: emergent magnetic monopoles

Flipping spin \Rightarrow pair of defects

separated by further spin flips

Magnetic Coulomb interaction

 $E(r) = -\frac{\mu_0}{4\pi} q_m^2 / r$ $q_m = 2|\vec{\mu}| / a_d \approx q_D / 8000$ $\blacktriangleright \text{ deconfined monopoles}$

Fractionalisation: emergent magnetic monopoles

Standard model of classical spin ice dynamics Ryzhkin; Jaubert+Holdsworth

- Spin flip = monpole motion
 - \blacktriangleright monopoles sparse at low T
- Incoherent 'Monte Carlo' dynamics
 - $\blacktriangleright \quad \text{Monte Carlo time} \propto \text{real time}$
 - \blacktriangleright timescale set by attempt rate 1/ au
 - hopping only possible in three directions
 - gauge field 'blocks' fourth direction

Experimental puzzles

Rapidly Diverging Relaxation Time

Anomalous Magnetic Noise

Previous explanations invoked extrinsic contributions (e.g. disorder, boundary effects).

Experimental results from: A. M. Samarakoon, et al., Proceedings of the National Academy of Sciences 119, e2117453119 (2022).

Beyond the standard model of classical spin ice dynamics

- $1/3 \mbox{ of all spins experience no net field}$
 - \blacktriangleright lower spin flip attempt rate $1/\tau_{\rm slow}$
 - \blacktriangleright in Dy₂Ti₂O₇, $au_{
 m slow}/ au_{
 m fast}pprox$ 1000
 - \blacktriangleright we use $au_{
 m slow}/ au_{
 m fast}=\infty$

revisit experimental puzzles with this model!

Anomalous Magnetic Noise

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Anomalous Magnetic Noise

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

105

Anomalous Magnetic Noise

Fits: $\tau_{\rm SM} = 200 \mu s$; $\tau_{\rm bSM, fast} = 85 \mu s$

105

SM bSM Monopoles hop on bond-diluted diamond lattice

- average coordination: 2
 - close to percolation transition
- Random walk on percolation cluster
 - looks subdiffusive when embedded in 3D
 - subdiffusion exponent yields anomalous noise exponent
 - observable on short-medium timescales
 - invisible statically/thermodynamically

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

Cluster growth

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Cluster growth

Fractal up to $n_{\xi} \approx 14!$

<u>bSM</u> monopoles can reach $\sim 130/2000$ sites in 14 steps

Cluster growth

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ◆ ● ◆

Monopole noise

Monopole subdiffusion

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Nonequilibrium: polarisation and rearrangement current

Polarisation current: monopole motion builds up magnetisation

• comparatively slow, τ_1

Rearrangement current: change in field liberates from, and drives into new, obstacles

- comparatively fast, τ_2
- only present bSM: same origin as fractal, but distinct phenomenon

persistent dichotomy

Characteristic frequency dependence of loss angle

Out-of-equilibrium experiments S. Davis group, Oxford/Cork

New set of experiments

- time-dependent fields
- very sensitive
 - small signals
 - good time resolution
- intermediate $T \ge 1.7K$ regime

Out-of-equilibrium experiments: field quench work in progress

Magnetisation responds on two timescales

- fully consistent with modeling
 - ratio $\tau_1/\tau_2 \approx 4$
- ▶ persists to high $1.7K \le T \le 4K$
 - above spin ice proper

Very simple: nearest-neighbour Ising magnet + loop flip: $W_{\bigcirc} = |\heartsuit\rangle\langle\heartsuit|$:

$$H_{\mathrm{QSI}} = J_{zz} \sum_{\langle i,j \rangle} S_i^z S_j^z - g \sum_{\bigcirc} \left(W_{\bigcirc} + W_{\bigcirc}^{\dagger} \right)$$

Topological 3+1D quantum spin liquid – effective theory: QED

- emergent electric/magnetic charges; photons (tunable c_{QSI})
- strong and tunable coupling: $\alpha_e \approx 0.1 \gg 1/137$
 - very different from our universe-but largely unknown
- Cerenkov radiation; constrained (quantum) diffusion; ...
 Quasiparticle coherence?

VOLUME 45, NUMBER 6

PHYSICAL REVIEW LETTERS

11 August 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance

K. v. Klitzing

Physikalisches Institut der Universität Würzburg, D-8700 Würzburg, Federal Republic of Germany, and scree Hochfeld-Magnetlabor des Max-Planck-Instituts für Festkörperforschung, F-38042 Grenoble, France

Familiar in topological condensed matter physics

- ► IQHE: same as in high-energy physics
- dimensionless
 - strength of electron-photon interaction

Value in quantum spin ice

different and tunable

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Dynamical fractal in spin ice: how things fit together

Bimodal distribution of internal transverse fields proves crucial to spin ice dynamics. *Thermodynamics unaffected*.

Explains dynamical properties of spin ice as a consequence of *intrinsic* effects.

<u>Subdiffusion</u> on emergent fractal structure in a disorder-free bulk crystal probed in uniform magnetisation dynamics.

