Lattice effects in spin-orbit Mott insulators

Giniyat Khaliullin

Max Planck Institute for Solid State Research, Stuttgart

IX <u>TRIESTE WORKSHOP</u> ON <u>OPEN PROBLEMS IN</u> STRONGLY CORRELATED SYSTEMS

14 - 25 July 1997

Trieste 1997

P.W. ANDERSON Princeton University Joseph Henry Laboratories of Physics Princeton, New Jersey U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

FUNDAMENTAL PROBLEMS IN THE HI TE SYSTEM

Acknowldgemint G. Baskaran

Lattice effects in spin-orbit Mott insulators

Introduction

- spin-lattice coupling

 \Box Sr₂IrO₄

- magnetic anisotropy
- magnetoacoustic waves
- spin nematic transition

NO ORBITAL DEGENERACY (e.g. cuprates)

Lattice vibrations modulate the exchange values J(R)

$$H=J(R) (\mathbf{S}_{i} \mathbf{S}_{j}) \qquad J(R)=J(1+\alpha \, \delta R)$$

- Magnetostriction
- Spin-Peierls ...

SPIN-ORBIT ENTANGLED MAGNETS:

Lattice affects very symmetry properties of the spin Hamiltonians

SPIN-ORBIT ENTANGLED MAGNETS

isotropic Heisenberg $J \ \vec{S}_i \cdot \vec{S}_j$

Magnetic order

Kitaev spin liquid

Jackeli, GKh (2009)

Bond-directional nature of the orbital interactions

Spin-orbit multiplets of TM ions

Spin-orbit multiplets of TM ions

Jahn-Teller versus spin-orbit

 d^4

J=2

J =

J=0

ζ

Two different orbital shapes involved

strong JT ions, structural transition

Jahn-Teller versus spin-orbit

Two different orbital shapes involved

strong JT ions, structural transition No orbital degeneracy left

 d^5

 $J=\frac{3}{2}$

 $\frac{3}{2}\zeta$

shape modulation, new
exchange terms + phonons
"pseudo-JT effect"

J=0 compounds (d⁴ Ru)

Interacting singlet-triplet models

BEC of spin-orbit excitons $(J \sim \lambda)$

GKh (PRL 2013)

Spin-orbit triplons $\mathsf{T}_{\mathsf{x}/\mathsf{y}/\mathsf{z}}$ are "orbitally-colored"

Bond-dependent triplon T_x , T_y , T_z interactions

- 4) However, no gapless Majoranas
- 5) *Magnetic field: topological triplon bands* (Daghofer et al. 2019)

Takayama et al. (2022)

- No magnetic LRO

- Structural transition under pressure spin-lattice versus

Critical coupling dimerisation

Kramers J=1/2 ions (d^5 Ir)

Layered perovskite, tetragonal

Quasi-2D, J_{ab} ~10000 J_c

Spin-waves: iridates vs cuprates

Sr₂IrO₄ T_N~240 K **La₂CuO₄** T_N~320 K

J. Kim et al. (2012)

Coldea et al.(2001)

Quasi-2D spin one-half Heisenberg

Doped Sr₂IrO₄: single-band FS

"Fermi-arcs" low doping

"normal" FS

B.J. Kim et al. (2014)

$\mathrm{Sr}_{2}\mathrm{IrO}_{4}$

- quantum spins 1/2
- single-band FS
- strong AF
- ~ two D

RVB theory for high T_c

- quantum spins 1/2
- single-band FS

Sr_2IrO_4 possesses all these ingredients...

Problems with magnetism . . .

Symmetry dictated spin Hamiltonian:

 $J\vec{S_i}\cdot\vec{S_j} + J_zS^z_iS^z_j + \vec{D}\cdot[\vec{S_i}\times\vec{S_j}] + K(\vec{S_i}\cdot\vec{r_{ij}})(\vec{S_j}\cdot\vec{r_{ij}})$

1. Predicts wrong magnetic pattern

moments along Ir-Ir bond

2. Fails to explain metamagnetic tr.

3. Fails to explain the magnon gaps ...

Spin-only Hamiltonian description of Sr₂IrO₄ is insufficient

Pseudospin-lattice coupling

Huimei Liu, GKh (2019)

Spin-lattice coupling Hamiltonian

Spin-lattice coupling \implies spin-flop transition

Porras et al. (2019)

spin-flop transition

Huimei Liu, GKh (2019)

In-plane magnon gap in Sr₂IrO₄

Raman data: $\omega_{ab} \sim 2.3 \text{ meV}$

Cooper *et al.* (2016) Gretarsson *et al.* (2017)

expected orthorhombic distortion

Giant stress response of terahertz magnons in a spin-orbit Mott insulator

Magnetoacoustic waves:

Elementary excitations with mixed magnon-phonon character

Spin-lattice coupling

$$\begin{aligned} \mathcal{H}_{\text{sp-lat}}^{ij} = & g_1 \varepsilon_1 \, \left(S_i^b S_j^b - S_i^a S_j^a \right) + g_2 \varepsilon_2 \, \left(S_i^a S_j^b + S_i^b S_j^a \right) \\ & \uparrow & \uparrow & \uparrow \\ & \text{condensed} & & \text{phonon} & \text{magnon} \end{aligned}$$

linear magnon-phonon coupling

Magnon-phonon mixing in Sr₂IrO₄

Magnetoacoustic wave

Exciting AF magnons by ultrasound or vice versa

Terahertz magnonics

Life above T_N

Spin-quadrupole ("nematic") transition

Elastic constant C_{66} is reduced:

$$\hat{c}/c = \alpha(\tau) = 1 - \frac{2}{s^2} \cdot \Gamma_1 \, \mathcal{T}_q \, \mathcal{T}_q^{(\tau)}$$

Quadrupole suscep.

 $\ll(\tau) \Longrightarrow 0$: structural transition

Quadrupole (bare) suscept.: $\chi_Q \simeq \frac{4}{9\pi} \frac{T_N}{J} \frac{(\xi/a)^2}{J}$ spin correl. length

Tetra-to-ortho transition at spin corr. length value:

$$S_{c}(S_{r_{2}}, \overline{S_{r}}, \overline{O_{y}}) \simeq \sqrt{\frac{9\pi}{32}} \frac{J}{T_{N}} \frac{J}{T_{1}} \sim 160(a_{0})$$

Two distinct phase transitions are expected

 $V_{mag} >> V_{ph}$

Beyond Sr₂IrO₄:

e.g. Kitaev materials

 $V_{mag} \sim V_{ph}$

Magnon-phonon anticrossing

Magnetic intensity of the magnetoelastic waves

SPIN-ORBIT ENTANGLED MAGNETS

Direct link between magnetic moments and lattice

- Lattice control of magnetic order and excitations
- Excitations with mixed spin and phonon character
 implications for spin & heat transport

Spin-only models are insufficient to describe the data ⇒ implications for "spin-liquid" materials?

> *Kitaev* + *phonons: Perkins et al. Hermanns et al. Seifert et al.*