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high-temperature superconductors

be the most important open problem in the understanding of quantum
materials, and it is here that radically new ideas, including those derived
from recently developed non-perturbative studies in string theory, may
be useful.

More unique to the copper oxides is the behaviour observed in a range
of temperatures immediately above Tc in what is referred to as the
‘pseudogap’ regime. It is characterized by a substantial suppression of the
electronic density of states at low energies that cannot be simply related to
the occurrence of any form of broken symmetry. Although much about
this regime is still unclear, convincing experimental evidence has recently
emerged that there are strong and ubiquitous tendencies towards several
sorts of order or incipient order, including various forms of charge-
density-wave, spin-density-wave, and electron-nematic order. There is
also suggestive, but far from definitive, evidence of several sorts of novel
order—that is, never before documented patterns of broken symmetry—
including orbital loop current order and a spatially modulated super-
conducting phase referred to as a ‘pair-density wave’. There are many
fascinating aspects of these ‘intertwined orders’ that remain to be under-
stood, but their existence and many aspects of their general structure were
anticipated by theory7. Superconducting fluctuations also have an important
role in part of this regime, although to an extent that is still much debated.

The high-temperature superconducting phase itself has a pattern of
broken symmetry that is distinct from that of conventional superconduc-
tors. Unlike in conventional s-wave superconductors, the superconduct-
ing wavefunction in the copper oxides has d-wave symmetry8,9, that is, it
changes sign upon rotation by 90u. Associated with this ‘unconventional
pairing’ is the existence of zero energy (gapless) quasiparticle excitations
at the lowest temperatures, which make even the thermodynamic prop-
erties entirely distinct from those of conventional superconductors (which
are fully gapped). The reasons for this, and its relation to a proximate anti-
ferromagnetic phase, are now well understood, and indeed were also anti-
cipated early on by some theories10–12. However, while various attempts

to obtain a semiquantitative estimate of Tc have had some success13, there
are important reasons to consider this problem still substantially unsolved.

Highly correlated electrons in the copper oxides
The chemistry of the copper oxides amplifies the Coulomb repulsions
between electrons. The two-dimensional copper oxide layers (Fig. 3) are
separated by ionic, electronically inert, buffer layers. The stoichiometric
‘parent’ compound (Fig. 2, zero doping) has an odd-integer number of
electrons per CuO2 unit cell (Fig. 3). The states formed in the CuO2 unit
cells are sufficiently well localized that, as would be the case in a collec-
tion of well-separated atoms, it takes a large energy (the Hubbard U) to
remove an electron from one site and add it to another. This effect pro-
duces a ‘traffic jam’ of electrons14. An insulator produced by this classical
jamming effect is referred to as a ‘‘Mott insulator’’15. However, even a
localized electron has a spin whose orientation remains a dynamical degree
of freedom. Virtual hopping of these electrons produces, via the Pauli
exclusion principle, an antiferromagnetic interaction between neighbour-
ing spins. This, in turn, leads to a simple (Néel) ordered phase below room
temperature, in which there are static magnetic moments on the Cu sites
with a direction that reverses from one Cu to the next16,17.

The Cu-O planes are ‘doped’ by changing the chemical makeup of
interleaved ‘charge-reservoir’ layers so that electrons are removed (hole-
doped) or added (electron-doped) to the copper oxide planes (see the
horizontal axis of Fig. 2). In the interest of brevity, we will confine our
discussion to hole-doped systems. Hole doping rapidly suppresses the
antiferromagnetic order. At a critical doping of pmin, superconductivity
sets in, with a transition temperature that grows to a maximum at popt,
then declines for higher dopings and vanishes for pmax (Fig. 2). Materials
with p , popt are referred to as underdoped and those with popt , p are
referred to as overdoped.

It is important to recognize that the strong electron repulsions that
cause the undoped system to be an insulator (with an energy gap of 2 eV)
are still the dominant microscopic interactions, even in optimally doped
copper oxide superconductors. This has several general consequences. The
resulting electron fluid is ‘highly correlated’, in the sense that for an elec-
tron to move through the crystal, other electrons must shift to get out of
its way. In contrast, in the Fermi liquid description of simple metals, the
quasiparticles (which can be thought of as ‘dressed’ electrons) propagate
freely through an effective medium defined by the rest of the electrons.
The failure of the quasiparticle paradigm is most acute in the ‘strange metal’
regime, that is, the ‘normal’ state out of which the pseudogap and the
superconducting phases emerge when the temperature is lowered. None-
theless, in some cases, despite the strong correlations, an emergent Fermi
liquid arises at low temperatures. This is especially clear in the overdoped
regime (Fig. 2). But recently it has been shown that even in underdoped
materials, at temperatures low enough to quench superconductivity by
the application of a high magnetic field, emergent Fermi liquid behaviour
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Figure 2 | Phase diagram. Temperature versus hole doping level for the
copper oxides, indicating where various phases occur. The subscript ‘onset’
marks the temperature at which the precursor order or fluctuations become
apparent. TS, onset (dotted green line), TC, onset and TSC, onset (dotted red line for
both) refer to the onset temperatures of spin-, charge and superconducting
fluctuations, while T* indicates the temperature where the crossover to the
pseudogap regime occurs. The blue and green regions indicate fully developed
antiferromagnetic order (AF) and d-wave superconducting order (d-SC)
setting in at the Néel and superconducting transition temperatures TN and Tc,
respectively. The red striped area indicates the presence of fully developed
charge order setting in at TCDW. TSDW represents the same for incommensurate
spin density wave order. Quantum critical points for superconductivity and
charge order are indicated by the arrows.
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Figure 3 | Crystal structure. Layered copper oxides are composed of CuO2

planes, typically separated by insulating spacer layers. The electronic structure
of these planes primarily involves hybridization of a 3dx2 { y2 hole on the
copper sites with planar-coordinated 2px and 2py oxygen orbitals.
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be the most important open problem in the understanding of quantum
materials, and it is here that radically new ideas, including those derived
from recently developed non-perturbative studies in string theory, may
be useful.

More unique to the copper oxides is the behaviour observed in a range
of temperatures immediately above Tc in what is referred to as the
‘pseudogap’ regime. It is characterized by a substantial suppression of the
electronic density of states at low energies that cannot be simply related to
the occurrence of any form of broken symmetry. Although much about
this regime is still unclear, convincing experimental evidence has recently
emerged that there are strong and ubiquitous tendencies towards several
sorts of order or incipient order, including various forms of charge-
density-wave, spin-density-wave, and electron-nematic order. There is
also suggestive, but far from definitive, evidence of several sorts of novel
order—that is, never before documented patterns of broken symmetry—
including orbital loop current order and a spatially modulated super-
conducting phase referred to as a ‘pair-density wave’. There are many
fascinating aspects of these ‘intertwined orders’ that remain to be under-
stood, but their existence and many aspects of their general structure were
anticipated by theory7. Superconducting fluctuations also have an important
role in part of this regime, although to an extent that is still much debated.

The high-temperature superconducting phase itself has a pattern of
broken symmetry that is distinct from that of conventional superconduc-
tors. Unlike in conventional s-wave superconductors, the superconduct-
ing wavefunction in the copper oxides has d-wave symmetry8,9, that is, it
changes sign upon rotation by 90u. Associated with this ‘unconventional
pairing’ is the existence of zero energy (gapless) quasiparticle excitations
at the lowest temperatures, which make even the thermodynamic prop-
erties entirely distinct from those of conventional superconductors (which
are fully gapped). The reasons for this, and its relation to a proximate anti-
ferromagnetic phase, are now well understood, and indeed were also anti-
cipated early on by some theories10–12. However, while various attempts

to obtain a semiquantitative estimate of Tc have had some success13, there
are important reasons to consider this problem still substantially unsolved.

Highly correlated electrons in the copper oxides
The chemistry of the copper oxides amplifies the Coulomb repulsions
between electrons. The two-dimensional copper oxide layers (Fig. 3) are
separated by ionic, electronically inert, buffer layers. The stoichiometric
‘parent’ compound (Fig. 2, zero doping) has an odd-integer number of
electrons per CuO2 unit cell (Fig. 3). The states formed in the CuO2 unit
cells are sufficiently well localized that, as would be the case in a collec-
tion of well-separated atoms, it takes a large energy (the Hubbard U) to
remove an electron from one site and add it to another. This effect pro-
duces a ‘traffic jam’ of electrons14. An insulator produced by this classical
jamming effect is referred to as a ‘‘Mott insulator’’15. However, even a
localized electron has a spin whose orientation remains a dynamical degree
of freedom. Virtual hopping of these electrons produces, via the Pauli
exclusion principle, an antiferromagnetic interaction between neighbour-
ing spins. This, in turn, leads to a simple (Néel) ordered phase below room
temperature, in which there are static magnetic moments on the Cu sites
with a direction that reverses from one Cu to the next16,17.

The Cu-O planes are ‘doped’ by changing the chemical makeup of
interleaved ‘charge-reservoir’ layers so that electrons are removed (hole-
doped) or added (electron-doped) to the copper oxide planes (see the
horizontal axis of Fig. 2). In the interest of brevity, we will confine our
discussion to hole-doped systems. Hole doping rapidly suppresses the
antiferromagnetic order. At a critical doping of pmin, superconductivity
sets in, with a transition temperature that grows to a maximum at popt,
then declines for higher dopings and vanishes for pmax (Fig. 2). Materials
with p , popt are referred to as underdoped and those with popt , p are
referred to as overdoped.

It is important to recognize that the strong electron repulsions that
cause the undoped system to be an insulator (with an energy gap of 2 eV)
are still the dominant microscopic interactions, even in optimally doped
copper oxide superconductors. This has several general consequences. The
resulting electron fluid is ‘highly correlated’, in the sense that for an elec-
tron to move through the crystal, other electrons must shift to get out of
its way. In contrast, in the Fermi liquid description of simple metals, the
quasiparticles (which can be thought of as ‘dressed’ electrons) propagate
freely through an effective medium defined by the rest of the electrons.
The failure of the quasiparticle paradigm is most acute in the ‘strange metal’
regime, that is, the ‘normal’ state out of which the pseudogap and the
superconducting phases emerge when the temperature is lowered. None-
theless, in some cases, despite the strong correlations, an emergent Fermi
liquid arises at low temperatures. This is especially clear in the overdoped
regime (Fig. 2). But recently it has been shown that even in underdoped
materials, at temperatures low enough to quench superconductivity by
the application of a high magnetic field, emergent Fermi liquid behaviour
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Figure 2 | Phase diagram. Temperature versus hole doping level for the
copper oxides, indicating where various phases occur. The subscript ‘onset’
marks the temperature at which the precursor order or fluctuations become
apparent. TS, onset (dotted green line), TC, onset and TSC, onset (dotted red line for
both) refer to the onset temperatures of spin-, charge and superconducting
fluctuations, while T* indicates the temperature where the crossover to the
pseudogap regime occurs. The blue and green regions indicate fully developed
antiferromagnetic order (AF) and d-wave superconducting order (d-SC)
setting in at the Néel and superconducting transition temperatures TN and Tc,
respectively. The red striped area indicates the presence of fully developed
charge order setting in at TCDW. TSDW represents the same for incommensurate
spin density wave order. Quantum critical points for superconductivity and
charge order are indicated by the arrows.
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planes, typically separated by insulating spacer layers. The electronic structure
of these planes primarily involves hybridization of a 3dx2 { y2 hole on the
copper sites with planar-coordinated 2px and 2py oxygen orbitals.
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(Keimer et al., Nature 15)

typical structure generic phase diagram



modeling high-Tc SCs

Hubbard model

[RevModPhys.66.763]

[RevModPhys.78.17]

Three-band Single-band

Motivation: superconductivity in cuprates.

[RevModPhys.78.17]

Experimental phase diagram:

● Ground state of Hubbard model

● SC in the Hubbard model

● Ground state and SC in t’-Hubbard model on 4-leg cylinder

Outline

Hubbard model

[RevModPhys.66.763]

[RevModPhys.78.17]

Three-band Single-band

Motivation: superconductivity in cuprates.

[RevModPhys.78.17]

Experimental phase diagram:

● Ground state of Hubbard model

● SC in the Hubbard model

● Ground state and SC in t’-Hubbard model on 4-leg cylinder

Outline

„complete“ description unfeasible and probably uninformative

modeling to capture essential concepts and mechanism

„a theory should be as simple as possible, but not simpler“ 

single-band Hubbard model:  
square lattice, hole doping, nearest neighbor hopping, on-site repulsion



too simple?

Hubbard model

[RevModPhys.66.763]

[RevModPhys.78.17]

Three-band Single-band

Motivation: superconductivity in cuprates.

[RevModPhys.78.17]

Experimental phase diagram:

● Ground state of Hubbard model

● SC in the Hubbard model

● Ground state and SC in t’-Hubbard model on 4-leg cylinder

Outline
(too) many features!

in this talk: at T=0

presence of stripes?

presence of power-law d-wave superconducting correlations? 
(„superconducting order“) 

two step „complexification“ of Hubbard model

t’=0: no next-nearest neighbor hopping

t’ non-zero

ultracold atom quantum simulation challenge: t′￼≠ 0



enormous amount of studies …

uniform d-wave superconductor

[Gros, et al., PRB 38, 931 (1988)]

[Halboth, et al., PRL 85, 5162 (2000)]

[Maier, et al., PRL 95, 237001 (2005)]

[Sénéchal, et al., PRL 94, 156404 (2005)]

[Gull, et al., PRL 110, 216405 (2013)]

……...and a lot of more!

new orders: CDW+SDW

[Zaanen, et al., PRB 40, 7391 (1989)]

[Poilblanc, et al., PRB 39, 9749 (1989)]

[White, et al., PRL 91, 136403 (2003)]

[Hager, et al., PRB 71, 075108 (2005)]

[Chang et al., PRL 104, 116402 (2010)]

……...and a lot of more!

phase separation

[Misawa, et al., PRB 90, 115137 (2014)]

[Otsuki, et al., PRB 90, 235132 (2014)]

……...and a lot of more!

[Raczkowski, et al., Phys. Stat. Sol. 376 (2003)]

[Miyazaki, et al., J. Phys. Soc. Jpn. 73, 1643 (2004)]

……...and a lot of more!

Introduction – 2D Hubbard model

What is the ground state under doping?

All induced by the competing 
between t and U



„pure“ (t’=0) Hubbard model

many-electron collaboration: focus on stripe order

d-wave pairing order?

superconducting correlations exist (power laws…)? 
 
 

stripes and SC: cooperation or competition?

AFQMC DMRG

● Question:

● Is there superconducting order coexisting or competing with stripes?

➔ Use two complementary methods: AFQMC and DMRG

Mingpu Qin H. Shi E. Vitali S. Zhang C. Hubig U. Schollwöck S.R. White

Superconductivity in stripes

C.-M. Chung

AFQMC meets DMRG

Qin, Chung, …, US, White, Zhang, PRX 10, 031016 (2020)

● Question:

● Is there superconducting order coexisting or competing with stripes?

(much more difficult than spin and charge orders...)

Superconductivity in stripes

● No:

[S. Zhang, et al., Phys. Rev. Lett. 78, 4486 (1997)]

[M. Guerrero, et al., Phys. Rev. B 59, 1706 (1999)]

[C. T. Shih, et al., Phys. Rev. Lett. 81, 1294 (1998)]

● Yes:

[Andrew S. Darmawan, et al., Phys. 

Rev. B 98, 205132 (2018)]

[Vanhala, et al., PRB 97, 075112 (2018)]

[Zhao, et al., PRB 96, 085103 (2017)]

...many more



DMRG/MPS in two dimensions
map 2D lattice to 1D (vertical) „snake“ with long-ranged interactions

horizontally: ansatz obeys area law: easy axis, long at linear cost

vertically: ansatz violates area law: hard axis, long at exponential cost

consider long cylinders of small circumference c: mixed BC

vertically OBC
vertically PBC: extra cost!

circumference c

length L

S ∼ log2 D
→ D ∼ 2L



AFQMC

ground state by imaginary time evolution of trial state  
 

  using Slater determinants

evolution requires quadratic Hamiltonian: Hubbard-Stratonovich! 
 

auxiliary fields are sampled stochastically: quantum Monte Carlo! 

⟨0 |O |0⟩
⟨0 |0⟩

= lim
β→∞

⟨ψT |e−βHOe−βH |ψT⟩
⟨ψT |e−β2H |ψT⟩

e−ΔτUn↑n↓ = e−ΔτU(n↑+n↓−1) ∑
x=±1

1
2 eγx(n↑+n↓−1)

  

Minus sign problem

“Solutions”:

1. Engineering special model Hamiltonians. Need to be relevant to real 
    physical systems.

2. Deal with the sign problem with certain approximation. Diffusion or
    constrained path QMC.

4 x 4, n = 0.875, U = 8 sign problem!!!



constrained path-AFQMC

  

Results with constraint

4 x 4, n = 0.875, U = 8

  

Introduce a constraint to control the sign

Projection time

Node of the exact ground state

Sign problem results from the cancellation of positive and negative
trajectories.

constrained path AFQMC:

 Keep only the positive trajectories, approximate the node structure
 with a trial wave-function.

Shiwei Zhang, J. Carlson, J.E. Gubernatis, Phys. Rev. Lett. 74, 3652 (1995) 

sign problem:  
exact analytical cancellation  
not captured by sampling

keep only the positive-weight paths 
(constrained path)

approximate nodal structure by 
trial wave function

Zhang, Carlson, Gubernatis, PRL 1995



what we measure

apply bulk (global) d-wave pairing field and observe pairing response 
 
 
 

             

apply boundary (edge) pairing field and observe decay of pairing in bulk 
 

   only on edge

calculate decay of pair-pair correlations 
 

Δij = ⟨Δ̂ij + Δ̂†
ij⟩/2 Hp = − ∑

⟨ij⟩

hij
p

1
2 (Δ̂ij + Δ̂†

ij)

Hp = − ∑
⟨ij⟩

hij
p

1
2 (Δ̂ij + Δ̂†

ij)

Pi′￼j′￼,ij = ⟨Δ̂†
i′￼j′￼

Δ̂ij⟩

● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931

nearest-neighbor pairing

pairing OP

bulk pairing field
taken to zero



edge pairing field

bulk decay and correlation decay

● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931

● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931

● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931

● pair-pair correlation

Superconductivity in stripes

● pairing order 

Prob 1: Apply pairing field on the edge,
     and see the decay

Prob 2: pair-pair correlation
     (no pairing field)

48x4 48x6

d-wave SC correlation; however short range

M. Qin, Chia-Min Chung*, arXiv:1910.08931

pair-pair correlations (no field)

up to 70,000 DMRG states
(SU(2) reps vs. U(1))

U=8, doping 1/8



bulk pairing fields

Superconductivity in stripes

Prob 3: Apply d-wave pairing field h
p 
on the whole system,

     and see the pairing order when h
p
→0

finite sizes thermodynamic limit

No long-range SC in thermodynamic limit

M. Qin, Chia-Min Chung*, arXiv:1910.08931

Superconductivity in stripes

Prob 3: Apply d-wave pairing field h
p 
on the whole system,

     and see the pairing order when h
p
→0

finite sizes thermodynamic limit

No long-range SC in thermodynamic limit

M. Qin, Chia-Min Chung*, arXiv:1910.08931
order of extrapolations matters

for each pairing field, take TD limit

then take field to zero

no pairing order survives

U=8, doping 1/8



t’=0 summary

U=8, doping 1/8: 

period 8 stripes

d-wave pairing

no long-ranged superconductivity 

U=4, doping 1/6:

no stripes

possibly very weak superconductivity



switching on t’

electronic structure suggests weak negative t’ (roughly -0.2)

do we find superconductivity now?

Hao Xu, Chia-Min Chung, Mingpu Qin,
Uli Schollwöck,  Steve White, Shiwei Zhang,   
2303.08376



overview: „phase diagram“

U=8, t’=-0.2 physically

variation of hole doping

t’=-0.2: hole doping

t’=0.2: electron doping (p-h!)

mutual benchmarking  
DMRG - AFQMC

pairing order parameter: 
response to pairing field  
extrapolated to

TD limit

zero pairing field 

  
arXiv:2303.08376



holes: underdoped and overdoped

stripe filling: 
hole (line) density

hole pairs:        

many systems have non-integer pair stripes (NIPS)

stripes fluctuating:  
mechanism for pair coherence?

nP = fLy /2
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green: IPS



what about the t-t’-J model?

t-t’-J model: large-U limit of Hubbard model

Jiang, Scalapino, White PNAS (2021)
Gong, Zhu, Sheng PRL (2021)
Jiang, Kivelson, PRL (2021)
Sheng group, 2304.03963 (2023)

electron-doped: 
d-wave SC, AFM background as in Hubbard

hole-doped: 
stripes 
no superconductivity (perhaps weak??)

stripe fluctuations too weak for SC 
because large U-limit??



benchmarking: DMRG / AFQMC

hole-doping 1/4, 16 x 4 cylinders

start with bad trial wave function

AFQMC optimizes it self-consistently; 
no fit parameter!

then agreement with DMRG

electron-doping 1/8, 16 x 4 and x 6 cylinders

0.1

0.2

n
(x

,y
)
°

1

4 8 12 16
x

°0.4

°0.2

0.0

0.2

(°
1)

x
+

y
S

z(
x
,y

)

4 8 12 16
x

Néel AFM
16 £ 4 PBC

16 £ 6 APBC

Filled stripes
16 £ 4 APBC

16 £ 6 PBC

mostly excellent agreement DMRG / AFQMC

very strong and changing dependency on BCs: 
averaging over twisted BCs

t’: more low-lying excited states, 
more sensitivity to BCs / size

is this explanation of variety of results?

start with bad trial wave function

AFQMC optimizes it self-consistently; 
no fit parameter!

then agreement with DMRG



twist averaging: why?

half-filling: AFQMC without sign probem

before twist: average: difficult and widely differing extrapolation

after twist average: straightforward extrapolation in system size

these fluctuations produces the correct result in the thermodynamic limit? Can this be
demonstrated explicitly for a problem where larger lattices are accessible? Currently, the
evidence that this is indeed the case seems indirect.

In Fig B below, we illustrate the use of twist-averaged boundary conditions (TABC) in the
half-filled Hubbard model, where AFQMC is exact (no sign problem). The quantity being
computed is the double occupancy, D. Similar to the case in the present paper, one computes D
in finite cells and then tries to extrapolate to the TDL. We see that PBC and APBC show large
variations, and that TABC has much smaller finite-size effects and is a smoother function of
size. These calculations can be performed to sufficiently large system sizes so that they all
converge to the correct TDL answer (as 1/L^3->0 on the left). However, at sizes up to width L=8
the erratic behavior of PBC and APBC is evident. If we were to extrapolate with such sizes
using PBC, we would get the wrong answer.

Fig B. Demonstration of the twist-averaging boundary condition (TABC). Shown are exact calculations of
the double occupancy D (<sum_i n_i,u n_i,d>/N) in the repulsive Hubbard model at half-filling (no sign
problem), for four values of U/t (=2,4,6,8). (Figures adapted from Qin et al PRB 94, 085103 (2016).)
Square lattices of cell size LxL are considered, up to size 20x20. Both PBC (black) and APBC (blue) show
much larger finite-size effects (which happen to be in opposite directions in this case). TABC, with
identical procedures to what’s adopted in our manuscript, greatly reduces the finite-size effects. All curves
converge to the same value at the TDL, but extrapolating with TABC is much more reliable.

Other comments/criticism:

D: double occupancy

PBC, PBC/APBC, TABC

systems up to 20 x 20



extrapolation of pairing order

hole-doped (t’=-0.2), doping 1/5, 
twist-averaged (error bars!)

good agreement DMRG / AFQMC

DMRG cylinders too small for definite 
statement

clear extrapolation in the AFQMC data

non-zero pairing order!



conclusion

adopt philosophy:  
only believe consistent results from several methods

pure (t’=0) Hubbard (U=8, doping 1/8) shows period 8 [5…8] filled stripes 

pure (t’=0) Hubbard model does not show d-wave SC for  
experimentally relevant parameters 

seems insufficient model for high-Tc: cold atom experiments! 

switch on t’<0:

iPEPS finds period 4 stripes, pairing order (for larger doping)

DMRG results for width 4 cylinders probably often irrelevant

DMRG/AFQMC in excellent agreement

find d-wave SC, arguably related to strongly fluctuating stripes 

very strong role of BCs, finite-size effects


