Dynamical mean-field theories for Rényi entanglement entropy of Fermi and non-Fermi liquids

Sumilan Banerjee

Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science

Fractionalization and Emergent Gauge Fields in Quantum Matter, ICTP December 5, 2023

Surajit Bera (Physics, IISc Bangalore)

Arijit Haldar (S N Bose Centre, Kolkata)

S. Bera, A. Haldar & SB, arXiv:2302.10940 (2023).

A. Haldar, S. Bera & SB, Phys. Rev. Research (2020)

IISc startup, research support

SERB ECR, CRG grants

Quantum Entanglement

Pure state $|\psi\rangle$

• Reduced density $\rho_A = Tr_B(|\psi\rangle\langle\psi|)$

• von-Neumann Entanglement $S_A = -Tr_A(\rho_A \ln \rho_A)$ entropy (EE)

n-th Renyi entropy
$$S_A^{(n)} = \frac{1}{1-n} \ln T r_A[\rho_A^n]$$
 $S_A^{(n \to 1)} = S_A$

Second Renyi entropy $S_A^{(2)}$

Quantum Entanglement

Pure state $|\psi\rangle$

• Reduced density $\rho_A = Tr_B(|\psi\rangle\langle\psi|)$

• von-Neumann Entanglement $S_A = -Tr_A(\rho_A \ln \rho_A)$ entropy (EE)

n-th Renyi entropy
$$S_A^{(n)} = \frac{1}{1-n} \ln T r_A[\rho_A^n]$$
 $S_A^{(n \to 1)} = S_A$

Second Renyi entropy $S_A^{(2)}$

But, why care about entanglement in condensed matter physics?

Quantum Entanglement

Pure state $|\psi\rangle$

• Reduced density $\rho_A = Tr_B(|\psi\rangle\langle\psi|)$

• von-Neumann Entanglement $S_A = -Tr_A(\rho_A \ln \rho_A)$ entropy (EE)

n-th Renyi entropy
$$S_A^{(n)} = \frac{1}{1-n} \ln T r_A[\rho_A^n]$$
 $S_A^{(n \to 1)} = S_A$

Second Renyi entropy $S_A^{(2)}$

But, why care about entanglement in condensed matter physics?

Entanglement can characterize "intrinsic quantum nature" of various symmetry broken, critical and topological (ground) states.

Gapped systems*

$$S_A \sim \text{Area Law}\left(L^{d-1}\right) + \text{corrections}$$

e.g. spin liquids

Topological order, corrections ~ $-\gamma_{topo}$ +... entropy

Topological entanglement

Gapped systems*

e.g. spin liquids

$$S_A \sim \text{Area Law}\left(L^{d-1}\right) + \text{corrections}$$

Topological order, corrections ~ $-\gamma_{topo}$ +...

Topological entanglement entropy

- Universal (logarithmic) violation of area law
 - Gapless/critical bosonic or fermionic systems in 1D (1+1 D CFT)

$$S_A^{(n)} = \frac{1}{2} \left(1 + \frac{1}{n} \right) \left(\frac{c}{6} \right) \ln L + \cdots$$

Central charge *C*

(spinless) free fermions or Luttinger liquid c = 2

Gapped systems*

e.g. spin liquids

$$S_A \sim \text{Area Law}\left(L^{d-1}\right) + \text{corrections}$$

Topological order, corrections ~ $-\gamma_{topo}$ +...

Topological entanglement entropy

Universal (logarithmic) violation of area law

Gapless/critical bosonic or fermionic systems in 1D (1+1 D CFT)

$$S_A^{(n)} = \frac{1}{2} \left(1 + \frac{1}{n} \right) \left(\frac{c}{6} \right) \ln L + \cdots$$

Central charge C

Free fermions in higher dimension d > 1Swingle, PRL (2010); Swingle, PRB (2012) $-k_F$ k_F

(spinless) free fermions or Luttinger liquid c = 1 (×2)

Gioev & Klich, PRL (2006)

$$S_A^{(n)} \sim L^{d-1} \ln L + \cdots$$

Fermi liquids, Weyl fermions in magnetic field, certain non-Fermi liquids, Bose metals

Entanglement measures are typically computed numerically

- Non-interacting Correlation matrix approach
- Interacting Exact diagonalization (ED), density matrix renormalization (DMRG) & matrix product states (MPS), Quantum Monte Carlo (QMC), ...

- Entanglement measures are typically computed numerically
- Non-interacting Correlation matrix approach
- Interacting Exact diagonalization (ED), density matrix renormalization (DMRG) & matrix product states (MPS), Quantum Monte Carlo (QMC), ...
- Path integral and quantum field-theory approach for entanglement

Replica field theory

- Entanglement measures are typically computed numerically
- Non-interacting Correlation matrix approach
- Interacting Exact diagonalization (ED), density matrix renormalization (DMRG) & matrix product states (MPS), Quantum Monte Carlo (QMC), ...
- Path integral and quantum field-theory approach for entanglement

Problem of computing entanglement

Replica field theory

Time-evolution in a complicated space-time manifold with non-trivial boundary conditions.

Entanglement measures are typically computed numerically

- Non-interacting Correlation matrix approach
- Interacting Exact diagonalization (ED), density matrix renormalization (DMRG) & matrix product states (MPS), Quantum Monte Carlo (QMC), ...
- Path integral and quantum field-theory approach for entanglement

Problem of computing entanglement

Replica field theory

Time-evolution in a complicated space-time manifold with non-trivial boundary conditions.

Conformal field theory (CFT)
 Calabrese & Cardy (2004,2009), ...

 \Rightarrow 1D gapless fermions and critical systems

Simpler representation for applying to general quantum many-body techniques/ approximations (Saddle point, RPA, RG, ..) for entanglement like for thermodynamic, spectral and transport properties Simpler representation for applying to general quantum many-body techniques/ approximations (Saddle point, RPA, RG, ...) for entanglement like for thermodynamic, spectral and transport properties

New path integral/field theory method

- Bosonic systems -- A. Chakraborty & R. Sensarma, PRL (2021)
- Fermionic systems -- A. Haldar, S. Bera & SB, PRR (2020), S. Moitra and R. Sensrama, PRB (2020)

Simpler representation for applying to general quantum many-body techniques/ approximations (Saddle point, RPA, RG, ...) for entanglement like for thermodynamic, spectral and transport properties

New path integral/field theory method

- Bosonic systems -- A. Chakraborty & R. Sensarma, PRL (2021)
- Fermionic systems -- A. Haldar, S. Bera & SB, PRR (2020), S. Moitra and R. Sensrama, PRB (2020)

Usual boundary conditions on the fields

Second Renyi entropy of subsystem A

 $e^{-S_A^{(2)}} = Tr[\rho_A^2] = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$

Grassmann numbers $\{\bar{\xi}_i, \xi_i\}_{i \in A}$

Fermionic displacement operator $D_N(\xi) = e^{\sum_{i \in A} c_i^{\dagger} \xi_i} e^{-\sum_{i \in A} \overline{\xi}_{i \in A} c_i}$

Fermionic Wigner characteristic function

 $\chi_N(\xi_A) = Tr[\rho D_N(\xi_A)]$

Gaussian factor $f_N(\xi,\eta) = 2^N e^{-\binom{1}{2}\sum_{i\in A}(\overline{\xi}_i\xi_i + \overline{\eta}_i\eta_i - \overline{\xi}_i\eta_i + \overline{\eta}_i\xi_i)}$

Second Renyi entropy of subsystem A

 $e^{-S_A^{(2)}} = Tr[\rho_A^2] = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$

Grassmann numbers $\{\bar{\xi}_i, \xi_i\}_{i \in A}$ Fermionic displacement operator $D_N(\xi) = e^{\sum_{i \in A} c_i^{\dagger} \xi_i} e^{-\sum_{i \in A} \bar{\xi}_{i \in A} c_i}$

Fermionic Wigner characteristic function

 $\chi_N(\xi_A) = Tr[\rho D_N(\xi_A)]$

Gaussian factor $f_N(\xi,\eta) = 2^N e^{-\left(\frac{1}{2}\right)\sum_{i\in A}(\overline{\xi}_i\xi_i+\overline{\eta}_i\eta_i-\overline{\xi}_i\eta_i+\overline{\eta}_i\xi_i)}$

 $\chi_N(\xi_A) = Tr[\rho(t)D_N(\xi_A)] = \int \mathcal{D}(\bar{c},c) \exp[i(S+S_{kick}(\xi_A))]$ $S_{kick}(\xi_A) = i \int_C dz \sum_{i \in A} [\bar{c}_i(z)\delta_C(z,t^++) - \bar{\xi}_i\delta_C(z,t+)c_i(z)]$

Keldysh contour C

Second Renyi entropy of subsystem A

 $e^{-S_A^{(2)}} = Tr[\rho_A^2] = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$

Grassmann numbers $\{\bar{\xi}_i, \xi_i\}_{i \in A}$ Fermionic displacement operator $D_N(\xi) = e^{\sum_{i \in A} c_i^{\dagger} \xi_i} e^{-\sum_{i \in A} \bar{\xi}_{i \in A} c_i}$

Fermionic Wigner characteristic function

 $\chi_N(\xi_A) = Tr[\rho D_N(\xi_A)]$

Gaussian factor $f_N(\xi,\eta) = 2^N e^{-\left(\frac{1}{2}\right)\sum_{i\in A}(\overline{\xi}_i\xi_i+\overline{\eta}_i\eta_i-\overline{\xi}_i\eta_i+\overline{\eta}_i\xi_i)}$

$$\chi_N(\xi_A) = Tr[\rho(t)D_N(\xi_A)] = \int \mathcal{D}(\bar{c}, c) \exp[i(S + S_{kick}(\xi_A))]$$
$$S_{kick}(\xi_A) = i \int_C dz \sum_{i \in A} [\bar{c}_i(z)\delta_C(z, t^+ +) - \bar{\xi}_i\delta_C(z, t +)c_i(z)]$$

Keldysh contour C

 \Rightarrow All the known expressions for Renyi entropies of non-interacting fermions $S^{(n)} = \frac{1}{2\pi} Tr \ln[(1 - C)^n + C^n]$ Correlation matrix $C = \frac{1}{2\pi} \left[\frac{1$

 $S_A^{(n)} = \frac{1}{1-n} Tr_A \ln[(1-C)^n + C^n] \quad \text{Correlation matrix} \quad C_{ij} = \langle c_i^{\dagger}(t)c_i(t) \rangle$ A. Haldar, S. Bera & SB, PRR (2020)

Rest of the talk

 Entanglement entropy of correlated metallic states described by Dynamical mean field theories (DMFT) (local self energy)

 $\Box \text{ Interacting fermions } H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$

 $\Box \text{ Interacting fermions } H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$ $e^{-S_A^{(2)}} = \int d^2 (\xi_A, \eta_A) f_N (\xi_A, \eta_A) \chi_N (\xi_A) \chi_N (\eta_A)$ $\chi_N (\xi_A) = \int \mathcal{D}(\bar{c}, c) \exp[i(S + S_{kick}(\xi_A))]$ $S_{kick} (\xi_A) = i \int_C dz \sum_{i \in A} [\bar{c}_i(z) \delta_C(z, t^+ +) - \bar{\xi}_i \delta_C(z, t +) c_i(z)]$

 $\Box \text{ Interacting fermions } H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$ $e^{-S_A^{(2)}} = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$ $\chi_N(\xi_A) = \int \mathcal{D}(\bar{c}, c) \exp[i(S + S_{kick}(\xi_A))]$ $S_{kick}(\xi_A) = i \int_C dz \sum_{i \in A} [\bar{c}_i(z) \delta_C(z, t^+ +) - \bar{\xi}_i \delta_C(z, t +) c_i(z)]$

Integrate out the auxiliary fields first

 $e^{-S_A^{(2)}} = \int \mathcal{D}(\bar{c}_\alpha, c_\alpha) \exp[i S_{eff}[\bar{c}_\alpha, c_\alpha]]$

Two replicas $\alpha = 1,2$

$$S_{eff} = \int_{C} dz dz' \sum_{ij\alpha\beta} \bar{c}_{i\alpha}(z) G_{0,i\alpha,j\beta}^{-1}(z,z') c_{j\beta}(z') - \cdots$$

 \Box Interacting fermions $H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$ $t_0 + i\beta$ $e^{-S_A^{(2)}} = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$ $\chi_N(\xi_A) = \int \mathcal{D}(\bar{c}, c) \exp[i(S + S_{kick}(\xi_A))]$ Keldysh contour $S_{kick}(\xi_A) = i \int_C dz \sum_{i=1}^{\infty} [\bar{c}_i(z)\delta_C(z,t^++) - \bar{\xi}_i\delta_C(z,t^++)c_i(z)]$ С kick Integrate out the auxiliary fields first Two replicas $\alpha = 1,2$ $e^{-S_A^{(2)}} = \int \mathcal{D}(\bar{c}_\alpha, c_\alpha) \exp[iS_{eff}[\bar{c}_\alpha, c_\alpha]]$ $S_{eff} = \int_{C} dz dz' \sum_{i \neq \alpha} \bar{c}_{i\alpha}(z) G_{0,i\alpha,j\beta}^{-1}(z,z') c_{j\beta}(z') - \cdots$ $G_{0,i\alpha,i\beta}^{-1}(z,z') = \left[(i\partial_z + \mu)\delta_{ij} - t_{ij} \right] \delta_C(z,z') \delta_{\alpha\beta} - \delta_{i\in A}\delta_{ij} M_{\alpha\beta}(z,z')$ $\boldsymbol{M}(\tau,\tau') = \begin{bmatrix} 1 & 1\\ -1 & 1 \end{bmatrix} \delta_{\mathcal{C}}(z,t^++) \delta_{\mathcal{C}}(z',t+)$

Self-energy kick

*Can be used for QMC

Kick

SYK Non-Fermi (NFL) and Fermi (FL) liquids

 $H_{SYK} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$

SYK Non-Fermi (NFL) and Fermi (FL) liquids Fu & Sachdev, PRB (2016)

$$H_{SYK} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

Non Fermi liquid $\Sigma_{\rm R}(\omega) \sim \sqrt{J\omega} \gg \omega$ as $\omega \to 0$

Extensive T=0 residual entropy S_0 (for $T \rightarrow 0, N \rightarrow \infty$)

SYK Non-Fermi (NFL) and Fermi (FL) liquids Fu & Sachdev, PRB (2016)

$$H_{SYK} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

Non Fermi liquid $\Sigma_{\rm R}(\omega) \sim \sqrt{J\omega} \gg \omega$ as $\omega \to 0$

Extensive T=0 residual entropy S_0 (for $T \rightarrow 0, N \rightarrow \infty$)

• Fermi liquid, add a quadratic term

$$H = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l + \frac{1}{\sqrt{N}} \sum_{ij} t_{ij} c_i^{\dagger} c_j$$

 $P(t_{ij}) \sim e^{-\left|t_{ij}\right|^2/t_h^2}$

SYK Non-Fermi (NFL) and Fermi (FL) liquids Fu & Sachdev, PRB (2016)

$$H_{SYK} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

Non Fermi liquid $\Sigma_{\rm R}(\omega) \sim \sqrt{J\omega} \gg \omega$ as $\omega \to 0$

Extensive T=0 residual entropy S_0 (for $T \rightarrow 0, N \rightarrow \infty$)

 $H = \frac{1}{(2N)^{3/2}} \sum_{i\,ikl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l + \frac{1}{\sqrt{N}} \sum_{i\,i} t_{ij} c_i^{\dagger} c_j$

Heavy Fermi liquid for $t_h \ll J$, $T_{coh} \sim t_h^2/J$

• Fermi liquid, add a quadratic term

T/J

$$P(t_{ij}) \sim e^{-|t_{ij}|^2/t_h^2}$$

$$\Sigma(\omega) \sim \omega^2, \qquad \omega \to 0$$

SYK Non-Fermi (NFL) and Fermi (FL) liquids

$$H_{SYK} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

Non Fermi liquid $\Sigma_{\rm R}(\omega) \sim \sqrt{J\omega} \gg \omega$ as $\omega \to 0$

Extensive T=0 residual entropy S_0 (for $T \rightarrow 0, N \rightarrow \infty$)

• Fermi liquid, add a quadratic term

$$H = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l + \frac{1}{\sqrt{N}} \sum_{ij} t_{ij} c_i^{\dagger} c_j \qquad P(t_{ij}) \sim e^{-|t_{ij}|^2/t_h^2}$$

leavy Fermi liquid for $t_h \ll J$, $T_{coh} \sim t_h^2/J \qquad \Sigma(\omega) \sim \omega^2$, $\omega \to 0$

⊢

Subsystem A – choose any N_A sites out of N sites

$$S_A^{(2)}\left(p = \frac{N_A}{N}\right)$$

Fu & Sachdev, PRB (2016)

→ Try to approach ground state entanglement by taking $T \rightarrow 0$ after $N \rightarrow \infty$ limit

- → Try to approach ground state entanglement by taking $T \rightarrow 0$ after $N \rightarrow \infty$ limit
- \circ Disorder averaged subsystem Renyi entropy

 $S_A^{(2)} = -\overline{\ln(Tr_A\rho_A^2)}$

- → Try to approach ground state entanglement by taking $T \rightarrow 0$ after $N \rightarrow \infty$ limit
- \circ Disorder averaged subsystem Renyi entropy

 $S_A^{(2)} = -\overline{\ln(Tr_A\rho_A^2)}$

Large-N saddle point for Renyi entropy field theory

$$\boldsymbol{G} = -(1-p)(\boldsymbol{\partial}_{\tau} + \boldsymbol{\Sigma})^{-1} - p(\boldsymbol{\partial}_{\tau} + \boldsymbol{\Sigma} + \boldsymbol{M})^{-1}$$

 $\Sigma_{\alpha\beta}(\tau_1,\tau_2) = -J^2 G_{\alpha\beta}^2(\tau_1,\tau_2) G_{\beta\alpha}(\tau_2,\tau_1) + t_h^2 G_{\alpha\beta}(\tau_1,\tau_2)$

- → Try to approach ground state entanglement by taking $T \rightarrow 0$ after $N \rightarrow \infty$ limit
- Disorder averaged subsystem Renyi entropy

 $S_A^{(2)} = -\overline{\ln(Tr_A\rho_A^2)}$

Large-N saddle point for Renyi entropy field theory

 $\boldsymbol{G} = -(1-p)(\boldsymbol{\partial}_{\tau} + \boldsymbol{\Sigma})^{-1} - p(\boldsymbol{\partial}_{\tau} + \boldsymbol{\Sigma} + \boldsymbol{M})^{-1} \qquad \boldsymbol{G}_{\alpha\beta}(\tau_1, \tau_2) \quad \alpha, \beta = 1, 2$

 $\Sigma_{\alpha\beta}(\tau_1,\tau_2) = -J^2 G^2_{\alpha\beta}(\tau_1,\tau_2) G_{\beta\alpha}(\tau_2,\tau_1) + t_h^2 G_{\alpha\beta}(\tau_1,\tau_2)$

 $\boldsymbol{M}(\tau_1, \tau_2) = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \delta(\tau_1 - \tau_0^+) \delta(\tau_2 - \tau_0)$

Self-energy kick

→ Try to approach ground state entanglement by taking $T \rightarrow 0$ after $N \rightarrow \infty$ limit

Disorder averaged subsystem Renyi entropy

 $S_A^{(2)} = -\overline{\ln(Tr_A\rho_A^2)} \iff \text{Large-N saddle-point action}$

Large-N saddle point for Renyi entropy field theory

 $\boldsymbol{G} = -(1-p)(\boldsymbol{\partial}_{\tau} + \boldsymbol{\Sigma})^{-1} - p(\boldsymbol{\partial}_{\tau} + \boldsymbol{\Sigma} + \boldsymbol{M})^{-1} \qquad \boldsymbol{G}_{\alpha\beta}(\tau_1, \tau_2) \quad \alpha, \beta = 1, 2$

 $\Sigma_{\alpha\beta}(\tau_1,\tau_2) = -J^2 G^2_{\alpha\beta}(\tau_1,\tau_2) G_{\beta\alpha}(\tau_2,\tau_1) + t_h^2 G_{\alpha\beta}(\tau_1,\tau_2)$

 $\boldsymbol{M}(\tau_1, \tau_2) = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \delta(\tau_1 - \tau_0^+) \delta(\tau_2 - \tau_0)$

Self-energy kick

→ Try to approach ground state entanglement by taking $T \rightarrow 0$ after $N \rightarrow \infty$ limit

 $S_A^{(2)} = -\overline{\ln(Tr_A\rho_A^2)} \iff \text{Large-N saddle-point action}$

Large-N saddle point for Renyi entropy field theory

 $\boldsymbol{G} = -(1-p)(\boldsymbol{\partial}_{\tau} + \boldsymbol{\Sigma})^{-1} - p(\boldsymbol{\partial}_{\tau} + \boldsymbol{\Sigma} + \boldsymbol{M})^{-1} \qquad \boldsymbol{G}_{\alpha\beta}(\tau_1, \tau_2) \quad \alpha, \beta = 1, 2$

 $\Sigma_{\alpha\beta}(\tau_1,\tau_2) = -J^2 G_{\alpha\beta}^2(\tau_1,\tau_2) G_{\beta\alpha}(\tau_2,\tau_1) + t_h^2 G_{\alpha\beta}(\tau_1,\tau_2)$

$$\boldsymbol{M}(\tau_1, \tau_2) = \begin{bmatrix} 1 & 1\\ -1 & 1 \end{bmatrix} \delta(\tau_1 - \tau_0^+) \delta(\tau_2 - \tau_0)$$

Self-energy kick

Need to solve self consistently

Discretize over (τ) time and solve self-consistently numerically

Fermi liquid and heavy Fermi liquid $(J, t_h \neq 0)$

I.

 $I \in \mu$

Fermi liquid and heavy Fermi liquid $(J, t_h \neq 0)$

- Large N, p=1 value approaches zero as T→0
- ED results for N=8,10 matches perfectly with N→∞ limit!
- → Finite-N corrections are very small for entanglement entropy.

Fermi liquid and heavy Fermi liquid $(J, t_h \neq 0)$

Bipartite (p=1/2) entanglement entropy Heavy Fermi liquid \rightarrow weakly interacting FL

- Large N, p=1 value approaches zero as $T \rightarrow 0$
- ED results for N=8,10 matches perfectly with N→∞ limit!
- → Finite-N corrections are very small for entanglement entropy.

□ Large *N*, *p*=1 value does not approach zero as $T \rightarrow 0$

□ Large *N*, *p*=1 value does not approach zero as $T \rightarrow 0$ □ It can be shown $S_A^{(2)}(p \rightarrow 1, T = 0) = S_0$ Residual entropy

□ Large *N*, *p*=1 value does not approach zero as $T \rightarrow 0$ □ It can be shown $S_A^{(2)}(p \rightarrow 1, T = 0) = S_0$ Residual entropy

Quantum entanglement of the SYK NFL ground-state cannot be extracted in the large-*N* limit from $T \rightarrow 0$ limit.

Entanglement in interacting diffusive metal

Gu et al. (2017), Davison et al. (2017),

Song al. (2017), Zhang et al. (2017), Chowdury et al. (2018), ..

Lattice of SYK dots

Entanglement in interacting diffusive metal

- Renyi entropy initially grows like $\ln l$, but then saturates.
- → Modified growth law

$$S_A^{(2)} \sim \frac{c_{eff}}{8} \ln \left(\frac{1}{\sqrt{l^{-2} + l_0^{-2}}} \right)$$

A. Potter, arxiv (2014)

Gu et al. (2017), Davison et al. (2017),

... Song al. (2017), Zhang et al. (2017), Chowdury et al. (2018), ..

Lattice of SYK dots

Entanglement in interacting diffusive metal

- Renyi entropy initially grows like ln *l*, but then saturates.
- Modified growth law

$$S_A^{(2)} \sim \frac{c_{eff}}{8} \ln \left(\frac{1}{\sqrt{l^{-2} + l_0^{-2}}} \right)$$

A. Potter, arxiv (2014)

Gu et al. (2017), Davison et al. (2017),

Song al. (2017), Zhang et al. (2017), Chowdury et al. (2018), ..

Lattice of SYK dots

→ Emergent length scale, "mean free path" l₀

 c_{eff} changes with interaction

Hubbard model at half filling and Mott metal-insulator transition

$$H = -t \sum_{\langle ij \rangle, \sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + h.c.) + U \sum_{i} n_{i\uparrow}n_{i\downarrow}$$

Hubbard model at half filling and Mott metal-insulator transition

$$H = -t \sum_{\langle ij \rangle, \sigma} (c^{\dagger}_{i\sigma}c_{j\sigma} + h.c.) + U \sum_{i} n_{i\uparrow}n_{i\downarrow}$$

ithinsing File Dynamical mean-field theory (DMFT)

DMFT: Impurity problem in self-consistent bath

Georges et al. RMP (1996)

4. Comparision to QMC

Hubbard model at half filling and Mott metal-insulator transition

Not possible to extract $S_A^{(2)}$ from action directly unlike the large-*N* models.

Not possible to extract $S_A^{(2)}$ from action directly unlike the large-*N* models.

 $\exp[-S_A^{(2)}(\lambda)] \propto \int \mathcal{D}(\bar{c}, c) \exp[-(S_U + \lambda S_{kick})] \qquad \lambda = 1$

$$S_{kick} = \int d\tau d\tau' \sum_{i \in A, \alpha, \beta = 1, 2} \bar{c}_{i\alpha}(\tau) M_{\alpha\beta}(\tau, \tau') c_{i\beta}(\tau')$$

Not possible to extract $S_A^{(2)}$ from action directly unlike the large-*N* models.

 $\exp[-S_A^{(2)}(\lambda)] \propto \int \mathcal{D}(\bar{c}, c) \exp[-(S_U + \lambda S_{kick})] \qquad \lambda = 1$

Not possible to extract $S_A^{(2)}$ from action directly unlike the large-*N* models.

 $\exp[-S_A^{(2)}(\lambda)] \propto \int \mathcal{D}(\bar{c}, c) \exp[-(S_U + \lambda S_{kick})] \qquad \lambda = 1$

$$S_{kick} = \int d\tau d\tau' \sum_{i \in A, \alpha, \beta = 1, 2} \bar{c}_{i\alpha}(\tau) M_{\alpha\beta}(\tau, \tau') c_{i\beta}(\tau')$$

$$S_{A}^{(2)} = \int_{0}^{1} d\lambda \langle S_{kick} \rangle_{\lambda} \qquad \langle S_{kick} \rangle_{\lambda} = \sum_{i \in A, \sigma, \alpha\beta} M_{\alpha\beta} G_{ii,\sigma,\alpha\beta}(\tau_{0}, \tau_{0}^{+})$$

 $G_{ii,\sigma,\alpha\beta}^{\lambda}(\tau_0,\tau_0^+) = -\left\langle \mathsf{T}_{\tau}c_{i\sigma\alpha}(\tau) \, \bar{c}_{i\sigma\beta}(\tau') \right\rangle_{\lambda}$

Need only the local Green's function but in the presence of kick of strength λ

Not possible to extract $S_A^{(2)}$ from action directly unlike the large-*N* models.

 $\exp[-S_A^{(2)}(\lambda)] \propto \int \mathcal{D}(\bar{c}, c) \exp[-(S_U + \lambda S_{kick})] \qquad \lambda = 1$

$$S_{kick} = \int d\tau d\tau' \sum_{i \in A, \alpha, \beta = 1, 2} \bar{c}_{i\alpha}(\tau) M_{\alpha\beta}(\tau, \tau') c_{i\beta}(\tau')$$

$$S_{A}^{(2)} = \int_{0}^{1} d\lambda \langle S_{kick} \rangle_{\lambda} \qquad \langle S_{kick} \rangle_{\lambda} = \sum_{i \in A, \sigma, \alpha\beta} M_{\alpha\beta} G_{ii,\sigma,\alpha\beta}(\tau_{0}, \tau_{0}^{+})$$

 $G_{ii,\sigma,\alpha\beta}^{\lambda}(\tau_{0},\tau_{0}^{+}) = -\left\langle T_{\tau}c_{i\sigma\alpha}(\tau) \, \bar{c}_{i\sigma\beta}(\tau') \right\rangle_{\lambda}$

Need only the local Green's function but in the presence of kick of strength λ

Entanglement is extracted as a 'non-equilibrium work' done due to kick perturbation

kick self energy

generalization of IPT impurity solver (CTQMC can be used)

- + lattice self consistency
- \rightarrow recursive Green's function method on a space-time lattice
- \Rightarrow Calculate $G_{ii,\alpha\beta}^{\lambda}(\tau_0,\tau_0^+)$ to obtain $S_A^{(2)}(T)$

We calculate subsystem Renyi entropy $S_A^{(2)}(T)$

At finite *T*, Renyi entropy contains both thermal and entanglement entropy contributions.

We calculate subsystem Renyi entropy $S_A^{(2)}(T)$

At finite T, Renyi entropy contains both thermal and entanglement entropy contributions.

How can we disentangle them?

We calculate subsystem Renyi entropy $S_A^{(2)}(T)$

At finite T, Renyi entropy contains both thermal and entanglement entropy contributions.

How can we disentangle them?

Conformal field theory (CFT) crossover formula $(N \rightarrow \infty)$

(Universal) central charge c, free fermions c = 1 (2×2)

We calculate subsystem Renyi entropy $S_A^{(2)}(T)$

At finite T, Renyi entropy contains both thermal and entanglement entropy contributions.

How can we disentangle them?

B

 N_r

Conformal field theory (CFT) crossover formula $(N \rightarrow \infty)$

1D $S_A^{(2)}(T) = \left(\frac{c}{8}\right) \log \left[\frac{v_F}{\pi T} \sinh \left(\frac{\pi N_A T}{v_F}\right)\right] + \text{constant}$ $-k_F \qquad k_F$

(Universal) central charge *c*, free fermions c = 1 (2×2)

Higher dimension, Wido $S_{A}^{(2)}(T) = W N_{y}^{d-1} \left[\begin{pmatrix} c \\ \overline{8} \end{pmatrix} \right]^{(2)} \left[\begin{pmatrix} c \\ \overline{8}$

We calculate subsystem Renyi entropy $S_A^{(2)}(T)$

At finite T, Renyi entropy contains both thermal and entanglement entropy contributions.

How can we disentangle them?

Conformal field theory (CFT) crossover formula $(N \rightarrow \infty)$

1D $S_A^{(2)}(T) = \left(\frac{c}{8}\right) \log \left[\frac{v_F}{\pi T} \sinh \left(\frac{\pi N_A T}{v_F}\right)\right] + \text{constant}$ $-k_F \qquad k$

(Universal) central charge c, free fermions c = 1 (2×2)

Higher dimension, Wido $S_A^{(2)}(T) = W N_y^{d-1} \left[\left(\frac{c}{s} \right) \right]^{\frac{\alpha}{\beta_0}}$ ant] R (a)Collection of 1D gapless 10 20 N_A Swingle, PRL (2010); 1.5 N_r (c) T = 0.1(b)nodel (within DMFT) Does the correlated r obey CFT predictions -N = 50

7. Conclusion and summary:

7. Conclusion and summary: 7. Conclusion and summary:

)

 $\circ~$ 2D DMFT results well fitted by Widom crossover formula

• Central charge consistent with and summary:

Mutual information across Mott transition

Correlation persists up to $T \leq W$ in the Mott insulator

Summary and outlook

 New path integral and DMFT methods to compute entanglement in large-N models and strongly concelated systems. $T \rightarrow 0$

5. Subsystem scaling of $S_A^{(2)}$ in 1d Hubbard model \Rightarrow SYK NFL, Heavy FL, interacting diffusive metal, metallic state in Hubbard model $\sum_{A}^{(n)}(T=0,N_A) = \frac{1}{2}(1+\frac{1}{n})\log\left[\frac{\pi}{\pi}\sin\left(\frac{M}{N}\right)\right] + k_n$ model. T = 0.05c = 1

 B_{2}

) On

Netallic state in Hubbard model within loss self energy well described by CFT crossover formula: $N \rightarrow \infty$ Entanglement of represented $N \rightarrow c$ systems in 3D. 0

Summary and outlook

 New path integral and DMFT methods to compute entanglement in large-N models and strongly concelated systems. $T \rightarrow 0$

5. Subsystem scaling of $S_A^{(2)}$ in 1d Hubbard model \Rightarrow SYK NFL, Heavy FL, interacting diffusive metal, metallic state in Hubbard $\sum_{A}^{(n)}(T=0,N_A) = \frac{1}{2}(1+\frac{1}{n})\log\left[\frac{\pi}{\pi}\sin\left(\frac{N}{N}\right)\right] + k_n$ model. c = 1

 B_{2}

Netallic state in Hubbard model within loss self-energy $\frac{S^{(n)}}{S^{(n)}}$ well described by CFT crossover formula. $N \rightarrow \infty$ Entanglement of represented $N \rightarrow c$ systems in 3D. 0

Jon

Not possible to extract $S_A^{(2)}$ from action directly.

$$\exp[-S_A^{(2)}(\lambda)] \propto \int \mathcal{D}(\bar{c}, c) \exp[-(S_U + \lambda S_{kick})] \qquad \lambda = 1$$

$$S_{kick} = \int d\tau d\tau' \sum_{i \in A, \alpha, \beta = 1, 2} \bar{c}_{i\alpha}(\tau) M_{\alpha\beta}(\tau, \tau') c_{i\beta}(\tau')$$

$$S_{A}^{(2)} = \int_{0}^{1} d\lambda \langle S_{kick} \rangle \qquad e^{-S_{A}^{(2)}(\lambda)} = \frac{Z_{A}^{(2)}(\lambda)}{Z^{2}} = \frac{1}{Z^{2}} \int \mathcal{D}(\bar{c}, c) e^{-(\mathcal{S} + \lambda \mathcal{S}_{kick})}$$

$$S_{kick} \rangle_{Z_{A}^{(2)}(\lambda)} = \sum_{i \in A, \alpha \beta \sigma} M_{\alpha \beta} G_{i \sigma \beta, i \sigma \alpha}(\tau_{0}, \tau_{0}^{+}) \qquad \partial_{\lambda} S_{A}^{(2)}(\lambda) = \frac{\int \mathcal{D}(\bar{c}, c) e^{-(\mathcal{S} + \lambda \mathcal{S}_{kick})} \mathcal{S}_{kick}}{\int \mathcal{D}(\bar{c}, c) e^{-(\mathcal{S} + \lambda \mathcal{S}_{kick})}} = \langle \mathcal{S}_{kick} \rangle_{Z_{A}^{(2)}(\lambda)}$$

 $G_{ii,\alpha\beta}^{\lambda}(\tau_0,\tau_0^+) = -\langle \mathcal{T}_{\tau}c_{i\sigma\alpha}(\tau)\bar{c}_{i\sigma\beta}(\tau')\rangle_{Z_A^{(2)}(\lambda)}$ Entanglement is extracted as a Need only the local Green's function but in the presence of kick of strength λ Entanglement is extracted as a 'non-equilibrium work' done due to kick perturbation

1D Hubbard Model

Measure of entanglement for a pure state $|\psi\rangle$

Reduced density matrix of a subsystem $\rho_A = Tr_B(|\psi\rangle\langle\psi|)$

n-th Renyi entropy
$$S_A^{(n)} = \frac{1}{1-n} \ln T r_A[\rho_A^n]$$

How do we compute entanglement entropy?

Hard to compute entanglement entropy.

Consider Hubbard model, $H = -t \sum_{i\sigma} (c_{i\sigma}^{\dagger} c_{i+1,\sigma} + h.c.) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$

N sites, one electron per site $\sim \exp(N)$ states in Hilbert space basis

Many-body wave function is a complicated object,

$$|\psi\rangle = \sum_{\{n_{i\sigma}\}} C_{\{n_{i\sigma}\}} |n_{1\uparrow}, n_{1\downarrow}, n_{2\uparrow}, n_{2\downarrow}, \dots \rangle$$

and then calculate $\rho_A = Tr_B(|\psi\rangle\langle\psi|)$

Need ~
$$\exp(N)$$
 coefficients $C_{\{n_{i\sigma}\}}$