Dynamical mean-field theories for Rényi entanglement entropy of Fermi and non-Fermi liquids

Sumilan Banerjee

Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science

Fractionalization and Emergent Gauge Fields in Quantum Matter, ICTP December 5, 2023

Surajit Bera (Physics, IISc Bangalore)

Arijit Haldar (S N Bose Centre, Kolkata)

S. Bera, A. Haldar & SB, arXiv:2302.10940 (2023).

A. Haldar, S. Bera & SB, Phys. Rev. Research (2020)

IISc startup, research support

SERB ECR, CRG grants

Quantum Entanglement

Pure state $|\psi\rangle$

 \circ Reduced density $\rho_A = Tr_B(|\psi\rangle\langle\psi|)$

o von-Neumann Entanglement $S_A = -Tr_A(\rho_A \ln \rho_A)$ entropy (EE)

$$
\begin{array}{|c|c|}\n\hline\nL & B \\
\hline\nA & B\n\end{array}
$$

$$
n\text{-th Renyi entropy} \quad S_A^{(n)} = \frac{1}{1-n} \ln Tr_A[\rho_A^n] \qquad S_A^{(n-1)} = S_A
$$

Second Renyi entropy $S_A^{(2)}$

Quantum Entanglement

Pure state $|\psi\rangle$

 \circ Reduced density $\rho_A = Tr_B(|\psi\rangle\langle\psi|)$

o von-Neumann Entanglement entropy (EE) $S_A = -T r_A(\rho_A \ln \rho_A)$

$$
n\text{-th Renyi entropy} \quad S_A^{(n)} = \frac{1}{1-n} \ln Tr_A[\rho_A^n] \qquad S_A^{(n-1)} = S_A
$$

Second Renyi entropy $S_A^{(2)}$

But, why care about entanglement in condensed matter physics?

Quantum Entanglement

Pure state $|\psi\rangle$

 \circ Reduced density $\rho_A = Tr_B(|\psi\rangle\langle\psi|)$

o von-Neumann Entanglement entropy (EE) $S_A = -Tr_A(\rho_A \ln \rho_A)$

$$
n\text{-th Renyi entropy} \quad S_A^{(n)} = \frac{1}{1-n} \ln Tr_A[\rho_A^n] \qquad S_A^{(n\to 1)} = S_A
$$

Second Renyi entropy $S_A^{(2)}$

But, why care about entanglement in condensed matter physics?

Entanglement can characterize "intrinsic quantum nature" of various symmetry broken, critical and topological (ground) states.

 \circ Gapped systems* \overline{A} B

$$
S_A \sim
$$
 Area Law (L^{d-1}) + corrections

e.g. spin liquids

Topological order, corrections \sim $-\gamma_{topo}$ +... Topological entanglement

 \circ Gapped systems* \overline{A} B

e.g. spin liquids

$$
S_A \sim
$$
 Area Law (L^{d-1}) + corrections

Topological order, corrections \sim $-\gamma_{topo}$ +... Topological entanglement entropy

- \circ Universal (logarithmic) violation of area law
	- Ø Gapless/critical bosonic or fermionic systems in 1D (1+1 D CFT)

$$
S_A^{(n)} = \frac{1}{2} \left(1 + \frac{1}{n} \right) \left(\frac{c}{6} \right) \ln L + \dots
$$

Central charge c

(spinless) free fermions or Luttinger liquid $c = 2$

Gapped systems*

e.g. spin liquids

$$
S_A \sim
$$
 Area Law (L^{d-1}) + corrections

Topological order, corrections \sim $-\gamma_{topo}$ +... Topological entanglement entropy

- \circ Universal (logarithmic) violation of area law
	- Ø Gapless/critical bosonic or fermionic systems in 1D (1+1 D CFT)

$$
S_A^{(n)} = \frac{1}{2} \left(1 + \frac{1}{n} \right) \left(\frac{c}{6} \right) \ln L + \cdots
$$

Central charge *c*

 \triangleright Free fermions in higher dimension $d > 1$ Swingle, PRL (2010);Swingle, PRB (2012)

(spinless) free fermions or Luttinger liquid $c = 1 (x2)$

Gioev & Klich, PRL (2006)

$$
S_A^{(n)} \sim L^{d-1} \ln L + \cdots
$$

Fermi liquids, Weyl fermions in magnetic field, certain non-Fermi liquids, Bose metals

- Entanglement measures are typically computed numerically
- \circ Non-interacting Correlation matrix approach
- \circ Interacting Exact diagonalization (ED), density matrix renormalization (DMRG) & matrix product states (MPS), Quantum Monte Carlo (QMC), ...

- Entanglement measures are typically computed numerically
- \circ Non-interacting Correlation matrix approach
- \circ Interacting Exact diagonalization (ED), density matrix renormalization (DMRG) & matrix product states (MPS), Quantum Monte Carlo (QMC), ...
- o Path integral and quantum field-theory approach for entanglement

Replica field theory

- Entanglement measures are typically computed numerically
- \circ Non-interacting Correlation matrix approach
- \circ Interacting Exact diagonalization (ED), density matrix renormalization (DMRG) & matrix product states (MPS), Quantum Monte Carlo (QMC), ...
- o Path integral and quantum field-theory approach for entanglement

Problem of computing entanglement

Replica field theory

Time-evolution in a complicated space-time manifold with non-trivial boundary conditions.

- Entanglement measures are typically computed numerically
- \circ Non-interacting Correlation matrix approach
- \circ Interacting Exact diagonalization (ED), density matrix renormalization (DMRG) & matrix product states (MPS), Quantum Monte Carlo (QMC) , ...
- o Path integral and quantum field-theory approach for entanglement

Problem of computing entanglement

Replica field theory

Time-evolution in a complicated space-time manifold with non-trivial boundary conditions.

 \triangleright Conformal field theory (CFT) Calabrese & Cardy (2004,2009), ..

 \Rightarrow 1D gapless fermions and critical systems

Simpler representation for applying to general quantum many-body techniques/ approximations (Saddle point, RPA, RG, ..) for entanglement like for thermodynamic, spectral and transport properties

Simpler representation for applying to general quantum many-body techniques/ approximations (Saddle point, RPA, RG, ..) for entanglement like for thermodynamic, spectral and transport properties

New path integral/field theory method

- Ø Bosonic systems -- A. Chakraborty & R. Sensarma, PRL (2021)
- Ø Fermionic systems -- A. Haldar, S. Bera & SB, PRR (2020), S. Moitra and R. Sensrama, PRB (2020)

Simpler representation for applying to general quantum many-body techniques/ approximations (Saddle point, RPA, RG, ..) for entanglement like for thermodynamic, spectral and transport properties

New path integral/field theory method

- Ø Bosonic systems -- A. Chakraborty & R. Sensarma, PRL (2021)
- Ø Fermionic systems -- A. Haldar, S. Bera & SB, PRR (2020), S. Moitra and R. Sensrama, PRB (2020)

Usual boundary conditions on the fields

 S_A^{\setminus}

 (3)

o Second Renyi entropy of subsystem *A*

 $e^{-S_A^{(2)}}$ $= Tr[\rho_A^2] = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$

Grassmann numbers $\left\{ \bar{\xi}_i, \bar{\xi}_i \right\}_{i \in A}$

Fermionic displacement operator $D_N(\xi) = e^{\sum_{i \in A} c_i^\dagger \xi_i} e^{-\sum_{i \in A} \overline{\xi}_{i \in A} c_i}$

Fermionic Wigner characteristic function $\chi_N(\xi_A) = Tr[\rho D_N(\xi_A)]$

Gaussian factor $f_N(\xi, \eta) = 2^N e^{-\left(\frac{1}{2}\right)\sum_{i \in A}(\bar{\xi}_i\xi_i + \bar{\eta}_i\eta_i - \bar{\xi}_i\eta_i + \bar{\eta}_i\xi_i)}$

o Second Renyi entropy of subsystem *A*

 $e^{-S_A^{(2)}}$ $= Tr[\rho_A^2] = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$

Fermionic displacement operator $D_N(\xi) = e^{\sum_{i \in A} c_i^\dagger \xi_i} e^{-\sum_{i \in A} \overline{\xi}_{i \in A} c_i}$ Grassmann numbers $\left\{ \bar{\xi}_i, \bar{\xi}_i \right\}_{i \in A}$

Fermionic Wigner characteristic function $\chi_N(\xi_A) = Tr[\rho D_N(\xi_A)]$

Gaussian factor $f_N(\xi, \eta) = 2^N e^{-\left(\frac{1}{2}\right)\sum_{i \in A}(\bar{\xi}_i\xi_i + \bar{\eta}_i\eta_i - \bar{\xi}_i\eta_i + \bar{\eta}_i\xi_i)}$

 $\chi_N(\xi_A) = Tr[\rho(t)D_N(\xi_A)] = \int \mathcal{D}(\bar{c}, c) \exp[i(S + S_{kick}(\xi_A))]$ $S_{kick}(\xi_A) = i$ $\mathcal C$ dz i∈A $[\bar{c}_i(z)\delta_{C}(z,t^{+}+) - \bar{\xi}_i\delta_{C}(z,t +) c_i(z)]$

Keldysh contour *C*

o Second Renyi entropy of subsystem *A*

 $e^{-S_A^{(2)}}$ $= Tr[\rho_A^2] = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$

Fermionic displacement operator $D_N(\xi) = e^{\sum_{i \in A} c_i^\dagger \xi_i} e^{-\sum_{i \in A} \overline{\xi}_{i \in A} c_i}$ Grassmann numbers $\left\{ \bar{\xi}_i, \bar{\xi}_i \right\}_{i \in A}$

Fermionic Wigner characteristic function $\chi_N(\xi_A) = Tr[\rho D_N(\xi_A)]$

Gaussian factor $f_N(\xi, \eta) = 2^N e^{-\left(\frac{1}{2}\right)\sum_{i \in A}(\bar{\xi}_i\xi_i + \bar{\eta}_i\eta_i - \bar{\xi}_i\eta_i + \bar{\eta}_i\xi_i)}$

$$
\chi_N(\xi_A) = Tr[\rho(t)D_N(\xi_A)] = \int \mathcal{D}(\bar{c}, c) \exp[i(S + S_{kick}(\xi_A))]
$$

$$
S_{kick}(\xi_A) = i \int_C dz \sum_{i \in A} [\bar{c}_i(z)\delta_C(z, t^+ +) - \bar{\xi}_i \delta_C(z, t^+) c_i(z)]
$$

Keldysh contour *C*

⇒ All the known expressions for Renyi entropies of non-interacting fermions $S_A^{(n)} = \frac{1}{1-1}$ $\frac{1}{1-n} Tr_A \ln[(1-C)^n + C^n]$ Correlation matrix $C_{ij} = \langle c_i^{\dagger}(t) c_i(t) \rangle$ A. Haldar, S. Bera & SB, PRR (2020)

Rest of the talk

o Entanglement entropy of correlated metallic states described by Dynamical mean field theories (DMFT) (local self energy)

u Interacting fermions $H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$

u Interacting fermions $H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$ $e^{-S_A^{(2)}} = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$ $\chi_N(\xi_A) = \int \mathcal{D}(\bar{c}, c) \exp[i(S + S_{kick}(\xi_A))]$ $S_{kick}(\xi_A) = i \int_C dz \sum_{i \in I} [\bar{c}_i(z) \delta_C(z, t^+ +) - \bar{\xi}_i \delta_C(z, t^+) c_i(z)]$

Two replicas $\alpha = 1.2$

u Interacting fermions $H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$ $e^{-S_A^{(2)}} = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$ $\chi_N(\xi_A) = \int \mathcal{D}(\bar{c}, c) \exp[i(S + S_{kick}(\xi_A))]$ $S_{kick}(\xi_A) = i \int_C dz \sum_{i} [\bar{c}_i(z) \delta_C(z, t^+ +) - \bar{\xi}_i \delta_C(z, t^+) c_i(z)]$

Integrate out the auxiliary fields first

 $e^{-S_A^{(2)}} = \int \mathcal{D}(\bar{c}_\alpha, c_\alpha) \exp[iS_{eff}[\bar{c}_\alpha, c_\alpha]]$

 $t_0+i\beta$ **Kick** Keldysh contour C

kick

$$
S_{eff} = \int_C dz dz' \sum_{ij\alpha\beta} \bar{c}_{i\alpha}(z) G_{0,i\alpha,j\beta}^{-1}(z, z') c_{j\beta}(z') - \cdots
$$

u Interacting fermions $H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_i^{\dagger} c_k c_l$ | $t_0+i\beta$ $e^{-S_A^{(2)}} = \int d^2(\xi_A, \eta_A) f_N(\xi_A, \eta_A) \chi_N(\xi_A) \chi_N(\eta_A)$ $\chi_N(\xi_A) = \int \mathcal{D}(\bar{c}, c) \exp[i(S + S_{kick}(\xi_A))]$ $S_{kick}(\xi_A) = i \int_C dz \sum_i [\bar{c}_i(z) \delta_C(z, t^+ +) - \bar{\xi}_i \delta_C(z, t +) c_i(z)]$ C kick[®] Integrate out the auxiliary fields first Two replicas $\alpha = 1.2$ $e^{-S_A^{(2)}} = \int \mathcal{D}(\bar{c}_\alpha, c_\alpha) \exp[iS_{eff}[\bar{c}_\alpha, c_\alpha]]$ $S_{eff} = \int_C dz dz' \sum_{i,j,\alpha} \bar{c}_{i\alpha}(z) G_{0,i\alpha,j\beta}^{-1}(z,z') c_{j\beta}(z') - \cdots$ $G_{0,i\alpha,i\beta}^{-1}(z,z') = [(i\partial_z + \mu)\delta_{ij} - t_{ij}]\delta_c(z,z')\delta_{\alpha\beta} - \delta_{i\in A}\delta_{ij}M_{\alpha\beta}(z,z')$ $M(\tau, \tau') = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \delta_C(z, t^+ +) \delta_C(z', t^+)$

Self-energy kick

*Can be used for QMC

SYK Non-Fermi (NFL) and Fermi (FL) liquids

 $H_{SYK} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l$

$$
H_{SYK} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l
$$

 $\Sigma_R(\omega) \sim \sqrt{J\omega} \gg \omega$ as $\omega \to 0$ Non Fermi liquid

Extensive $T=0$ residual entropy S_0 (for $T\rightarrow 0$, $N\rightarrow \infty$)

$$
H_{SYK} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l
$$

 $\Sigma_R(\omega) \sim \sqrt{J\omega} \gg \omega$ as $\omega \to 0$ Non Fermi liquid

Extensive $T=0$ residual entropy S_0 (for $T\rightarrow 0$, $N\rightarrow \infty$)

Fermi liquid, add a quadratic term \circ

$$
H = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l + \frac{1}{\sqrt{N}} \sum_{ij} t_{ij} c_i^{\dagger} c_j
$$

 $P(t_{ij}) \sim e^{-|t_{ij}|^2/t_h^2}$

$$
H_{SYK} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l
$$

 $\Sigma_{\rm R}(\omega) \sim \sqrt{J} \omega \gg \omega$ as $\omega \to 0$ Non Fermi liquid

Extensive $T=0$ residual entropy S_0 (for $T\rightarrow 0$, $N\rightarrow \infty$)

Fermi liquid, add a quadratic term \bigcirc

$$
H = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l + \frac{1}{\sqrt{N}} \sum_{ij} t_{ij} c_i^{\dagger} c_j
$$

Heavy Fermi liquid for $t_h \ll J$, $T_{coh} \sim t_h^2/J$

 $P(t_{ij}) \sim e^{-|t_{ij}|^2/t_h^2}$ $\Sigma(\omega) \sim \omega^2$, $\omega \to 0$

$$
H_{SYK} = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l
$$

Non Fermi liquid $\Sigma_R(\omega) \sim \sqrt{J\omega} \gg \omega$ as $\omega \to 0$

Extensive *T=0* residual entropy S_0 (for *T→0, N→*∞)

o Fermi liquid, add a quadratic term

 $H =$ 1 $\frac{1}{(2N)^{3/2}}\sum_{i=1}^{N}$ \overline{ijk} $J_{ijkl}c_i^{\dagger}c_j^{\dagger}c_k c_l +$ 1 $\frac{1}{N}$ $\overline{i}\overline{j}$ $t_{ij}c_i^{\dagger}c_j$ $P(t_{ij}) \sim e^{-|t_{ij}|^2 / t_h^2}$ $\Sigma(\omega) \sim \omega^2$ Heavy Fermi liquid for $t_h \ll J$, $T_{coh} \sim t_h^2/J$ $\Sigma(\omega) \sim \omega^2$, $\omega \to 0$

(a)
$$
SYK_q
$$
 (b) SYK_q-FL (c)
\n i j j j k
\n k
\n q -body
\ninteration hopping

Subsystem A – choose any N_A sites out of *N* sites

$$
S_A^{(2)}\left(p=\frac{N_A}{N}\right)
$$

→ Try to approach ground state entanglement by taking $T\rightarrow 0$ after $N\rightarrow \infty$ limit

- → Try to approach ground state entanglement by taking $T\rightarrow 0$ after $N\rightarrow \infty$ limit
- o Disorder averaged subsystem Renyi entropy

 $S_A^{(2)} = -\frac{1}{\ln(Tr_A\rho_A^2)}$

- Try to approach ground state entanglement by taking $T\rightarrow 0$ after $N\rightarrow \infty$ limit
- o Disorder averaged subsystem Renyi entropy

 $S_A^{(2)} = -\frac{1}{\ln(Tr_A\rho_A^2)}$

 \circ Large-N saddle point for Renyi entropy field theory

$$
\mathbf{G} = -(1-p)(\partial_\tau + \Sigma)^{-1} - p(\partial_\tau + \Sigma + M)^{-1}
$$

 $\Sigma_{\alpha\beta}(\tau_1,\tau_2) = -J^2 G_{\alpha\beta}^2(\tau_1,\tau_2)G_{\beta\alpha}(\tau_2,\tau_1) + t_h^2 G_{\alpha\beta}(\tau_1,\tau_2)$

- Try to approach ground state entanglement by taking $T\rightarrow 0$ after $N\rightarrow \infty$ limit
- \circ Disorder averaged subsystem Renyi entropy

 $S_4^{(2)} = -\frac{1}{\ln(Tr_4\rho_A^2)}$

 \circ Large-N saddle point for Renyi entropy field theory

 $G = -(1-p)(\partial_{\tau} + \Sigma)^{-1} - p(\partial_{\tau} + \Sigma + M)^{-1}$ $G_{\alpha\beta}(\tau_1, \tau_2)$ $\alpha, \beta = 1,2$

 $\Sigma_{\alpha\beta}(\tau_1,\tau_2) = -J^2 G_{\alpha\beta}^2(\tau_1,\tau_2)G_{\beta\alpha}(\tau_2,\tau_1) + t_h^2 G_{\alpha\beta}(\tau_1,\tau_2)$

 $M(\tau_1, \tau_2) = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \delta(\tau_1 - \tau_0^+) \delta(\tau_2 - \tau_0)$

Self-energy kick

Try to approach ground state entanglement by taking $T\rightarrow 0$ after $N\rightarrow \infty$ limit

 \circ Disorder averaged subsystem Renyi entropy

 $S_A^{(2)} = -\overline{\ln(Tr_A\rho_A^2)}$ \Leftarrow Large-N saddle-point action

 \circ Large-N saddle point for Renyi entropy field theory

 $G = -(1-p)(\partial_{\tau} + \Sigma)^{-1} - p(\partial_{\tau} + \Sigma + M)^{-1}$ $G_{\alpha\beta}(\tau_1, \tau_2)$ $\alpha, \beta = 1,2$

 $\Sigma_{\alpha\beta}(\tau_1,\tau_2) = -J^2 G_{\alpha\beta}^2(\tau_1,\tau_2)G_{\beta\alpha}(\tau_2,\tau_1) + t_h^2 G_{\alpha\beta}(\tau_1,\tau_2)$

 $M(\tau_1, \tau_2) = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \delta(\tau_1 - \tau_0^+) \delta(\tau_2 - \tau_0)$

Self-energy kick

Try to approach ground state entanglement by taking $T\rightarrow 0$ after $N\rightarrow \infty$ limit

 $S_{\lambda}^{(2)} = -\frac{1}{\ln(Tr_{\lambda}\rho_{\lambda}^2)}$ ϵ Large-N saddle-point action

 \circ Large-N saddle point for Renyi entropy field theory

 $G = -(1-p)(\partial_{\tau} + \Sigma)^{-1} - p(\partial_{\tau} + \Sigma + M)^{-1}$ $G_{\alpha\beta}(\tau_1,\tau_2)$ $\alpha,\beta=1,2$

 $\Sigma_{\alpha\beta}(\tau_1,\tau_2) = -J^2 G_{\alpha\beta}^2(\tau_1,\tau_2)G_{\beta\alpha}(\tau_2,\tau_1) + t_h^2 G_{\alpha\beta}(\tau_1,\tau_2)$

 $M(\tau_1, \tau_2) = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \delta(\tau_1 - \tau_0^+) \delta(\tau_2 - \tau_0)$

Self-energy kick

Need to solve self consistently

Discretize over (τ) time and solve self-consistently numerically

Fermi liquid and heavy Fermi liquid $(J, t_h \neq 0)$

Ť

 $\mathbb T$ Ĩ.

 $\Gamma_{\rm eff}$

Fermi liquid and heavy Fermi liquid $(J, t_h \neq 0)$

- Large N , $p=1$ value approaches zero as *T→0*
- ^l ED results for *N=8,10* matches perfectly with *N→∞* limit!
- ^è Finite-*N* corrections are very small for entanglement entropy.

Fermi liquid and heavy Fermi liquid $(J, t_h \neq 0)$

Bipartite (*p=1/2*) entanglement entropy Heavy Fermi liquid *→weakly interacting FL*

- Large *N, p=1* value approaches zero as *T→0*
- ^l ED results for *N=8,10* matches perfectly with *N→∞* limit!
- ^è Finite-*N* corrections are very small for entanglement entropy.

^q Large *N, p=1* value does not approach zero as *T→0*

^q Large *N, p=1* value does not approach zero as *T→0* \Box It can be shown $S_A^{(2)}(p \to 1, T = 0) = S_0$ Residual entropy

^q Large *N, p=1* value does not approach zero as *T→0* \Box It can be shown $S_A^{(2)}(p \to 1, T = 0) = S_0$ Residual entropy

Quantum entanglement of the SYK NFL ground-state cannot be extracted in the large-*N* limit from $T \rightarrow 0$ limit.

Entanglement in interacting diffusive metal

Gu et al. (2017), Davison et al. (2017),

... Song al. (2017), Zhang et al. (2017), Chowdury et al. (2018), ..

Lattice of SYK dots

Entanglement in interacting diffusive metal

- Renyi entropy initially grows like $\ln l$, but then saturates.
- » Modified growth law

$$
S_A^{(2)} \sim \frac{c_{eff}}{8} \ln \left(\frac{1}{\sqrt{l^{-2} + l_0^{-2}}} \right)
$$

A. Potter, arxiv (2014)

Gu et al. (2017), Davison et al. (2017),

Song al. (2017), Zhang et al. (2017), Chowdury et al. (2018), ..

Lattice of SYK dots

Entanglement in interacting diffusive metal

- Renyi entropy initially grows like $\ln l$, but then saturates.
- → Modified growth law

$$
S_A^{(2)} \sim \frac{c_{eff}}{8} \ln \left(\frac{1}{\sqrt{l^{-2} + l_0^{-2}}} \right)
$$

A. Potter, arxiv (2014)

Gu et al. (2017), Davison et al. (2017),

Song al. (2017), Zhang et al. (2017), Chowdury et al. (2018), ..

Lattice of SYK dots

→ Emergent length scale, "mean free path" l_0

 c_{eff} changes with interaction

Hubbard model at half filling and Mott metal-insulator transition

$$
H = -t \sum_{\langle ij \rangle, \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

Hubbard model at half filling and Mott metal-insulator transition

$$
H = -t \sum_{\langle ij \rangle, \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c. \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

ithinshelle Eite Dynamical rnean-ner
CDMFT) \sum_{12}^{N} **c** \sum_{cmf}^{N} *i* $\begin{array}{c|c}\n \textbf{mean-field theory} & \textbf{14} & \textbf{m} \\
 \hline\n \textbf{F} & \textbf{F} & \textbf{F} \\
 \hline\n \textbf{F} & \textbf{F} & \textbf{F} \\
 \textbf{F} & \textbf$ $H_{\text{kin}}\text{DMET}$, A C ampari **fulling and settle to move continuously from the phase to move continuously from the phase to move to move that**

in self-consistent bath

Georges et al. RMP (1996)

4. Comparision to QMC

Hubbard model at half filling and Mott metal-insulator transition

Not possible to extract $S_A^{(2)}$ from action directly unlike the large-*N* models.

Not possible to extract $\mathcal{S}_A^{(2)}$ from action directly unlike the large-*N* models.

 $\exp[-S_A^{(2)}(\lambda)] \propto \int \mathcal{D}(\bar{c}, c) \exp[-(S_U + \lambda S_{kick})]$ $\lambda = 1$

$$
S_{kick} = \int d\tau d\tau' \sum_{i \in A, \alpha, \beta = 1, 2} \bar{c}_{i\alpha}(\tau) M_{\alpha\beta}(\tau, \tau') c_{i\beta}(\tau')
$$

Not possible to extract $\mathit{S}^{(2)}_{A}$ from action directly unlike the large-*N* models.

 $\exp[-S_A^{(2)}(\lambda)] \propto \int \mathcal{D}(\bar{c}, c) \exp[-(S_U + \lambda S_{kick})]$ $\lambda = 1$

$$
S_{kick} = \int d\tau d\tau' \sum_{i \in A, \alpha, \beta = 1, 2} \bar{c}_{i\alpha}(\tau) M_{\alpha\beta}(\tau, \tau') c_{i\beta}(\tau')
$$

$$
S_A^{(2)} = \int_0^1 d\lambda \langle S_{kick} \rangle_{\lambda} \qquad \langle S_{kick} \rangle_{\lambda} = \sum_{i \in A, \sigma, \alpha\beta} M_{\alpha\beta} G_{ii, \sigma, \alpha\beta}(\tau_0, \tau_0^+)
$$

Not possible to extract $\mathit{S}^{(2)}_{A}$ from action directly unlike the large-*N* models.

 $\exp[-S_A^{(2)}(\lambda)] \propto \int \mathcal{D}(\bar{c}, c) \exp[-(S_U + \lambda S_{kick})]$ $\lambda = 1$

$$
S_{kick} = \int d\tau d\tau' \sum_{i \in A, \alpha, \beta = 1, 2} \bar{c}_{i\alpha}(\tau) M_{\alpha\beta}(\tau, \tau') c_{i\beta}(\tau')
$$

$$
S_A^{(2)} = \int_0^1 d\lambda \langle S_{kick} \rangle_{\lambda} \qquad \langle S_{kick} \rangle_{\lambda} = \sum_{i \in A, \sigma, \alpha \beta} M_{\alpha \beta} G_{ii, \sigma, \alpha \beta}(\tau_0, \tau_0^+)
$$

 $G^{\lambda}_{ii,\sigma,\alpha\beta}(\tau_0,\tau_0^+) = - \big\langle T_\tau c_{i\sigma\alpha}(\tau) \ \bar{c}_{i\sigma\beta}(\tau') \big\rangle_{\lambda}$

Need only the local Green's function but in the presence of kick of strength λ

Not possible to extract $\mathit{S}^{(2)}_{A}$ from action directly unlike the large-*N* models.

 $\exp[-S_A^{(2)}(\lambda)] \propto \int \mathcal{D}(\bar{c}, c) \exp[-(S_U + \lambda S_{kick})]$ $\lambda = 1$

$$
S_{kick} = \int d\tau d\tau' \sum_{i \in A, \alpha, \beta = 1,2} \bar{c}_{i\alpha}(\tau) M_{\alpha\beta}(\tau, \tau') c_{i\beta}(\tau')
$$

$$
S_A^{(2)} = \int_0^1 d\lambda \langle S_{kick} \rangle_{\lambda} \qquad \langle S_{kick} \rangle_{\lambda} = \sum_{i \in A, \sigma, \alpha \beta} M_{\alpha \beta} G_{ii, \sigma, \alpha \beta}(\tau_0, \tau_0^+)
$$

 $G^{\lambda}_{ii,\sigma,\alpha\beta}(\tau_0,\tau_0^+) = - \big\langle T_\tau c_{i\sigma\alpha}(\tau) \ \bar{c}_{i\sigma\beta}(\tau') \big\rangle_{\lambda}$

Need only the local Green's function but in the presence of kick of strength λ

Entanglement is extracted as a 'non-equilibrium work' done due to kick perturbation

Entanglement via DMFT in Hubbard model A N_A \overline{N} Space and time (τ) translation symmetries broken Effective non-equilibrium inhomogeneous DMFT Impurity action for i -th site $S_{\lambda,i} = - \mid$ â β $d\tau d\tau'$ $\sigma\alpha\beta$ $\bar{c}_{\sigma\alpha}(\tau) \mathcal{G}_{i,\alpha\beta}^{-1}(\tau,\tau') c_{\sigma\beta}(\tau') + U$ â β $d\tau$) α $n_{\uparrow\alpha}(\tau)n_{\downarrow\alpha}(\tau)$ $\mathcal{G}_i^{-1}(\tau, \tau') = -(\partial_{\tau} - \mu)\delta(\tau - \tau') - \Delta_i(\tau, \tau') \in \lambda \delta_{i \in A} M \delta(\tau - \tau_0^+) \delta(\tau' - \tau_0)$

kick self energy

generalization of IPT impurity solver (CTQMC can be used)

- + lattice self consistency
- \rightarrow recursive Green's function method on a space-time lattice
- \Rightarrow Calculate $G_{ii,\alpha\beta}^{\lambda}(\tau_0,\tau_0^+)$ to obtain $S_A^{(2)}(T)$

We calculate subsystem Renyi entropy $\mathit{S}^{(2)}_{A}(T)$

At finite T , Renyi entropy contains both thermal and entanglement entropy contributions.

We calculate subsystem Renyi entropy $\mathit{S}^{(2)}_{A}(T)$

At finite T , Renyi entropy contains both thermal and entanglement entropy contributions.

How can we disentangle them?

We calculate subsystem Renyi entropy $\mathit{S}^{(2)}_{A}(T)$

At finite T , Renyi entropy contains both thermal and entanglement entropy contributions.

How can we disentangle them?

Conformal field theory (CFT) crossover formula ($N \to \infty$)

(Universal) central charge c, free fermions $c = 1$ (2×2)

We calculate subsystem Renyi entropy $\mathit{S}^{(2)}_{A}(T)$

At finite T , Renyi entropy contains both thermal and entanglement entropy contributions.

How can we disentangle them?

Conformal field theory (CFT) crossover formula ($N \to \infty$)

 $S_A^{(2)}(T) =$ \overline{c} $\frac{1}{8}$) log $v_F^{}$ $\frac{r}{\pi T}$ sinh $\pi N_A T$ $v_F^{}$ 1D $S_A^{(2)}(T) = \left(\frac{5}{2}\right) \log \left| \frac{5F}{T} \sinh \left(\frac{25F}{T}\right) \right| + constant$ $-k_F$ k_F

(Universal) central charge c, free fermions $c = 1$ (2×2)

n =

6 Higher dimension, Wido 5 4 $S_A^{(2)}(T) = W N_{\mathcal{Y}}^{d-1} \left[\left(\frac{c}{8} \right)^{-\frac{\mathfrak{S}}{5}} \right]_2^{\frac{-\mathfrak{S}}{2}}$ $\begin{array}{r}\n 1 = 0.15 \\
 + \sqrt{2\pi} \sqrt{2\pi$ ant] $\left| A \right|$ *B* 3 *Ny* À »… 2 $\left(a\right)$ 1 Collection of 1D gapless $\overline{C_0}$ and $\overline{C_1}$ 0 10 20 *NA* Swingle, PRL (2010); 1.5 1.5 *Nx* (c) $T = 0.1$ (b) 1 1 $N=50$

0.5

We calculate subsystem Renyi entropy $\mathit{S}^{(2)}_{A}(T)$

At finite T , Renyi entropy contains both thermal and entanglement entropy contributions.

How can we disentangle them?

Conformal field theory (CFT) crossover formula ($N \to \infty$)

 $S_A^{(2)}(T) =$ \overline{c} $\frac{1}{8}$) log $v_F^{}$ $\frac{r}{\pi T}$ sinh $\pi N_A T$ $v_F^{}$ 1D $S_A^{(2)}(T) = \left(\frac{5}{2}\right) \log \left| \frac{5F}{T} \sinh \left(\frac{25F}{T}\right) \right| + constant$ $-k_F$ k_F

(Universal) central charge c, free fermions $c = 1$ (2×2)

n =

6 Higher dimension, Wido 5 4 $S_A^{(2)}(T) = W N_{\mathcal{Y}}^{d-1} \left[\left(\frac{c}{8} \right)^{-\frac{\mathfrak{S}}{5}} \right]_2^{\frac{-\mathfrak{S}}{2}}$ $\begin{array}{r}\n 1 = 0.15 \\
 + \sqrt{2\pi} \sqrt{2\pi$ ant] $\left| \begin{array}{cc} A & \hbox{N_y} \ \end{array} \right| \quad B$ 3 *Ny* À »… 2 $\left(a\right)$ 1 Collection of 1D gapless $\overline{C_0}$ and $\overline{C_1}$ 0 10 20 *NA* Swingle, PRL (2010); 1.5 1.5 *Nx* (c) $T = 0.1$ (b) Does the correlated metallic state in the correlated metallic state in $\frac{1}{2}$ and $\frac{1}{2}$ a 1 1 rection and *N^y* sites in the *y* direction, used for computing obey CFT predictions? $-N = 50$

0.5

7. Conclusion and summary: Fig.5. Due to the entanglement cut we break the trans-

7. Conclusion and summary: $\ddot{\sim}$ shown (right) 7. Conclusion and summary: the *x* and cummary. apiapion any banninary. Fig.5. Due to the entanglement cut we break the trans-

 \circ 2D DMFT results well fitted by Widom crossover formula \circ 2D DMFT results well fitted by Widom crossover formula Littted by Widom crossover torr conditions in both *x* and *y* directions, i.e. a torus geila l \overline{A}

arge consistent what consistent of the summary: $\ddot{\sim}$ shown (right) o Central charge consistent with n and summary: ometry for the system. We subdivide the system along the *x* and cummany \mathcal{S} Fig.5. Due to the entanglement cut we break the trans-

Mutual information across Mott transition

 $\sum_{i=1}^{n}$ T_{H} and T_{H} and T_{H} and T_{H} and T_{H} α rrolotion noroioto un to $T < 11$, in Correlation persists up to $T\lesssim W$ in **I**(*A, B)/Mott insulator* is shown for *Uc*. \bullet mutual information of a single site and the rest of the rest from system size 164. Here *T* is plotted in the logarithmic in the lo $T \leq W$ in

$\mathsf{D}\mathsf{D}\mathsf{K}$ is a set of $\mathsf{D}\mathsf{K}$ \blacksquare in self-construction **Summary and outlook**

o New path integral and DMFT methods to compute entanglement in large-N \mathbf{M} odels and strongly completed system $\mathbf{r} \rightarrow 0$ mod eis and strongly contributed systems $\frac{r}{T}$ ✦ Importance in manybody physics: To characterize various symmetry broken, critical and 5-1 V

⇒ SYK NFL, Heavy FL, interacting diffusive metal, metallic state in Hubbard model. *In collaboration with* with a set of the view and the view and vi **Suppose I** Arithmeter *Summerford Physics, III* $\begin{array}{c} \n\begin{array}{ccc}\n\mathbb{R} & \mathbb{R} \\
\hline\n\end{array} & \mathbb{R} \\
\hline\n\end{array} & \n\begin{array}{ccc}\n\mathbb{R} & \mathbb{R} \\
\hline\n\end{array} & \n\mathbb{R} & \n\begin{array}{ccc}\n\mathbb{R} & \mathbb{R} \\
\hline\n\end{array} & \n\mathbb{R} & \n\begin{array}{ccc}\n\mathbb{R} \\
\hline\n\end{array$ $\text{Teavy } \text{FL}, \ \prod_{S_A^{(n)}(T=0,N_A)} \text{EQUing } \text{Clillus} \left[\frac{1}{n} \sin \left(\frac{1}{N} \right) \right] + k_n$ $(1 +$ 1 $\frac{1}{n}$)log $\left\lfloor \frac{n}{n} \right\rfloor$ *N* $\frac{1}{\pi}$ sin $\left(\frac{1}{\pi}\right)$ *πNA* $\left[\frac{N}{N}\right]$ + k_n aluhhard c $c = 1$ 5. Subsystem scaling of $S_{\mu}^{(2)}$ in 1d Hubbard model
Hoovy El, interacting diffusive motel motellig 6 7

o Metallic state in Hubbard model within lose self-energy $\mathbf{f}^{\mathbb{Z}^{n+1}}$ is

contribution. Can we disentangle them ?

4. Con

 \mathbf{P} \cup UII

 0 2 4 6

 \overline{a}

 $\overline{ }$

1.1

1.2

2

1

 $\overline{}$ coross $\overline{}$

 $T = 0.2$

 $\bigcap B$

 $\mathbf{C} \overset{\mathbf{A}}{\mathbf{C}} \overset{\mathbf{B}}{\mathbf{C}} \overset{\$ \mathbf{B} in \mathbf{C} of reportation within DMF \mathbf{T} **U** well Aim: Genearl manybody approach to compute *S* for any arbitrary fermionic Hamiltonian (*n*) Thermal violence in the $N\to\infty$ $\overline{1}$ α atton within Di $N \rightarrow \infty$ $S_A^{(n)}(T,N_A) = \frac{c}{2}$ $(1 +$ 1 $\begin{bmatrix} -1 \\ n \end{bmatrix}$ *βv* — sinh (
⊈1, : ... πN_A $\frac{A}{A}$ ^{*n*} $\frac{A}{A}$ ⁿ *β* 71 o Entanglement of confidential systems in 3D.

occurs at

 T $S^{(n)}$

$\mathsf{D}\mathsf{D}\mathsf{K}$ is a set of $\mathsf{D}\mathsf{K}$ \blacksquare in self-construction **Summary and outlook**

o New path integral and DMFT methods to compute entanglement in large-N \mathbf{M} odels and strongly completed system $\mathbf{r} \rightarrow 0$ mod eis and strongly contributed systems $\frac{r}{T}$ ✦ Importance in manybody physics: To characterize various symmetry broken, critical and 5-1 V

⇒ SYK NFL, Heavy FL, interacting diffusive metal, metallic state in Hubbard model. *In collaboration with* with a set of the view and the view and vi **Suppose I** Arithmeter *Summerford Physics, III* $\begin{array}{c} \n\begin{array}{ccc}\n\mathbb{R} & \mathbb{R} \\
\hline\n\end{array} & \mathbb{R} \\
\hline\n\end{array} & \n\begin{array}{ccc}\n\mathbb{R} & \mathbb{R} \\
\hline\n\end{array} & \n\mathbb{R} & \n\begin{array}{ccc}\n\mathbb{R} & \mathbb{R} \\
\hline\n\end{array} & \n\mathbb{R} & \n\begin{array}{ccc}\n\mathbb{R} \\
\hline\n\end{array$ $\text{Teavy } \text{FL}, \ \prod_{S_A^{(n)}(T=0,N_A)} \text{EQUing } \text{Clillus} \left[\frac{1}{n} \sin \left(\frac{1}{N} \right) \right] + k_n$ $(1 +$ 1 $\frac{1}{n}$)log $\left\lfloor \frac{n}{n} \right\rfloor$ *N* $\frac{1}{\pi}$ sin $\left(\frac{1}{\pi}\right)$ *πNA* $\left[\frac{N}{N}\right]$ + k_n aluhhard c $c = 1$ 5. Subsystem scaling of $S_{\mu}^{(2)}$ in 1d Hubbard model
Hoovy El, interacting diffusive motel motellig 6 7

o Metallic state in Hubbard model within lose self-energy $\mathbf{f}^{\mathbb{Z}^{n+1}}$ is

Thermal violence in the $N\to\infty$

contribution. Can we disentangle them ?

4. Con

 \mathbf{P} \cup UII

 0 2 4 6

 \overline{a}

 $\overline{ }$

1.1

1.2

2

1

 $\overline{}$ coross $\overline{}$

 $\bigcap B$

 \mathbf{B} in \mathbf{C} of reportation within DMF \mathbf{T} **U** well Aim: Genearl manybody approach to compute *S* for any arbitrary fermionic Hamiltonian (*n*) $\overline{1}$ α atton within Di $N \rightarrow \infty$ $S_A^{(n)}(T,N_A) = \frac{c}{2}$ $(1 +$ 1 $\begin{bmatrix} -1 \\ n \end{bmatrix}$ *βv* — sinh (
⊈1, : ... πN_A $\frac{A}{A}$ ^{*n*} $\frac{A}{A}$ ⁿ *β* 71 o Entanglement of confidential systems in 3D.

occurs at

 T $S^{(n)}$

 $\mathbf{C} \overset{\mathbf{A}}{\mathbf{C}} \overset{\mathbf{B}}{\mathbf{C}} \overset{\$

Two replicas Second Renyi entropy via integration of the Second Renyi entropy

ⁱ, ci at site *i*, in the *A* subsystem, $\binom{2}{1}$ $\begin{equation} \begin{cases} \mathbb{R}^n & \mathbb{R}^n \end{cases}$ Not possible to extract $S_A^{(2)}$ from action directly. off dottor and only the symmetry $\overline{}$ *l* ot possible to extract $S_A^{(2)}$ fro \mathbf{r} this formulation. As a result, we construct a single-site as \mathbf{r} Not possible to extract $S_A^{(2)}$ from action directly.

$$
\exp[-S_A^{(2)}(\lambda)] \propto \int \mathcal{D}(\bar{c}, c) \exp[-(S_U + \lambda S_{kick})] \qquad \lambda = 1
$$

$$
S_{kick} = \int d\tau d\tau' \sum_{i \in A, \alpha, \beta = 1, 2} \bar{c}_{i\alpha}(\tau) M_{\alpha\beta}(\tau, \tau') c_{i\beta}(\tau')
$$

esting to study in the future. Assuming that there are

$$
\mathcal{S}_{A}^{(2)} = \int_{0}^{1} d\lambda \langle S_{kick} \rangle
$$
\n
$$
\langle \mathcal{S}_{kick} \rangle_{Z_{A}^{(2)}(\lambda)} = \sum_{i \in A, \alpha \beta \sigma} M_{\alpha\beta} G_{i\sigma\beta, i\sigma\alpha}(\tau_{0}, \tau_{0}^{+})
$$
\n
$$
\partial_{\lambda} S_{A}^{(2)}(\lambda) = \frac{\int \mathcal{D}(\bar{c}, c)e^{-(\mathcal{S} + \lambda \mathcal{S}_{kick})} \mathcal{S}_{kick}}{\int \mathcal{D}(\bar{c}, c)e^{-(\mathcal{S} + \lambda \mathcal{S}_{kick})} \mathcal{S}_{kick}} = \langle \mathcal{S}_{kick} \rangle_{Z_{A}^{(2)}(\lambda)}
$$

 α Entanglement is extracted as a 'non-equilibrium work' done due to kick perturbation expression for the second Roman Z ¹ $\overline{\mathbf{r}}$ $G_{\mu\nu}$ (λ) $G_{\mu\nu}$ (λ) $G_{\mu\nu}$ (λ) $G_{\mu\nu}$ (λ) $G_{\mu\nu}$ $T_{\rm eff}$ function, and the Green's function, $\frac{1}{2}$ $\frac{1}{2}$ but in the presence of mon or strength κ monum
rhation work adho aad to $G^{\lambda}_{ii,\alpha\beta}(\tau_0,\tau_0^+) = -\langle \mathcal{T}_\tau c_{i\sigma\alpha}(\tau)\bar{c}_{i\sigma\beta}(\tau') \rangle_{Z^{(2)}_A(\lambda)}$ Need only the local Green's function how how the Search in the Search in the Search in the Search in the Search but in the presence of kick of strength λ kick per *.* (13) Here *Gi,*↵(⌧*,* ⌧ ⁰) is the dynamical *Weiss* field, such that *i* work' done due to

1D Hubbard Model and main text are for periodic boundary condition (PBC). neighbor hopping amplitude *t*). The results reported in A. Comparison with the non-interacting limit and V. *S*(2) **A** I_N 1

Measure of entanglement for a pure state $|\psi\rangle$

Reduced density matrix of a subsystem $\rho_A = Tr_B(|\psi\rangle\langle\psi|)$

n-th Renyi entropy
$$
S_A^{(n)} = \frac{1}{1-n} \ln Tr_A[\rho_A^n]
$$

How do we compute entanglement entropy?

Hard to compute entanglement entropy.

Consider Hubbard model, $H = -t \sum_{i\sigma} (c_{i\sigma}^\dagger c_{i+1,\sigma} + h.c.) + U \sum_i n_{i\uparrow} n_{i\downarrow}$

N sites, one electron per site $~\sim$ exp(N) states in Hilbert space basis

Many-body wave function is a complicated object,

$$
|\psi\rangle = \sum_{\{n_{i\sigma}\}} C_{\{n_{i\sigma}\}} |n_1\uparrow, n_1\downarrow, n_2\uparrow, n_2\downarrow, \dots \rangle
$$
 Need ~ exp(N) coefficients $C_{\{n_{i\sigma}\}}$

and then calculate $\rho_A = Tr_B(|\psi\rangle\langle\psi|)$

Need ~
$$
\sim
$$
 exp(*N*) coefficients $C_{n_{i\sigma}}$