Strong pairing from small Fermi surface: possible application to bilayer nickelate

Ya-Hui Zhang (JHU)

Outline

(I) introduction to Nickelate La3Ni2O7

(II) Small Fermi surface in a bilayer model

(III) Superconductivity from Feshbach resonance

(IV) Deconfined Fermi liquid to Fermi liquid transition

Bilayer nickelate $La_3Ni_2O_7$

80K superconductor under pressure

H. Sun, et.al, Meng Wang, Nature (2023)

Y.Zhang, et.al, Huiqiu Yuan, arxiv:2307.14819

Superconductor emerges after a structure phase transition

My assumption: pressure is not essential other than stabilizing the crystal

Bilayer model for La3Ni2O7

d_{z^2} is Mott localized and form rung singlet!

We only care about d_{x^2-y^2} orbital; Hund's rule transmit the J_{\perp}

For d_{x^2-y^2}: strong J_{\perp} , but negligible t_{\perp}

Effective model for $d_{x^2-y^2}$ orbital

Bilayer t-J model (Ignorance of d_{z^2} is quantitatively not appropriate)

$$\begin{split} H &= -t \sum_{l,\sigma,\langle ij\rangle} Pc_{i;l;\sigma}^{\dagger}c_{j;l;\sigma}P + J_{\parallel}\vec{s}_{i;l} \cdot \vec{s}_{i;l} \\ &+ J_{\perp} \sum_{i} \vec{s}_{i;t} \cdot \vec{s}_{i;b} + V \sum_{i} n_{i;t}n_{i;b} \end{split}$$

 $J_{\perp} = V = 0$, two decoupled t-J model, no superconductor at x=0.5

We are interested in the strong J_{\perp} regime

$$J_{\perp} \gtrsim t, \ V \gtrsim J_{\perp}$$

We add V so the net interaction is still repulsive.

ESD t-J model at large $J_{\perp} >> t$

Six states per rung:

Strong coupling approach!

Projected electron operator:

(Generalized slave boson)

$$egin{aligned} c_{i;l,\uparrow} &= d_i^\dagger f_{i;l,\uparrow} + rac{1}{\sqrt{2}} f_{i,ar{l},\downarrow}^\dagger b_i, \ c_{i;l\downarrow} &= d_i^\dagger f_{i;l,\downarrow} - rac{1}{\sqrt{2}} f_{i;ar{l},\uparrow}^\dagger b_i, \end{aligned}$$

Generalized slave boson theory

$$H = -t \sum_{l;\langle ij \rangle} Pc_{i;l;\sigma}^{\dagger} c_{j;l;\sigma} P + \sum_{i} \epsilon(n_{d;i} + n_{b;i}), \qquad \epsilon = \frac{V - \frac{3}{4}J_{\perp}}{2}$$

ESD t-J model

One single parameter ϵ/t , we focus on $\epsilon > 0$

Substituting the electron operator:

i

Empty Singlon Doublon

Local constraint:

$$n_{i;b} + n_{i;d} + n_{i;f} = 1$$

Average density:

$$n_f + 2n_d = 2x$$

$$\begin{split} H &= -t \sum_{l,\langle i,j \rangle} \Biggl[f_{i,l,\uparrow}^{\dagger} d_i + \frac{b_i^{\dagger} f_{i,\bar{l},\downarrow}}{\sqrt{2}} \Biggr] \Biggl[d_j^{\dagger} f_{j;l,\uparrow} + \frac{f_{j,\bar{l},\downarrow}^{\dagger} b_j}{\sqrt{2}} \Biggr] \\ &+ \Biggl[f_{i,l,\downarrow}^{\dagger} d_i - \frac{b_i^{\dagger} f_{i,\bar{l},\uparrow}}{\sqrt{2}} \Biggr] \Biggl[d_j^{\dagger} f_{j;l,\downarrow} - \frac{f_{j,\bar{l},\uparrow}^{\dagger} b_j}{\sqrt{2}} \Biggr] \\ &+ \sum \delta_f n_{f;i} + \delta_d n_{d;i} + \delta_b n_{b;i}. \end{split}$$

Generalized slave boson mean field phase diagram

sFL: Fermi liquid with small Fermi surface

Symmetry: $(U(1)_t \times U(1)_b \times SU(2))/Z_2$

Four copies of Fermi surfaces

also a layer exchange symmetry $\nu = \frac{1-x}{2}$

Oshikawa-Luttinger theorem: Symmetric and Featureless (no fractionalization)

$$\begin{array}{cc} \mathbf{FL} & \mathbf{sFL} \\ A_{FS} - \nu = 0 & or & 1/2 \end{array}$$

Two distinct Fermi liquids for this symmetry!(ClosFL is clearly beyond any weak coupling theory(RV)

(Closely related to SMG)

(RVB physics without RVB)

Superconductivity from Feshbach resonance

Start from sFL phase, substituting $b = \langle b \rangle$

$$g = \frac{1}{\sqrt{2}} \langle b \rangle t$$

$$H = \sum_{\langle i,j \rangle} -g(d_i^{\dagger} + d_j^{\dagger})(f_{i,b,\downarrow}f_{j,t,\uparrow} - f_{i,b,\uparrow}f_{j,t,\downarrow}) + h.c.$$

Integrating virtual Cooper pair d, $V_{e\!f\!f} \sim -\frac{t^2}{\delta_d}$ (Inter-layer s'-wave)
 $T_c \sim e^{-A\delta_d}$

Going larger x, δ_d must decrease to 0; so pairing become stronger

DMRG evidence in 1D

Bilayer type II t-J model with $L_z = 2$, $L_y = 1$, $L_x \rightarrow \infty$

(a) (t) J_{H} (c) J_{H} (

Type II t-J model: including both orbitals, take $J_H \rightarrow +\infty$

A Luther-Emery liquid for the entire x; Spin gap can reach 20% t

DMRG evidence of small Fermi surface

Suppressing pairing with V=100

 $2k_F$

 $J_{\perp} = 0.5$

 $J_{|} = 4$

Small
$$J_{\perp}: 2k_F = \frac{1-x}{2}$$

Large $J_{\perp}: 2k_F = \begin{cases} \frac{1-x}{2}, & \text{if } x > 0.5 \\ \frac{x}{2}, & \text{if } x < 0.5 \end{cases}$

Deconfined Fermi liquid to Fermi liquid Transition

Deconfined tri-criticality down to zero T?

Summary

(I) Nickelate La3Ni2O7 is described by a simple bilayer model

Physics of bilayer is actually much simpler than single layer

(II) Unambiguous theory of small Fermi surface phase

Analog of PG metal in cuprate

(III) Robust superconductor

(IV) Small to large Fermi surface transition?

Acknowledgement

Hanbit Oh, and Ya-Hui Zhang. "Type-II t- J model and shared superexchange coupling from Hund's rule in superconducting La3Ni2O7." *Physical Review B* 108.17 (2023)

Hui Yang*, Hanbit Oh*, and Ya-Hui Zhang. "Strong pairing from small Fermi surface beyond weak coupling: Application to La3Ni2O7." arxiv:2309.15095 (2023)

Xiaofan Wu, Hui Yang, and Ya-Hui Zhang. "Deconfined Fermi liquid to Fermi liquid transition." to appear soon

Xiaofan Wu

Hanbit Oh

Hui yang