Flux fractionalization transition in anisotropic S = 1 antiferromagnets and dimer-loop models

Souvik Kundu¹ and Kedar Damle¹

¹Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India

We demonstrate that the low temperature (T) properties of a class of anisotropic spin S = 1kagome (planar pyrochlore) antiferromagnets on a field-induced $\frac{1}{2}$ -magnetization ($\frac{1}{2}$ -magnetization) plateau are described by a model of fully-packed dimers and loops on the honeycomb (square) lattice, with a temperature-dependent relative fugacity w(T) for the dimers. The fully-packed O(1) loop model (w = 0) and the fully-packed dimer model $(w = \infty)$ limits of this dimer-loop model are found to be separated by a phase transition at a finite and nonzero critical fugacity w_c , with interesting consequences for the spin correlations of the frustrated magnet. The $w > w_c$ phase has short loops and spin correlations dominated by power-law columnar order (with subdominant dipolar correlations), while the $w < w_c$ phase has dominant dipolar spin correlations and long loops governed by a power-law distribution of loop sizes. Away from w_c , both phases are described by a long-wavelength Gaussian effective action for a scalar height field that represents the coarse-grained electrostatic potential of fluctuating dipoles. The destruction of power-law columnar spin order below w_c is driven by an unusual flux fractionalization mechanism, topological in character but quite distinct from the usual Kosterlitz-Thouless mechanism for such transitions: Fractional electric fluxes which are bound into integer values for $w > w_c$, proliferate in the $w < w_c$ phase and destroy power-law columnar order.