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Fully-packed configurations of loops + trivial loops (dimers)
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All open strings disallowed
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Half-charges (half-vortices) forbidden

Integer charges (unit-vortices) also 
forbidden

Two distinct objects of length 1 if half 
vortices allowed (quite different from 
variable dimer density situations)



  

Anisotropic S=1 kagome 1/3-magnetization plateau

Each kagome triangle has: 

(Large O(J) energy gap to other values) 

Two ways to add up to (1,0,0) or (1,1, -1)

(With slightly different energies)

Implicit: Quantum fluctuations negligible



  

Dimer-loop partition function

Our focus: Classical phase diagram as function of w on honeycomb and square lattices 

On square lattice, Z(w) describes half-magnetization plateau of anisotropic S=1 planar pyrochlore 
antiferromagnet. 

Tool: Classical Monte Carlo using a worm algorithm



  

Some theoretical perspective

● w=0 is fully-packed O(1) honeycomb loops (loop fugacity is unity). Configurations in one-
to-one correspondence with fully-packed dimers (empty links form loops)

● On square lattice, Z(w=0) is exactly solved fully packed O(1) loop model (Baxter) 
● Power-law distribution of loop sizes and dipolar correlations between loop segments. 

(Baxter, Moessner-Tchernyshyov-Sondhi 2004, Jaubert-Haque-Moessner 2011, Jacobsen-
Kondev 1998, Saleur-Duplantier 1987)

● Limit of infinite w is usual fully-packed dimer model.
● Warning: On honeycomb: w=0 and infinity have identical configurations and relative 

weights, but no obvious duality between w and 1/w for general w.



  

Coarse-grained height field-theory

● Valid both for loop model and for dimer model (Youngblood-Axe 1980, Henley, Fradkin et al 
2004, Vishwanath-Balents-Senthil 2004, Alet et al 2005, Moessner-Tchernyshyov-Sondhi 2004 
...)

● Coarse-grained height is an angle: In pure dimer limit, integer shifts of h are a redundancy of 
description (“compactification radius”). In pure loop limit, half integer shifts are a redundancy of 
description. [in our normalization]

● Might expect: Dimer-loop system would have half-integer shifts as redundancy except in pure 
dimer limit, because of loops being present at any finite w (??)

● Might suggest: Pure loop limit controls behavior at any finite w (??)



  

Two-fold motivation for detailed study

Very natural interpolation between fully-packed dimers and fully-packed loops

Also describes interesting low-temperature plateau in class of kagome magnets

Caveat: “Realizability” needs further thought

Aside: Extension that allows half-vortices but forbids unit-vortices
 gives description of transition to next i.e. 2/3 magnetization plateau
 of kagome magnet (work in progress)



  

Numerics:

● Classical Monte Carlo using two worm updates
● One update creates a unit-vortex antivortex pair at random location, keeps one of them 

fixed, while other does random walk before annihilating antipartner
● Other update does the same with a pair of half-vortices
● Allows measurement of test vortex two-point functions
● Periodic boundary conditions
● Configurations characterized by two independent fluxes of polarization field (winding 

numbers). These are allowed to be half-integer in general (in our normalization) except 
in pure dimer limit.



  

Measurements

and

Loop size distribution and moments

Convenient Binder ratio characterization of  loop sizes

Flux (winding number) distribution

Probability of having fractional fluxes

Three-sublattice spin order parameter and 
half/unit-vortex correlators



  

short-to-long loop phase transition
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Flux-fractionalization character of transition
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Transition observable in kagome spin structure factor

| ⃗Gx | = | ⃗Gy | = 8π/(b 3)
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Universal loop size distribution in long-loop phase

Note scaling relation:

O(1) loops with



  

Gaussian flux statistics in both phases
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Half-vortex correlators in two phases
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Unit-vortex correlators in both phases
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Columnar (three-sublattice) correlator in both phases
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Different loop size distribution at criticality

Scaling relation obeyed within errors



  

Critical flux distribution not single Gaussian
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Critical half-vortex correlators
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Columnar correlator at criticality
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Unit-vortex correlator at criticality
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Specific heat near criticality
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Stiffness extracted in multiple ways
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Overall picture from numerics
● Critical long-loop phase at small w separated by second order transition from a short loop 

(dimer rich) phase at large w. 
● Entire long-loop phase controlled by w=0 fixed point.
● Fractional fluxes proliferate in the long-loop phase but combine into integers in short-loop 

phase.
● Short-loop phase has power-law three-sublattice spin order (columnar correlators of link 

segments/dimers), Destroyed in the long-loop phase when fractional fluxes proliferate. 
● Mechanism not KT(!) . Correlation length exponent matches Ising (within errors)
● Test vortex correlators suggest: Half-vortex fugacity irrelevant perturbation in short-loop phase  

and relevant in long-loop phase.
● Prediction: Nonzero half-vortex fugacity destroys dipolar pinch-points in long-loop phase but 

not in short-loop phase.
● Interesting half-vortex driven transition out of short-loop phase as model for inter-plateau 

transition (ongoing work)
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