A tale of two transitions

K. Sengupta IACS, Kolkata

Collaborators

Madhumita Sarkar, Jožef [Stefan Institute, Ljubljana](https://www.researchgate.net/institution/Joef_Stefan_Institute?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InByb2ZpbGUiLCJwYWdlIjoicHJvZmlsZSJ9fQ) Mainak Pal, IACS, Kolkata Anirudha Menon, IACS, Kolkata Anwesha Chattopadhyay, RKMVU, Kolkata Arnab Sen, IACS, Kolkata

References

Scipost Phys. 14, 004 (2023) Scipost Phys. 14, 146 (2023) arXiv:2311.12107

Outline of the talk

(I)

- *1. Rydberg chains: Experiments and models*
- *2. Rydberg ladder with staggered detuning*
- *3. Order-by-disorder: an Ising transition*

(II)

- *4. A constrained bosonic model with subsystem symmetry*
- *5. Gapped and gapless phases of the model*
- *6. Critical point: emergent Ashin-Teller universality*

Rydberg systems: Chains and arrays

Rydberg atom arrays

System of ⁸⁷Rb atoms controllably coupled to their Rydberg excited state.

The van dar Walls interaction between two atoms in their excited (Rydberg) states is denoted by V and is a tunable parameter.

One can vary the detuning parameter Δ *which allows one to preferentially put the atom in a Rydberg or ground state*

 $\delta \sim 2\pi \times 560 \,\mathrm{MHz}$ Ω_B, Ω_R $\langle 2\pi \times 60, 36 \text{ MHz} \rangle$ $\Omega = \Omega_B \Omega_R / (2\delta) \sim 2\pi \times 2 \,\text{MHz}.$ $|g\rangle = |5S_{1/2}, F = 2, m_F = -2\rangle$ $|r\rangle = |71S_{1/2}, J = 1/2, m_J = -1/2\rangle$

Effective low-energy description

$$
\frac{\mathcal{H}}{\hbar} = \sum_{i} \frac{\Omega_i}{2} \sigma_x^i - \sum_{i} \Delta_i n_i + \sum_{i < j} V_{ij} n_i n_j,
$$

n= (1+s**^z)/2 Vij= V0 /|rij| 6**

V0 can be tuned so that Rydberg excitations in neighbouring sites are forbidden.

H. Bernien at al. Nature 2017

H. Bernien at al. Nature 2017

These states are separated by an Ising transition

Similar to the transition found in tilted optical lattice

S. Sachdev et al, PRB 66, 075128 (2002).

Mapping to a constrained model

$$
\frac{\mathcal{H}}{\hbar} = \sum_{i} \frac{\Omega_i}{2} \sigma_x^i - \sum_{i} \Delta_i n_i + \sum_{i < j} V_{ij} n_i n_j,
$$

Two states per site: Natural spin ½ representation

Rydberg blockade on neighboring sites: $V_{i,i+1}$ >> Δ , Ω >> $V_{i,i+2}$

 $\sigma_{\ell}^{z} = 2n_{\ell} - 1, \quad \sigma_{\ell}^{x(y)} = (i)(d_{\ell} + (-)d_{\ell}^{\dagger}).$

 $P_{\ell} = (1 - \sigma_{\ell}^{z})/2$

A up-spin (Rydberg excitation) can be created on a site if and only if there are no up-spins (excitations) on the neighboring sites

$$
\frac{\mathcal{H}}{\hbar} = \sum_{i} \frac{\Omega_i}{2} \sigma_x^i - \sum_{i} \Delta_i n_i + \sum_{i < j} V_{ij} n_i n_j,
$$

$$
H_{\text{spin}} = -w \sum_{\ell} P_{\ell-1} \sigma_{\ell}^{x} P_{\ell+1} + \lambda/2 \sum_{\ell} \sigma_{\ell}^{z}
$$

$$
= \sum_{\ell} (-w \tilde{\sigma}_{\ell}^{x} + \lambda/2 \sigma_{\ell}^{z})
$$

Rydberg Ladders

$$
H = \sum_{j=1}^{2L} \sum_{\ell=1}^{2} \left(w \sigma_{j,\ell}^{x} - \frac{1}{2} [\Delta(-1)^{j} + \lambda] \sigma_{j,\ell}^{z} \right) + \sum_{\mathbf{r} \neq \mathbf{r}'} V_{\mathbf{r} \mathbf{r}'} \hat{n}_{\mathbf{r}} \hat{n}_{\mathbf{r}'},
$$

Two-leg Rydberg ladder Add a site-dependent detuning having a staggered component

$$
H_a = \sum_{\mathbf{r}, \mathbf{r}'} V_0 \hat{n}_{\mathbf{r}} \hat{n}_{\mathbf{r}'} \delta_{|\mathbf{r} - \mathbf{r}'| - 1},
$$

\n
$$
H_b = \sum_{j=1}^{2L} \sum_{\ell=1}^{2} \left(w \sigma_{j,\ell}^x - \frac{1}{2} [\Delta(-1)^j - \lambda] \sigma_{j,\ell}^z \right) + \frac{V_0}{2} \sum_{\mathbf{r} \mathbf{r}'} \frac{n_{\mathbf{r}} \hat{n}_{\mathbf{r}'}}{|\mathbf{r} - \mathbf{r}'|^6} (1 - \delta_{|\mathbf{r} - \mathbf{r}'| - 1}).
$$

Work with an effective low-energy Hamiltonian (where Ha=0) where there are no nearest-neighbor Rydberg excitations

$$
H_{\text{eff}}^{V} = \sum_{j=1}^{2L} \sum_{\ell=1}^{2} w \tilde{\sigma}_{j,\ell}^{x} - \sum_{j=1}^{2L} \sum_{\ell=1}^{2} \frac{1}{2} [\Delta(-1)^{j} + \lambda] \sigma_{j,\ell}^{z} + \frac{V_{0}}{2} \sum_{\mathbf{r} \mathbf{r}'} \frac{n_{\mathbf{r}} \hat{n}_{\mathbf{r}'}}{|\mathbf{r} - \mathbf{r}'|^{6}} (1 - \delta_{|\mathbf{r} - \mathbf{r}'|-1}),
$$

$$
\tilde{\sigma}_{j,\ell}^{x} = P_{j-1,\ell} \left(\prod_{\ell' \neq \ell} P_{j\ell'} \sigma_{j,\ell}^{x} \right) P_{j+1,\ell},
$$

Effective Hamiltonian for the ladder where the second nearest-neighbor interaction are small

 $V_0 \gg \lambda, \Delta \gg w \gg V_0/(\sqrt{2})^6,$

 $H_{\text{eff}} = \sum_{i=1}^{2L} \sum_{\ell=1}^{2} w \tilde{\sigma}_{j,\ell}^{x} - \frac{1}{2} \sum_{i=1}^{2L} \sum_{\ell=1}^{2} [\Delta(-1)^{j} + \lambda] \sigma_{j,\ell}^{z}.$

D. Bluvestein et al., Science (2021)

Ground state phase diagram of the ladder

In the classical limit the energy of creating a Rydberg excitation on an even (odd) site is

$$
E_{\text{even}}/\Delta = -(\lambda/\Delta + 1)/2
$$

$$
E_{\text{odd}}/\Delta = -(\lambda/\Delta - 1)/2
$$

For $-1 < \lambda / \Delta < 1$, the ground state has a Rydberg excited atom on one out the two even *sites of the ladder.*

Macroscopic ground state degeneracy D= 2(L) for chain length 2L

Order-by-disorder mechanism to determine the ground state

An Ising transition

 0.30

 0.25

 0.20

 0.100

0.095

0.090

0.31

0.31

 $N = 28$ $\bullet N = 32$

 $N = 36$

 $\bullet N =$ 0.32

 (c)

Unique ground state superposition of many Fock states with Rydberg excitations randomly distributed over both ladders *Two fold degenerate ground state (which breaks Z2 symmetry) where all Rydberg excitations occur on any one of the ladders*

 (b)

1.0

 (a)

 $\,0.35\,$

0.34

0.33

an^{na}l

 λ

0.30

0.25

 0.20

 -1.0

 0.100

0.095

0.090

 -0.5

 (d)

 0.0

 $(\lambda - \lambda_c)N$

0.5

 \geq

 $\Delta E)$

 $N^{0.75}$

is stabilized via an order-by-disorder mechanism

Perturbative parameter
$$
w \ll \lambda
$$
, Δ , $|\lambda - \Delta|$
 $H_{eff} = H_0 + H_1$ $H_1 = w \sum_{j,=1}^{2L} \sum_{\ell=1}^{2} \tilde{\sigma}_{j,\ell}^x$

Design a canonical transformation to obtain effective low energy Hamiltonian

 $H' = \exp[iS']H_{\text{eff}} \exp[-iS'] = H_0 + H_1 + [iS', H_0 + H_1] + \frac{1}{2}[iS', [iS', H_0]] + \dots,$

Eliminate all processes that takes one out of the low-energy manifold to first order in w/λ

$$
[iS', H_0] = -H_1 \qquad S' = -w \sum_{j=1}^{2L} \sum_{\ell=1}^{2} (\Delta (-1)^j + \lambda)^{-1} \tilde{\sigma}_{j,\ell}^y.
$$

 \mathbf{r}

With this choice, the effective Hamiltonian is

$$
H' = \frac{-w^2}{\Delta - \lambda} \sum_{j=1}^{L} \Big[\sum_{\ell=1}^{2} P_{2j,\ell} P_{2j+2,\ell} + \frac{\alpha_0}{2} \sum_{\ell,\ell'=1,2;\ell\neq\ell'} P_{2j,\ell'} (\sigma_{2j,\ell}^{x} \sigma_{2j,\ell'}^{x} + \sigma_{2j,\ell}^{y} \sigma_{2j,\ell'}^{y}) \Big] \qquad \alpha_0 = (\Delta - \lambda) / (\Delta + \lambda)
$$

The ground state degeneracy is lifted by quantum fluctuations.

There are two important virtual processes

The first term prefers Rydberg excitations on one of the ladders and hence leads to Z2 symmetry broken ground state.

The second term prefers states having superposition of Rydberg excitations on both ladders

Example of an Ising transition stabilized purely by an order-by-disorder mechanism.

Effective Ising model

 $P_{2j,1(2)} = (1 - (+)s_{2j}^z)/2.$

In this space of states, the projection operators can be written in terms of Ising variables s^j z

Define pseudospin states

on even sites of the ladder

The terms in the Hamiltonian maps to

 (1) (2) $\sum_{j=1}^L \sum_{\ell=1}^2 p_{2j,\ell} P_{2j+2,\ell} \quad \to \quad \frac{1}{2} \sum_{j=1}^L s_{2j}^z s_{2j+2}^z \, \cdot \qquad \quad \frac{1}{2} \sum_{i=1}^L \sum_{\ell,\ell'=1,2; \ell \neq \ell'} P_{2j,\ell'}(\sigma_{2j,\ell}^x \sigma_{2j,\ell'}^x + \sigma_{2j,\ell}^y \sigma_{2j,\ell'}^y) \quad \to \quad \sum_{i=1}^L s_{2j}^x \, .$

This leads to an effective Ising model

$$
H_{\text{eff}}^{I} = \frac{-w^2}{\Delta - \lambda} \sum_{j=1}^{L} \left(\frac{1}{2} s_{2j}^{z} s_{2j+2}^{z} + \alpha_0 s_{2j}^{x} \right)
$$

One can simply read off the critical point to be at

$$
\alpha_0 = (\Delta - \lambda)/(\Delta + \lambda) = 1/2 \quad \longrightarrow \quad \lambda_c = \Delta/3.
$$

Emergent Ashkin-Teller universality

A constrained spin or boson hopping model

Ring-exchange Hamiltonian with additional constraint of not having nearest-neighbor up-spins/bosons.

H₀
 $\left| \begin{array}{c} H_0 \\ \right| \equiv 1 \end{array}$

Can be expressed in terms of a simple boson or spin model

$$
2b_{j_x,j_y}^{\dagger}b_{j_x,j_y} - 1 = \sigma_{j_x,j_y}^z
$$

$$
b_{j_x,j_y}^{\dagger} = \sigma_{j_x,j_y}^+
$$

Mapping

$$
\left(1+\sigma_{j_x,j_y}^z\right)\left(1+\sigma_{j_x\pm1,j_y}^z\right) = \left(1+\sigma_{j_x,j_y}^z\right)\left(1+\sigma_{j_x,j_y\pm1}^z\right)
$$

Constraint

$$
H = J \sum_{j_x, j_y} \left(\sigma_{j_x, j_y}^+ \sigma_{j_x+1, j_y+1}^+ \sigma_{j_x+1, j_y}^- \sigma_{j_x, j_y+1}^- + \text{h.c.} \right)
$$

Hamiltonian

$$
S_{\text{tot}}^z = \sum_{j_x, j_y} \sigma_{j_x, j_y}^z.
$$

$$
D_x = \sum_{j_x, j_y} j_x \sigma_{j_x, j_y}^z, \qquad D_y = \sum_{j_x, j_y} j_y \sigma_{j_x, j_y}^z.
$$

The model has conserved boson number and dipole moments and is an example of a 2D model showing strong Hilbert space fragmentation.

The model has subsystem symmetry: any state in a given fragment conserves total boson number on all vertical and horizonal lines of a square lattice.

SciPost Phys. 14, 146 (2023)

 $= 0$

1D arrays of bosons

States of the model on 1D array of bosons

Boson numbers on all vertical and horizontal connected links are unity and are conserved

Modify the Hamiltonian to introduce an on-site competing term

Define

Define states:
$$
|\ell_j\rangle = b_j^{\dagger} b_{j+d_l}^{\dagger} |0_j; 0_{j+d_l}\rangle \text{ and } |t_j\rangle = b_j^{\dagger} b_{j+d_t}^{\dagger} |0_j; 0_{j+d_t}\rangle
$$

\n
$$
H_0 = -w \sum_j (|t_j\rangle \langle \ell_j| + \text{h.c.})
$$

\n
$$
\hat{n}_j \hat{n}_{j+n} = 0
$$

\n
$$
H_1 = \lambda \sum_j (|\ell_j\rangle \langle \ell_j| - |t_j\rangle \langle t_j|),
$$

\n**On-site terms**

\n
$$
n_0 = \sum_{j \in q} n_j, \text{ is conserved and equals unity on all connected links}
$$

\n**Subsystem symmetry**

Constraint:

Main result

Large positive λ λ /w >> 1

xj

Schematic gapped ground state

Typical state in the ground state manifold The ground state is a superposition of such states and breaks Z² symmetry

Effective PXP model with multi-spin interaction

$$
\begin{array}{c}\n\mathbf{x}_{j} \\
\hline\n\mathbf{x}_{j}\n\end{array}\n\longrightarrow\n\begin{array}{c}\n\mathbf{x}_{j} \\
\mathbf{H}_{s} = \sum_{j} [-wP_{x_{j}-1}\tau_{x_{j}}^{x}P_{x_{j}+1} + \frac{\lambda}{2}(\tau_{x_{j}}^{z} - P_{x_{j}-1}P_{x_{j}}P_{x_{j}+1})]\n\end{array}
$$

Large negative λ

Schematic ground state

The ground state is unique and gapped.

The first excited state corresponds to flipping bosons on a single plaquette.

Flipping the bosons on the edge plaquette has an energy cost of 2| λ *| while that at the bulk has 3|*l*|. This leads to two edge states.*

Standard area law entanglement for the ground state

Large positive λ

Flip all bosons from longitudinal to transverse diagonals preserving subsystem symmetry and total boson number.

This leaves out a single boson on one of the plaquettes.

These states can be labelled by position of the lone boson: $|j_0$ >

The ground state is manifold is formed by O(N^p) degenerate states.

> *This degeneracy of the ground state manifold is lifted by quantum fluctuations originating from H⁰ .*

Large positive λ

For arrays with large positive λ *and PBC the energy dispersion in the thermodynamic limit*

Phase with two-fold degenerate ground state manifold. States at k and p*-k have same energy.*

This leads to a Z² symmetry broken gapless ground state with logarithmic entanglement

In an open chain, a similar two-fold degeneracy occurs due to reflection symmetry R about an axis as shown: R is the only global symmetry that can be spontaneously broken.

$$
E(k) = -\frac{2w^2}{3\lambda}\cos 2k + O(w^4/\lambda^3)
$$

Higher order perturbative terms connecting states within the ground state manifold do not break this degeneracy.

Quantum Phase transition (Finite size scaling on open chain using ED)

Finite sized scaling yields the following exponents consistent with Ashkin-Teller universality

to be described by a c=1 orbifold CFT.

The critical theory is expected to have Z² X Z² symmetry and

z=1 n**=1.56… +(-) 0.001… c=1 +(-) 0.05..**

Gap scaling

 $\Delta = N_p^{-z} f(N_p^{1/\nu} (\lambda - \lambda_c)),$

Central charge of the CFT

$$
S_{l_p} = (c/6) \ln[(N_p/\pi) \sin(\pi l_p/N_p)]
$$

Additional emergent Z² symmetry

The large positive λ *phase has a Z₂ symmetry since the momenta k and* π *-k are degenerate*

The invariance of Φ *under k* $\rightarrow \pi$ *-k implies that the low energy effective theory must be invariant under* $\varphi_{1(2)} \rightarrow \varphi_{2(1)}$

Both the fields condense if $c_2 + 4c_3 < 0$ *and* $c_3 < 0$ *or c2<0, c3>0 .*

The relative phase between the fields is pinned to two values providing an extra Z² symmetry (0 or π *if c₃ < 0 and* π */2 and 3* π */2 if* c_3 *>0).*

This predicts three (two amplitude and one relative phase) gapless modes at the critical point.

This leads to an additional emergent Z² symmetry of the low-energy effective action describing the transition leading to a Z² X Z² symmetry at the critical point

The critical theory needs to be described in terms of fluctuations around $k₀$ *and* π *-* $k₀$

$$
\Phi(x,t) = e^{ik_0x}\varphi_1(x,t) + e^{i(\pi - k_0)x}\varphi_2(x,t)
$$

The simplest two-field L-G action consistent with this symmetry.

$$
\mathcal{L} = \sum_{\alpha=1,2} (|\partial_{\mu}\varphi_{\alpha}|^{2} + r|\varphi_{\alpha})|^{2}) + c_{1}(|\varphi_{1}|^{4} + |\varphi_{2}|^{4}) + c_{2}|\varphi_{1}|^{2}|\varphi_{2}|^{2} + c_{3}(\varphi_{1}^{*}\varphi_{2} + h.c.)^{2},
$$

Relation to the PXP model

Map boson configurations to spins living on the center of the plaquette

The subsystem symmetry ensures that two up-spins can not live on neighboring sites

$$
H_s = \sum_{j} [-wP_{x_j-1}\tau_{x_j}^x P_{x_j+1} + \frac{\lambda}{2}(\tau_{x_j}^z - P_{x_j-1}P_{x_j}P_{x_j+1})]
$$

\n
$$
P_{x_j} = (1 - \tau_{x_j}^z)/2.
$$

\n
$$
\tau_{x_j}^z = (|t_j\rangle\langle\ell_j| + \text{h.c.})
$$

\n
$$
\tau_{x_j}^z = |t_j\rangle\langle t_j| - |\ell_j\rangle\langle\ell_j|
$$

\n*Effective PXP model with multi-spin interaction with multi-spin interaction*
\n
$$
P_{x_j} = (1 - \tau_{x_j}^z)/2.
$$

The spin model is PXP type as seen in Rydberg atoms Extra ingredient: One may have unflippable down spins

A down spin may be flipped if it is flanked by two neighboring down spins. The on-site term of the boson Hamiltonian only counts the flippable down spins

Role of next-nearest neighbor interaction

Choose V^{o =2 for w=0.1 and keep} *the further-neighbor interactions*

Low-energy spectrum for w=0

Numerical studies suggest that the effect of further-neighbor interaction is to shift the transition position.

Finite-size diagonalization studies indicate an Ising transition at $\lambda_c = 1.12$ *for w=0.1*

Multi-leg ladder

For the 3 leg ladder, we assume PBC along both the transverse and the longitudinal directions.

The maximal number of Rydberg excitations on even rungs leads to an excitation density n=1/(2l⁰)=1/6

$$
\lambda_c = \Delta(\ell_0 - 1)/(\ell_0 + 1).
$$

The higher ^l *phase breaks Z^l symmetry. For l=3 The transition belongs to 3 state Potts universality class: z=1, v=5/6, and* η *= 4/15.*

Realization of a class of critical points stabilized by order-by-disorder mechanism