UNIVERSITÄT WÜRZBURG Emergent Majorana and Dirac fermions in spin and electronic systems

Fakher Assaad. Fractionalization and Emergent Gauge Fields in Quantum Matter (ICTP 4-8 – 14 December 2023)

Organization

- Fermion quantum Monte Carlo
 - > Numerical simulations of models of RuCl₃
 - > Deconfined quantum criticality in a two-dimensional Su-Schrieffer-Heeger model
 - Conclusions

SFB1170 ToCoTronics

Center of excellence – complexity and topology in quantum matter

W I H R к О

UNIVERSITÄT WÜRZBURG Emergent Majorana and Dirac fermions in spin and electronic systems

Fakher Assaad. Fractionalization and Emergent Gauge Fields in Quantum Matter (ICTP 4-8 – 14 December 2023)

Many thanks to

T. Sato (IFW Dresden) K. Modic (ISTA Vienna)

B. Ramshaw (Cornell University)

A. Götz (Würzburg) M. Hohenadler (Münich)

Quantum Monte Carlo for fermions

$$\begin{aligned} & \left\{ \begin{array}{c} Z = \mathrm{Tr} e^{-\beta \hat{H}} = \int D\left\{\Phi(i,\tau)\right\} e^{-S\left\{\Phi(i,\tau)\right\}} \\ & \bullet \\ \Phi(\pmb{x},\tau) : \text{ Hubbard-Stratonovich} \\ & \text{(or arbitrary field with} \\ & \text{predefined dynamics)} \end{array} \right. \\ & \begin{array}{c} \mathrm{Multidimensional\ integral} \\ \Rightarrow \mathrm{Monte\ Carlo} \end{array} \\ & \begin{array}{c} \mathrm{One\ body\ problem\ in\ external field\ } \\ \Rightarrow \mathrm{Polynomial\ complexity} \end{aligned}$$

.....

R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24 (1981), 2278 J. E. Hirsch, Phys. Rev. B 31 (1985), 4403 White, D. Scalapino, R. Sugar, E. Loh, J. Gubernatis, and R. Scalettar, Phys. Rev. B 40 (1989), 506

Quantum Monte Carlo for fermions

Example

$$\text{Let} \quad \hat{H} = \hat{H}_0 - \lambda \sum_n \left(\hat{\boldsymbol{c}}^{\dagger} O^{(n)} \hat{\boldsymbol{c}} \right)^2 \qquad \text{with} \qquad O^{(n)} = O^{(n),\dagger} \quad \text{and} \quad \left\{ \hat{c}_x^{\dagger}, \hat{c}_y \right\} = \delta_{x,y}$$

$$e^{-S(\Phi(n,\tau))} = e^{-\sum_{n,\tau} \Phi^2(n,\tau)/2} \operatorname{Tr} \prod_{\tau=1}^{L_{\tau}} \left(e^{-\Delta \tau \hat{H}_0} \prod_n e^{\sqrt{2\Delta \tau \lambda} \Phi(n,\tau) \hat{\boldsymbol{c}}^{\dagger} O^{(n)} \hat{\boldsymbol{c}}} \right) = e^{-\sum_{n,\tau} \Phi^2(n,\tau)/2 + \log \det M(\Phi)} L_{\tau} \Delta \tau = \beta$$

Quantum Monte Carlo for fermions

Issues

$$\text{Let} \quad \hat{H} = \hat{H}_0 - \lambda \sum_n \left(\hat{\boldsymbol{c}}^{\dagger} O^{(n)} \hat{\boldsymbol{c}} \right)^2 \qquad \text{with} \qquad O^{(n)} = O^{(n),\dagger} \quad \text{and} \quad \left\{ \hat{c}_x^{\dagger}, \hat{c}_y \right\} = \delta_{x,y}$$

$$e^{-S(\Phi(n,\tau))} = e^{-\sum_{n,\tau} \Phi^2(n,\tau)/2} \operatorname{Tr} \prod_{\tau=1}^{L_{\tau}} \left(e^{-\Delta \tau \hat{H}_0} \prod_n e^{\sqrt{2\Delta \tau \lambda} \Phi(n,\tau) \hat{\boldsymbol{c}}^{\dagger} O^{(n)} \hat{\boldsymbol{c}}} \right) = e^{-\sum_{n,\tau} \Phi^2(n,\tau)/2 + \log \det M(\Phi)} L_{\tau} \Delta \tau = \beta$$

$$\succ S(\Phi) \quad \text{is complex} \quad \Rightarrow \quad \langle \operatorname{sign} \rangle = \frac{\int D\left\{\Phi\right\} e^{-S\left\{\Phi\right\}}}{\int D\left\{\Phi\right\} \left|e^{-S\left\{\Phi\right\}}\right|} \propto e^{-\alpha\beta V} \quad \text{Computational cost} \quad e^{2\alpha\beta V} \quad \Rightarrow \quad \text{Minimize} \quad \alpha$$

> Long auto-correlations times

Algorithms for Lattice fermions @ http://alf.physik.uni-wuerzburg.de/

ALF 1.0: SciPost Phys. 3 (2017), 013 ALF 2.0 SciPost Phys. Codebases 1 (2022)

Kinetic Potential (sum of perfect squares) $\hat{H} = \sum_{k=1}^{M_T} \sum_{\sigma=1}^{N_{\rm col}} \sum_{s=1}^{N_{\rm fl}} \sum_{x,y}^{N_{\rm dim}} \hat{c}_{x\sigma s}^{\dagger} T_{xy}^{(ks)} \hat{c}_{y\sigma s} + \sum_{k=1}^{M_V} U_k \left\{ \sum_{\sigma=1}^{N_{\rm col}} \sum_{s=1}^{N_{\rm fl}} \left[\left(\sum_{x,y}^{N_{\rm dim}} \hat{c}_{x\sigma s}^{\dagger} V_{xy}^{(ks)} \hat{c}_{y\sigma s} \right) + \alpha_{ks} \right] \right\}^2$

Coupling of fermions to bosonic fields with predefined dynamics

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

 $+\sum_{k=1}^{M_{I}} \hat{Z}_{k} \left(\sum_{\sigma=1}^{N_{\text{col}}} \sum_{s=1}^{N_{\text{fl}}} \sum_{x,y}^{N_{\text{dim}}} \hat{c}_{x\sigma s}^{\dagger} I_{xy}^{(ks)} \hat{c}_{y\sigma s} \right) + \hat{H}_{\text{Ising}}$

- $SU(N_{col})$ symmetric in colors N_{col} \geq
- Arbitrary Bravais lattice for d=1,2 \succ
- Model can be specified at minimal programming cost \succ
- Fortran 2003 standard
- **MPI** implementation
- Global and local moves, Parallel tempering, Langevin
- Projective and finite T approaches >
- pyALF: easy access python interface
- Predefined models

J. S.E. Portela J. Schwab

und Informationssysteme (LIS)

Wissenschaftliche

Literaturversorgungs

E. Huffman A. Götz

F. Parisen Toldin

PHYSICAL REVIEW B 104, L081106 (2021)

Letter

Quantum Monte Carlo simulation of generalized Kitaev models

Toshihiro Sato¹ and Fakher F. Assaad^{1,2} ¹Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany ²Würzburg-Dresden Cluster of Excellence ct.qmat, Am Hubland, 97074 Würzburg, Germany

T. Sato

Scale-invariant magnetic anisotropy in α -RuCl₃: A quantum Monte Carlo study

Toshihiro Sato,^{1,2} B. J. Ramshaw,^{3,4} K. A. Modic,⁵ and Fakher F. Assaad^{1,6}

arXiv:2312.03080v1

K. Modic B. Ramshaw

$$K = A\sin(\varphi), \ J = A\cos(\varphi), \ A = \sqrt{K^2 + J^2}$$

-0.2 0 0.2

 $-0.2 \quad 0 \quad 0.2$

-0.2 0 0.2

Julius-Maximilians-

 $K = A\sin(\varphi), \ J = A\cos(\varphi), \ A = \sqrt{K^2 + J^2}$

$$\sum_{s} \hat{f}_{i,s}^{\dagger} \hat{f}_{i,s} \equiv \hat{n}_i = 1$$

Julius-Maximilians-

WURZBURG

J. Chaloupka, G. Jackeli, and G.Khaliullin Phys. Rev. Lett. 105 (2010), 027204.

 $K = A\sin(\varphi), \ J = A\cos(\varphi), \ A = \sqrt{K^2 + J^2}$

Possible to reach temperatures down to $\beta A\simeq 3$ $A\simeq 10 meV\simeq 100 K$

→ Experimentally relevant energy scales are accessible

J. Chaloupka, G. Jackeli, and G.Khaliullin Phys. Rev. Lett. 105 (2010), 027204.

Julius-Maximilians-

IINIVFRSITÄT

WÜRZBURG

ARTICLES https://doi.org/10.1038/s41567-020-1028-0

Scale-invariant magnetic anisotropy in $RuCl_3$ at high magnetic fields

K. A. Modic ^{©12¹²}, Ross D. McDonald ^{©3}, J. P. C. Ruff⁴, Maja D. Bachmann²³, You La^{124,2}, Johana C. Palmstrom³, David Graf^{©3}, Mun K. Chan^{©3}, F. F. Balakirev^{©3}, J. B. Betts³, G. S. Boebinger^{4,2}, Marcus Schmidt², Michael J. Lawler⁴, D. A. Sokolov^{©3}, Philip J. W. Moll^{©22}, B. J. Ramshaw^{®4} and Arkady Shekhter^{©3}

nature physics

Check for updates

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

$$\hat{H}_{XXZ} = \sum_{\langle \boldsymbol{i}, \boldsymbol{j} \rangle} J \left[\hat{S}_{\boldsymbol{i}}^{x} \cdot \hat{S}_{\boldsymbol{j}}^{x} + \hat{S}_{\boldsymbol{i}}^{y} \cdot \hat{S}_{\boldsymbol{j}}^{y} \right] + \left[J + J_{z} \right] \hat{S}_{\boldsymbol{i}}^{z} \hat{S}_{\boldsymbol{j}}^{z}$$

Low temperature magnetic anisotropy is that of a renormalized local magnetic moment

Emergent low-lying particles have small contribution to magnetic anisotropy

Julius-Maximilians-

WÜRZBURG

Next steps? Debye temperature ~ 200K Magnetic energy scale ~ 100K

$$\hat{H} = \sum_{b=[i\in A,\delta]} \frac{\hat{P}_b^2}{2m} + \frac{k}{2}\hat{Q}_b + 2K(1+\hat{Q}_b)\hat{S}_i^{\delta}\hat{S}_{i+\delta}^{\delta} + J(1+\hat{Q}_b)\boldsymbol{S}_i \cdot \boldsymbol{S}_{i+\delta} \qquad \omega_0 = \sqrt{\frac{k}{m}}, \ \lambda = \frac{1}{2k}$$

32 sites lattice.

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

$$\omega_0 = 0.5, \lambda = 0.0, J = 0, K = 1, \beta K = 1$$

 = 0.33(1)

$$\omega_0 = 0.5, \lambda = 0.1, J = 0, K = 1, \beta K = 1$$
 = 0.30(1)

Coupling to phonons does not lead to more severe sign problem!

UNIVERSITÄT WÜRZBURG Emergent Majorana and Dirac fermions in spin and electronic systems

Fakher Assaad. Fractionalization and Emergent Gauge Fields in Quantum Matter (ICTP 4-8 – 14 December 2023)

Organization

- Fermion quantum Monte Carlo
 - > Numerical simulations of models of RuCl₃
 - > Deconfined quantum criticality in a two-dimensional Su-Schrieffer-Heeger model
 - Conclusions

SFB1170 ToCoTronics

Center of excellence – complexity and topology in quantum matter

UNIVERSITÄT Emergent Majorana and Dirac fermions in spin and electronic systems

Fakher Assaad. Fractionalization and Err

Julius-Maximilians-

WÜRZBURG

– 14 December 2023)

Phases and Exotic of a Two-Dimensional Su-

Anika Götz,¹ Martin Hohenadl

arXiv:2307.07613v1

$$\hat{H} = \sum_{\langle i,j \rangle} \left(-t + g \hat{X}_{\langle i,j \rangle} \right) \sum_{\sigma=1}^{N} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \text{h.c.} \right) + \sum_{\langle i,j \rangle} \left[\frac{\hat{P}_{\langle i,j \rangle}^2}{2m} + \frac{k}{2} \hat{X}_{\langle i,j \rangle}^2 \right]$$

$$\omega_{0} = \sqrt{\frac{k}{m}} \qquad \left[\hat{X}_{b}, \hat{P}_{b'}\right] = i\hbar \,\delta_{b,b'}$$

$$\hat{c}_{i,\sigma}^{\dagger}$$

$$\hat{X}_{b}$$

Symmetries

$$\hat{H} = \sum_{\langle i,j \rangle} \left(-t + g \hat{X}_{\langle i,j \rangle} \right) \sum_{\sigma=1}^{N} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \text{h.c.} \right) + \sum_{\langle i,j \rangle} \left[\frac{\hat{P}_{\langle i,j \rangle}^2}{2m} + \frac{k}{2} \hat{X}_{\langle i,j \rangle}^2 \right]$$

$$\omega_{0} = \sqrt{\frac{k}{m}} \qquad \left[\hat{X}_{b}, \hat{P}_{b'}\right] = i\hbar \,\delta_{b,b'} \qquad \hat{c}_{i,\sigma}^{\dagger} = \frac{1}{2} \left(\hat{\gamma}_{i,\sigma,1} - i\hat{\gamma}_{i,\sigma,2}\right) \text{ for } i \in A \qquad \hat{c}_{i,\sigma}^{\dagger} = \frac{i}{2} \left(\hat{\gamma}_{i,\sigma,1} - i\hat{\gamma}_{i,\sigma,2}\right) \text{ for } i \in B$$

Symmetries

$$\hat{H} = \sum_{\langle i,j \rangle} \left(-t + g \hat{X}_{\langle i,j \rangle} \right) \sum_{\sigma=1}^{N} \sum_{n=1}^{2} \frac{i}{2} \, \hat{\gamma}_{i,\sigma,n} \hat{\gamma}_{j,\sigma,n} + \sum_{\langle i,j \rangle} \left[\frac{\hat{P}_{\langle i,j \rangle}^{2}}{2m} + \frac{k}{2} \hat{X}_{\langle i,j \rangle}^{2} \right]$$

 $\hat{c}_{i,\sigma}^{\dagger} = \frac{1}{2} \left(\hat{\gamma}_{i,\sigma,1} - i\hat{\gamma}_{i,\sigma,2} \right) \text{ for } i \in A \qquad \hat{c}_{i,\sigma}^{\dagger} = \frac{i}{2} \left(\hat{\gamma}_{i,\sigma,1} - i\hat{\gamma}_{i,\sigma,2} \right) \text{ for } i \in B$ $\omega_0 = \sqrt{rac{k}{m}} \qquad \left[\hat{X}_b, \hat{P}_{b'}
ight] = i\hbar \; \delta_{b,b'}$ $\hat{\boldsymbol{\gamma}}_{\boldsymbol{i}}
ightarrow O \hat{\boldsymbol{\gamma}}_{\boldsymbol{i}}$ O(2N) $\hat{c}_{i,\sigma}^{\mathsf{T}}$ Symmetry $- \hat{X}_b$ $O(4) = SU(2) \times SU(2) \times \mathbb{Z}_2$ For N=2 $\hat{oldsymbol{S}} = rac{1}{2}\sum_{i}oldsymbol{c}_{i}^{\dagger}oldsymbol{\sigma}oldsymbol{c}_{i}$ $\hat{\boldsymbol{\eta}} = \hat{P}^{-1} \hat{\boldsymbol{S}} \hat{P}$ $\hat{P}^{-1}\hat{c}_{i,\sigma}\hat{P} = (-1)^i\hat{c}^{\dagger}_{i,\sigma}\delta_{\sigma,\uparrow} + \hat{c}_{i,\sigma}\delta_{i,\downarrow}$ Parity AFM CDW/SC

 $(-1)^{\hat{n}_i^c} = \hat{\gamma}_{i,1} \hat{\gamma}_{i,2} \hat{\gamma}_{i,3} \hat{\gamma}_{i,4} \to \det(O) \,\hat{\gamma}_{i,1} \hat{\gamma}_{i,2} \hat{\gamma}_{i,3} \hat{\gamma}_{i,4}$

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

t = 0 The two-dimensional SSH model

Symmetries

$$\hat{H} = \frac{g}{\sqrt{2m\omega_0}} \sum_{\langle i,j \rangle} \left(\hat{a}^{\dagger}_{\langle i,j \rangle} + \hat{a}_{\langle i,j \rangle} \right) \sum_{\sigma=1}^{N} \left(\hat{c}^{\dagger}_{i,\sigma} \hat{c}_{j,\sigma} + \text{h.c.} \right) + \sum_{\langle i,j \rangle} \omega_0 \left(\hat{a}^{\dagger}_{\langle i,j \rangle} \hat{a}_{\langle i,j \rangle} + \frac{1}{2} \right) \qquad \hat{a}^{\dagger}_{\langle i,j \rangle} = \frac{\omega_0 m \hat{X}_{\langle i,j \rangle} - i \hat{P}_{\langle i,j \rangle}}{\sqrt{2\omega_0 m}}$$

$$\omega_{0} = \sqrt{\frac{k}{m}} \qquad \left[\hat{X}_{b}, \hat{P}_{b'}\right] = i\hbar \,\delta_{b,b'}$$

$$(1)$$

$$\sum_{i=1}^{k} \hat{C}_{i,\sigma}^{\dagger}$$

$$\hat{C}_{i,\sigma}^{\dagger}$$

$$\hat{C}_{i,\sigma}^{\dagger}$$

$$\hat{C}_{i,\sigma}^{\dagger}$$

$$\hat{X}_{b}$$

$$\left[\hat{Q}_{i}, \hat{H}\right] = 0$$

$$\hat{Q}_{i}^{2} = 1$$

$$\sum_{\sigma} \hat{C}_{i,\sigma}^{\dagger} \hat{C}_{i,\sigma}$$

$$\left[\hat{Q}_{i}, \hat{H}\right] = 0$$

$$\hat{Q}_{i}^{2} = 1$$

$$\rightarrow \text{Unconstrained} \quad \mathbb{Z}_{2} \text{ lattice gauge theory}$$

Gauge invariant invariant quantities: Spin: $\hat{\boldsymbol{S}}_{\boldsymbol{i}} = \frac{1}{2} \hat{\boldsymbol{c}}_{i}^{\dagger} \boldsymbol{\sigma} \hat{\boldsymbol{c}}_{i}$ Dimer: $\Delta_{b=(\boldsymbol{i},\boldsymbol{j})} = \hat{\boldsymbol{S}}_{\boldsymbol{i}} \cdot \hat{\boldsymbol{S}}_{\boldsymbol{j}}$ Flux: $\prod_{b \in \partial \Box} \hat{X}_{b}$

PHYSICAL REVIEW X 6, 041049 (2016)

Simple Fermionic Model of Deconfined Phases and Phase Transitions

F. F. Assaad¹ and Tarun Grover^{2,3}

S. Gazit, A Vishwanath, M. Randeria, S. Sachdev, C. Wang Nat Phys 13 (2017), PNAS 2018

Quantum Monte Carlo simulations

$$\hat{H} = \sum_{\langle i,j \rangle} \left(-t + g \hat{X}_{\langle i,j \rangle} \right) \sum_{\sigma=1}^{N} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \text{h.c.} \right) + \sum_{\langle i,j \rangle} \left[\frac{\hat{P}_{\langle i,j \rangle}^2}{2m} + \frac{k}{2} \hat{X}_{\langle i,j \rangle}^2 \right]$$

Formulation: Integrate out the phonons

PHYSICAL REVIEW B 98, 201108(R) (2018)

Rapid Communications Editors' Suggestion

Solution of the sign problem for the half-filled Hubbard-Holstein model

Seher Karakuzu,¹ Kazuhiro Seki,^{1,2,3} and Sandro Sorella^{1,2} ¹International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy ²Computational Materials Science Research Team, RIKEN Center for Computational Science (R-CCS), Hyogo 650-0047, Japan ³Computational Condensed Matter Physics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama 351-0198, Japan

Quantum Monte Carlo simulations

$$\hat{H} = \sum_{\langle i,j \rangle} \left(-t + g \hat{X}_{\langle i,j \rangle} \right) \sum_{\sigma=1}^{N} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \text{h.c.} \right) + \sum_{\langle i,j \rangle} \left[\frac{\hat{P}_{\langle i,j \rangle}^2}{2m} + \frac{k}{2} \hat{X}_{\langle i,j \rangle}^2 \right] - \lambda \sum_{\langle i,j \rangle} \left(\sum_{\sigma=1}^{N} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \text{h.c.} \right)^2$$

Formulation: Integrate out the phonons

PHYSICAL REVIEW B 98, 201108(R) (2018)

Rapid Communications Editors' Suggestion

Solution of the sign problem for the half-filled Hubbard-Holstein model

Seher Karakuzu,¹ Kazuhiro Seki,^{1,2,3} and Sandro Sorella^{1,2} ¹International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy ²Computational Materials Science Research Team, RIKEN Center for Computational Science (R-CCS), Hyogo 650-0047, Japan ³Computational Condensed Matter Physics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama 351-0198, Japan

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Quantum Monte Carlo simulations

$$\underbrace{\hat{H} = \sum_{\langle i,j \rangle} \left(-t + g \hat{X}_{\langle i,j \rangle} \right) \sum_{\sigma=1}^{N} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \text{h.c.} \right) + \sum_{\langle i,j \rangle} \left[\frac{\hat{P}_{\langle i,j \rangle}^{2}}{2m} + \frac{k}{2} \hat{X}_{\langle i,j \rangle}^{2} \right] - \lambda \sum_{\langle i,j \rangle} \left(\sum_{\sigma=1}^{N} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \text{h.c.} \right)^{2}}{\hat{K}_{b=\langle i,j \rangle}} \underbrace{\hat{K}_{b=\langle i,j \rangle}}_{\hat{K}_{b=\langle i,j \rangle}}$$

Formulation: Integrating out the phonons

$$\hat{H} = -t\sum_{b}\hat{K}_{b} - \lambda\sum_{b}\left(\hat{K}_{b} - \frac{g}{2\lambda}\hat{X}_{b}\right)^{2} + \sum_{b}\frac{1}{2m}\hat{P}_{b}^{2} + \left(\frac{k}{2} + \frac{g^{2}}{4\lambda}\right)\hat{X}_{b}^{2}$$

For the perfect square use (Gauss-Hermite quadrature)

$$e^{\lambda\Delta\tau\left(\hat{K}_{b}-\frac{g}{2\lambda}\hat{X}_{b}\right)^{2}} = \frac{1}{4}\sum_{l=\pm 1,\pm 2}\gamma(l)e^{\sqrt{\Delta\tau\lambda}\eta(l)\left(\hat{K}_{b}-\frac{g}{2\lambda}\hat{X}_{b}\right)} + \mathcal{O}((\Delta\tau\lambda)^{4})$$

$$\begin{split} \gamma(\pm 1) &= 1 + \sqrt{6}/3, \qquad \eta(\pm 1) = \pm \sqrt{2\left(3 - \sqrt{6}\right)} \\ \gamma(\pm 2) &= 1 - \sqrt{6}/3, \qquad \eta(\pm 2) = \pm \sqrt{2\left(3 + \sqrt{6}\right)} \end{split}$$

Quantum Monte Carlo simulations

$$\hat{H} = -t\sum_{b}\hat{K}_{b} - \lambda\sum_{b}\left(\hat{K}_{b} - \frac{g}{2\lambda}\hat{X}_{b}\right)^{2} + \sum_{b}\frac{1}{2m}\hat{P}_{b}^{2} + \left(\frac{k}{2} + \frac{g^{2}}{4\lambda}\right)\hat{X}_{b}^{2}$$

Formulation: Integrating out the phonons

$$Z = \sum_{l_{b,\tau}} \prod_{b,\tau} \gamma(l_{b,\tau}) \int D\{x_{b,\tau}\} e^{-\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{J}^T(\{l_{b,\tau}\}) \boldsymbol{x}} \operatorname{Tr}_{\mathrm{F}} \prod_{\tau=1}^{L_{\tau}} e^{-\Delta \tau \sum_b \hat{K}_b} e^{-\sqrt{\Delta \tau \lambda} \sum_b \eta(l_{b,\tau}) \hat{K}_b}$$
$$= \frac{(\pi)^{L^2 L_{\tau}}}{\sqrt{\det(A)}} \sum_{l_{b,\tau}} \prod_{b,\tau} \gamma(l_{b,\tau}) e^{\frac{1}{4} \boldsymbol{J}^T(\{l_{b,\tau}\}) \boldsymbol{A}^{-1} \boldsymbol{J}(\{l_{b,\tau}\})} \operatorname{Tr}_{\mathrm{F}} \prod_{\tau=1}^{L_{\tau}} e^{-\Delta \tau \sum_b \hat{K}_b} e^{-\sqrt{\Delta \tau \lambda} \sum_b \eta(l_{b,\tau}) \hat{K}_b}$$

Since A is positive definite, one can explicitly integrate out the phonons, and sample the discrete fields $l_{b, au}$

$$L = 4, \beta = 1, t = 1, k = 2, \omega_0 = 3, \lambda = 0.5$$

A. Götz, M. Hohenadler, and FFA to appear

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Numerical results $k=2,g=2,\lambda=0.5$ $\beta=L$

$$\widehat{H} = \sum_{\langle i,j \rangle} \left(-t + g \hat{X}_{\langle i,j \rangle} \right) \sum_{\sigma=1}^{N} \left(\hat{c}^{\dagger}_{i,\sigma} \hat{c}_{j,\sigma} + \text{h.c.} \right) + \sum_{\langle i,j \rangle} \left[\frac{\hat{P}^{2}_{\langle i,j \rangle}}{2m} + \frac{k}{2} \hat{X}^{2}_{\langle i,j \rangle} \right] - \lambda \sum_{\langle i,j \rangle} \left(\sum_{\sigma=1}^{N} \hat{c}^{\dagger}_{i,\sigma} \hat{c}_{j,\sigma} + \text{h.c.} \right)^{2}$$

$$\stackrel{\left\langle \prod_{\langle i,j \rangle \in \partial \Box} -t + g \hat{X}_{\langle i,j \rangle} \right\rangle}{\left\langle \prod_{i,j \rangle \in \partial \Box} -t + g \hat{X}_{\langle i,j \rangle} \right\rangle}$$
Emergent Dirac fermions
$$\stackrel{\Sigma}{=} \quad \widehat{\mathbb{S}} \quad 3$$

$$\stackrel{\left\langle \prod_{i,j \rangle \in \partial \Box} -t + g \hat{X}_{\langle i,j \rangle} \right\rangle}{\left\langle 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 \\ \end{array}$$

Nu

0.4

t

0.6

0.2

0

0.8

0.6

0.4

0.2

0

1

0.8

0.8

0.6

0.4

0.2

0

Flux

 $k = 2, g = 2, \lambda = 0.5 \qquad \beta = L$ Numerical results

3 3-

3 3.

0

(b)

3 3

0

AFM

0.8

 $k = 2, g = 2, \lambda = 0.5 \qquad \beta = L$ Numerical results

3 3-

3 3.

0

(b)

3 3

AFM

0.8

 $\tilde{\kappa}_0$ 3

Decreasing the value of ω_0^c by increasing λ or adding a Hubbard U-term should drive the DQCP to

a strong first order transition.

DQCP. Fate of DQCP as a function of λ ?

Coupling to phonons

