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II. MODEL AND CLASSICAL PHASES

A. Model

In systems with spin-orbit coupling, magnetic degrees
of freedom are entangled with the orbital orientations
that are tied to the lattice due to crystal fields [8]. Be-
cause of that, Hamiltonians of the low-energy e↵ective
pseudo-spins involve bond-dependent interactions that
obey only discrete symmetries of the underlying lattice,
thus explicitly breaking spin-rotational symmetries [35].

The most general nearest-neighbor spin-orbit-induced
anisotropic-exchange Hamiltonian, applicable to a vari-
ety of systems, can be written as [16]

Ĥ =
X

hiji

S
T
i ĴijSj (1)

where S
T
i = (Sx

i , Sy
i , Sz

i ) and Ĵij is a 3⇥3 exchange ma-
trix that also depends on the bond orientation. Since the
spin-rotational symmetries are, generally, absent, con-
straints on the matrix elements of Ĵij come solely from
the space group symmetry of the lattice.

The e↵ect of these constraints on the Hamiltonian (1)
for the triangular-lattice materials, such as YbMgGaO4

and others, has been thoroughly discussed in Refs. [25,
31, 35, 38, 40]. Here we would like to provide a brief and
intuitive derivation of the main results.

Consider the Hamiltonian (1) on the �1 bond, see
Fig. 1, with the x axis parallel to it
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As can be seen from Fig. 1(a), the symmetries of the
lattice are the C3 rotation around z axis, C2 rotation
around each bond, site inversion symmetry I, and two
translations, T1 and T2 along �1 and �2, respectively [35].
These symmetries eliminate most of the elements of the
exchange matrix. First, the 180� rotation around the �1

bond changes y ! �y and z ! �z, but should leave the
two-site form (2) invariant, leaving us with
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Then, inversion with respect to the bond center, which
is a combination of the site inversion and T1 transla-
tion, and change i $ j should also leave (3) invariant,
allowing only symmetric o↵-diagonal term, Jzy = Jyz.
Renaming it as Jzy = Jz±, and rewriting the diagonal
terms using XXZ-like parametrization Jzz = �J , with
J = (Jxx + Jyy)/2 and J±± = (Jxx � Jyy)/4 yields the
two-site Hamiltonian for �1
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FIG. 1. A sketch of the triangular lattice layer of magnetic
ions (empty circles) embedded in the octahedra of ligands
(black dots) with the primitive vectors. Thick (blue) bonds
are between magnetic ions and ion-ligand bonds are thin
solid/dashed lines for above/below the plane.

For the other bonds, using the C3 invariance with the
z axis to transform (3) to the �↵ bond in Fig. 1, changes

Ĵ1 matrix in (3) to Ĵ↵=R̂
�1
↵ Ĵ1R̂↵ where
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is the rotation matrix, or, explicitly (4)
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where abbreviations are c̃↵=cos '̃↵ and s̃↵=sin '̃↵.
Altogether, the most general Hamiltonian (1) on the

triangular lattice becomes
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where c̃(s̃)↵ = cos(sin)'̃↵ as above, the bond angles '̃↵

are that of the primitive vectors �↵ with the x axis,
'̃↵={0, 2⇡/3,�2⇡/3}, and the spin operators are in crys-
tallographic axes that are tied to the lattice, see Fig. 1.

The Hamiltonian (7) is naturally divided in the
bond-independent XXZ part and the bond-dependent
anisotropic J±± and Jz± terms, also referred to as the
pseudo-dipolar terms [38], which generally break contin-
uous spin-rotational symmetries down to discrete ones.

B. Classical phase diagram

Since there are four parameters in the model (7), its
parameter space is three-dimensional, with the forth de-
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Doping on the Ir site yields a much broader range of
somewhat less interesting solid solutions that generally
show glassy behavior at low temperatures. Non-magnetic
dilution via Ti4+ doping120,121 changes the Curie-Weiss
temperature of Na2IrO3 drastically, whereas similar dop-
ing into ↵-Li2IrO3 has no detectable e↵ect on this param-
eter, and the percolation threshold extends to 50% dop-
ing compared to only 30% for the Na compound. This
may indicate a strong relevance of long-range interactions
in ↵-Li2IrO3 and their marginal role in Na2IrO3.120 The
isoelectronic doping of ↵-Li2IrO3 with rhodium gives rise
to a similar dilution e↵ect, because non-magnetic Rh3+ is
formed, triggering the oxidation of iridium toward Ir5+,
which is also non-magnetic.122

Ru4+ doping is also possible and introduces holes
into the system, but all doped samples remain robust
insulators.123 Similar to the Ti-doped case, glassy behav-
ior is observed at low temperatures.123 Electron doping
was realized by Mg substitution into Na2IrO3, result-
ing in the glassy behavior again.124 This ubiquitous spin
freezing triggered by even low levels of the disorder can
be seen positively as an indication for the strongly frus-
trated nature of both Na2IrO3 and ↵-Li2IrO3. It prob-
ably goes hand in hand with random charge localization
that keeps the materials insulating upon hole or electron
doping.

Another doping strategy is based on the cation
(de)intercalation. Chemical deintercalation facilitates re-
moval of one Na atom out of Na2IrO3 and produces
NaIrO3 that shows mundane temperature-independent
magnetism due to the formation of non-magnetic Ir5+.125

The more interesting intermediate doping levels seem to
be only feasible in electrochemical deintercalation.126,127

Although the battery community pioneered investiga-
tion of the honeycomb iridates64,128 long before the Ki-
taev model became the topic of anyone’s interest, no
low-temperature measurements on partially deinterca-
lated samples were performed as of yet, possibly due to
the small amount of deintercalated materials and their
unavoidable contamination during the electrochemical
treatment.

B. ↵-RuCl3: a proximate spin-liquid material?

Despite the intensive study of the iridates reviewed in
the previous section, a complete picture of the magnetic
excitations has remained elusive due to severe compli-
cations associated with inelastic neutron studies on the
strongly neutron absorbing Ir samples. Raman studies
have been possible on the iridates,129,130 but probe only
k = 0, while RIXS measurements87 still su↵er from lim-
ited resolution. For this reason, there has been signifi-
cant motivation to search for non-Ir based Kitaev-Jackeli-
Khaliullin materials. Following initial investigations in
2014,90 ↵-RuCl3 has now emerged as one of the most
promising and well-studied systems, due to the availabil-
ity of high quality samples, and detailed dynamical stud-

Ru Cl

FIG. 14. Di↵erent views of the C2/m unit cell of ↵-RuCl3.
The material su↵ers significantly from stacking faults due to
the weakly van der Waals bound layers, somewhat complicat-
ing assignment of the space group.138,139

ies. These are reviewed in this section.

1. Synthesis and Structure

Ruthenium trichloride was likely first prepared in 1845
from the direct reaction of Ru metal with Cl2 gas at
elevated temperatures,131–133 which yields a mixture of
allotropes.134 The �-phase is obtained as a brown pow-
der, and crystallizes in a �-TiCl3-type structure, featur-
ing one-dimensional chains of face-sharing RuCl6 octa-
hedra. The ↵-phase, of recent interest in the context
of Kitaev physics, crystallizes in a honeycomb network
of edge-sharing octahedra. Annealing the mixture above
450 �C under Cl2 converts the �-phase irreversibly to
the ↵-phase, which appears as shiny black crystals. His-
torically, RuCl3 has been widely employed in organic
chemistry primarily as an oxidation catalyst, or a pre-
cursor for organoruthenium compounds.135,136 However,
commercially available “RuCl3·xH2O” is typically ob-
tained by dissolving RuO4 in concentrated hydrochloric
acid, and contains a complex mixture of oxochloro and
hydroxychloro species of varying oxidation states.134,137

Pure samples of ↵-RuCl3 suitable for physical studies are
therefore generated by purification of commercial sam-
ples. This may proceed, for example, via vacuum subli-
mation under Cl2 with a temperature gradient between
650 �C and 450 �C, to ensure crystallization in the ↵-
phase.138,139 Further details regarding synthesis can be
found, for example, in Refs. 140 and 141.

The structure of ↵-RuCl3 has been a matter of some
debate. Similar layered materials are known to adopt a
variety of structures, including BiI3-type (R3̄), CrCl3-
type (P3112), and AlCl3-type (C2/m).142,143 Distin-
guishing between such structures is made di�cult by the
presence of stacking faults between the weakly bound
hexagonal layers. Early structural studies indicated a
highly symmetric P3112 space group.133,144 Later stud-
ies questioned this assignment,145 and more recent works
have established that the low-temperature structure is of
C2/m symmetry for the highest quality samples.138,139

G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009). 
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induced transition to the paramagnetic phase, but fail
above it. This dichotomy can be rationalized as due to
an e↵ective reduction of the bare parameters by quantum
fluctuations [42], which are gradually lifted by the field in
the paramagnetic phase. For a representative set of the
proposed parameters, we demonstrate that a mean-field
approach to quantum fluctuations provides a consistent
description of the field evolution of spin excitations in the
paramagnetic phase that is in agreement with the ESR,
THz, and Raman experiments [18, 42]. This approxi-
mation is further justified by a comparison to the exact
diagonalization results [43].

A di↵erent set of quantum e↵ects is also notable. As
is advocated in Refs. [35, 51], large o↵-diagonal terms
in the anisotropic-exchange magnets necessarily precipi-
tate strong anharmonic coupling of magnons, regardless
of the underlying magnetic order. These strong anhar-
monic interactions inevitably lead to large decay rates of
the higher-energy magnons into the lower-energy magnon
continua [52], such that some of the magnon modes cease
to be well-defined, leading to characteristic broad fea-
tures in the neutron-scattering spectra. We apply the
analysis of Ref. [35] to the representative sets of our
model parameters and demonstrate a coexistence of the
low-energy well-defined quasiparticles with the broad-
ened excitation continua. These results are in agreement
with the prior studies [35, 51] and are also in accord with
the experiments in ↵-RuCl3 [22, 34, 49, 53]. Our results
underscore the importance of taking into account magnon
decays in interpreting broad features in the spectra of the
strongly-anisotropic magnets [7].

There are other persistent features in the spectrum of
the generalized KH model throughout the advocated pa-
rameter space that are also present in ↵-RuCl3. One
of them is the quasi-Goldstone modes that occur away
from the ordering vector of the underlying zigzag phase
[34, 53], suggesting accidental near-degeneracy due to a
hidden symmetry. We provide an insight into its na-
ture using duality transformations of the model. First, a
global rotation in the plane of magnetic ions transforms
the generalized KH model into itself, but with the dom-
inant ferromagnetic J < 0, smaller positive and nearly
equal K and �0 terms, and a much smaller �-term. It
is important to note that this description is identical to
the original one and represents a feature of the KJ��0

parametrization of the exchange matrix. We then show
that the Klein duality [54] transforms the K–J–�0 model
with �=0 into a K–J–�̆0 model with an anti -symmetric
�̆0 term that is akin to the Dzyaloshinskyi-Moriya cou-
pling. This last model preserves a Goldstone mode of the
pure K–J model, in a close similarity to the observation
made for the same model on the triangular lattice [55].

Not only does this observation explain the ubiquitous
accidental pseudo-Goldstone modes, but it also suggests
a simpler model for ↵-RuCl3, which is more amendable
to a detailed exploration because of the lower dimension-
ality of its parameter space: the K–J–�0–J3 model ob-
tained by the first transformation described above. More-
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FIG. 1. (a) The nearest-neighbor Ru-Ru {X,Y,Z} bonds,
crystallographic {x0, y0, z0} and cubic {x, y, z} axes, and prin-
cipal in-plane a(b) directions. (b) Cubic axes and idealized
Ru-Cl bonds. (c) Brillouin zone with the ordering vectors of
the zigzag phase Y, M, and M’.

over, the original K–J–�–�0–J3 model can be rewritten
in the “spin-ice” language [5, 10, 54, 55] that uses more
natural spin axes tied to the honeycomb plane, yield-
ing the so-called XXZ–J±±–Jz± form of the model. For
the parameter range that we advocate for ↵-RuCl3, the
model in this language consistently has two nearly van-
ishing terms, the XXZ anisotropy � and one of the
anisotropic terms J±±. That is, the model that closely
describes ↵-RuCl3 is dominated by an easy-plane ferro-
magnetic J1 and a sizable anisotropic Jz± terms. Such a
J1–Jz±–J3 model description o↵ers a much simpler way
of thinking about ↵-RuCl3, can give a new perspective
on its physics, and deserves further investigation.

The paper is organized as follows. We discuss the
model, its parameters, their empirical constraints, and
outline the resulting parameter space in Sec. II. In
Sec. III, we discuss the e↵ects of quantum fluctuations on
magnons in the paramagnetic and zigzag phases. Sec. IV
is devoted to the dual models for the advocated parame-
ter space and to di↵erent ways of representing them. We
conclude by a brief discussion in Sec. V and provide some
further details in Appendixes.

II. PARAMETERS AND CONSTRAINTS

The postulated minimal microscopic two-dimensional
(2D) spin model of ↵-RuCl3 is the K–J–�–�0–J3 or gen-
eralized Kitaev-Heisenberg model [29, 30, 41],

Ĥ = Ĥ1 + Ĥ3 =
X

hiji

S
T
i ĴijSj + J3

X

hiji3

Si · Sj , (1)

where S
T
i = (Sx

i , Sy
i , Sz

i ), the third-neighbor exchange is

assumed isotropic, and Ĵij is the nearest-neighbor bond-
dependent exchange matrix. Since the spin-rotational
symmetries in the anisotropic-exchange Hamiltonians
are, generally, absent, the allowed matrix elements of Ĵij

are determined solely by the symmetry of the lattice [47].
For ↵-RuCl3 and related materials [13], the conven-

tional choice of the Cartesian reference frames for the
spin projections are the so-called cubic axes, see Fig. 1.
They correspond to an idealized undistorted octahedral
environment of Ru3+ and are not coincidental with the
plane of magnetic ions, the point that is often lost on a
non-expert or a casual reader. These axes are natural
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and anisotropy �=Jz/2J± in their notations and a di↵erent operator form in Hbd (??).
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Over 8000 (J,K,!) parameter points for each lattice
were analyzed, with particular focus on spiral phases. For
each parameter point, simulated annealing was performed
with random initial conditions on systems with n × n × n
conventional unit cells where n ! 10. For the spiral regions,
we performed additional annealing on systems with m × 1 × 1
conventional unit cells, where m ! 100 is the direction along
the spiral wave vector. In addition, a minimum of 1000
single-Q ansatz minimization runs were also performed per
parameter point. The minimum energy among these simulated
annealing and single-Q ansatz minimization runs is deemed
the variational bound of the ground state energy and the
corresponding pseudospin configuration is used to characterize
the magnetic order of the ground state at that parameter point.

B. General considerations

Before delving into the details of the classical magnetic
ground states of Eq. (1), we first examine some general features
of the hyperhoneycomb and H-1 phase diagrams, which were
obtained via the methods outlined in Sec. IV A.

To fix the overall energy scale, we parametrize the (J,K,!)
parameter space using an angular representation

(J,K,!) = (sin θ cos φ, sin θ sin φ, cos θ ), (4)

such that
√

J 2 + K2 + !2 = 1. The phase diagrams are
plotted as polar plots, where the angular component is given by
φ and the radial component, r , is given by θ . In Figs. 2(a) and
2(b), we show the phase diagrams for the hyperhoneycomb
and H-1 lattices, respectively, when ! " 0 (i.e., φ ∈ [0,2π )
and r = θ ∈ [0,π

2 ]); the ! ! 0 results can be obtained by
applying time reversal on the odd sublattice pseudospins,
which transforms (J,K,!) → (−J,−K,−!) and can be seen
in Fig. 5. Prior to Sec. V C, we will concentrate on the
! " 0 case with the understanding that equivalent statements
can be made for the ! ! 0 case. Important properties of
the ! ! 0 phases—especially those relating to experimental
results—will be discussed in Sec. V C.

At first glance, we note the striking similarities between the
two phase diagrams: despite the different topology of the hy-
perhoneycomb and H-1 lattices, the parameter regimes where
we find the various magnetic orders and phase boundaries
are similar in both systems. This notable result emphasizes
the commonalities shared between the two systems as far as
local physics is concerned. On the other hand, when compared
to the classical phase diagram of the 2D honeycomb iridate
from Ref. [40], we notice that the zigzag region has reduced
in size and the spiral phases have become more prevalent. In
particular, the 120◦ phase of the 2D model is now a spiral
phase in the two 3D models.

On the outer edges of the two phase diagrams, ! vanishes
and the Hamiltonians reach the isotropic HK limit. With
increasing φ, we encounter the Néel (HK-AF), skew-zigzag
(HK-SZ), ferromagnet (HK-FM), and skew-stripy phases
(HK-SS), which were discussed in the context of the 2D-
honeycomb and 3D-honeycomb iridates [18,50,51,54,62,63].
When ! = 0, the classical ground state manifold possesses
an emergent SU(2) symmetry despite the presence of SOC.
However, both classical and quantum order-by-disorder (ObD)
lift this emergent degeneracy and choose particular spatial
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FIG. 2. (Color online) Classical phase diagrams for the J -K-!
pseudospin model with ! " 0. The parametrization of the exchange
interactions can be found in Eq. (4). A detailed description of the
phases can be found in Sec. V while a summary can be found in
Table I. The color contours are guides for the eye: in the case of
spiral (SP) states, they represent the length of the Q vector, whereas
in the case of nonspiral states, they represent properties relevant to
that particular phase; see Sec. V for details.

directions for the moments [18,50,51,63]. Indeed, finite !
also breaks the emergent symmetry [40] and pins pseudospin
moments in particular spatial directions, causing the phases
on the inside of the phase diagram to be noncollinear in
general.

064407-4

MM, PM, SJ, SW, RV, and SC, (unpublished).
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phenomenological constraints
o B=0, zigzag order, tilted out of plane of Ru3+ ions [α ≈ 35º]

o high field k=0, spin-flip (ESR, Raman) ➾ non-linear vs H

o in-plane critical field are  nearly equal: Hc,a ≈ Hc,b ≈ 6-7 T

Winter etal., 2017. Wolter etal., 2017.Sears etal., 2020. Sahasrabudhe etal., 2019. P. Lampen-Kelley etal., 2018.
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Reference Method K � �0
↵ (�) �+2�0 �H (T)

Kim et al. [29]
DFT+t/U , P3 -6.55 5.25 -0.95 36.6 3.35 9.64

DFT+SOC+t/U -8.21 4.16 -0.93 40.9 2.3 7.03

same+fixed lattice -3.55 7.08 -0.54 28.4 6.01 14.4

Winter et al. [30] DFT+ED, C2 -6.67 6.6 -0.87 34.4 4.87 12.2

Ran et al. [34] LSWT, INS fit -6.8 9.5 30.1 9.5 16.6

DFT+t/U , U=2.5eV -14.4 6.43 41.1 6.43 7.96

Hou et al. [31] same, U=3.0eV -12.2 4.83 42.2 4.83 5.74

same, U=3.5eV -10.7 3.8 43.2 3.8 4.36

Wang et al. [32]
DFT+t/U , P3 -10.9 6.1 38.9 6.1 8.15

same, C2 -5.5 7.6 30.2 7.6 13.3

Winter et al. [35] Ab initio+INS fit -5.0 2.5 40.0 2.5 3.22

Suzuki et al. [36] ED, Cp fit -24.4 5.25 -0.95 47.3 3.35 6.76

Cookmeyer et al. [37] thermal Hall fit -5.0 2.5 40.0 2.5 3.22

Wu et al. [38] LSWT, THz fit -2.8 2.4 34.6 2.4 3.68

Ozel et al. [39] same -3.5 2.35 37.0 2.35 3.34

Eichstaedt et al. [33] DFT+Wannier+t/U -14.3 9.8 -2.23 38.3 5.33 18.1

Sahasrabudhe et al.[42] ED, Raman fit -10.0 3.75 42.7 3.75 4.38

Sears et al. [40] Magnetization fit
-10.0 10.6 -0.9 33.4 8.8 19.0

-10.0 8.8 34.3 8.8 13.6

Laurell et al. [41] ED, Cp fit -15.1 10.1 -0.12 37.2 9.86 14.6

Suzuki et al. [43] RIXS -5.0 2.5 +0.1 39.8 2.7 3.03

Kaib et al. [44] GGA+U -10.1 9.35 -0.73 34.5 7.89 16.0

Andrade et al. [45] � -6.6 6.6 33.1 6.6 10.6

Janssen et al. [46] LSWT+3D -10.0 5.0 40.0 5.0 6.43

Li et al. [47] Cm, � -25.0 7.5 -0.5 44.8 6.5 9.03

Ran et al. [48] polarized INS -7.2 5.6 35.6 5.6 8.33

Samarakoon et al. [49] Machine learning, INS -5.3 0.15 36.4 0.15 0.11

Liu et al. [50] downfolding -5.0 2.8 +0.7 37.3 4.2 2.37

This work

realistic range [-10.0,-4.4] [3.2,5.0] [1.8,2.85] [30.0,37.0] [7.5,10.0] [0.0,1.5]

point 0 -7.57 4.28 2.36 35.0 9.0 0.8

point A -5.43 3.65 2.18 32.0 8.0 0.5

point B -8.73 4.71 2.39 36.0 9.5 1.3

TABLE I. The representative sets of parameters of the generalized KH model (1) for ↵-RuCl3 (in meV). The values that come
close to the ranges proposed in this work are highlighted in bold. The common acronyms include linear spin-wave theory
(LSWT), density-functional theory (DFT), spin-orbit coupling (SOC), inelastic neutron scattering (INS), exact diagonalization
(ED), and terahertz spectroscopy (THz); structures of P3 and C2 symmetry are referred to as “P3” and “C2” for brevity.

single-magnon energy gap at q= 0 that was anticipated
in Fig. 2. The results in Figure 13 are shown for the
three representative parameter sets, referred to as Point
1, 2, and 3 in Sec. II E and Table ??. For all three sets,
the mean-field RPA already yields a close quantitative
description of the ESR/THz data, with the Point 1 set,
which belongs to the “realistic” region of the advocated
parameter space, giving the best fit of the three.

The variation of the slope of "0(H) near the critical
point has been attributed to changes of an e↵ective g-
factor and novel excitations [18]. In Ref. [42], this e↵ect
has been ascribed to stronger repulsion from the two-
magnon continuum in this field regime, which was also
supported by the ED calculations. Here we corroborate

the latter interpretation using the RPA method, which
also shows a significant change of the slope due to en-
hanced quantum e↵ects near the transition field. In our
case, in addition to the field dependence of the LSWT
results from Eq. (4), an extra curvature of "0(H) is due
to the field dependence of the ordered moment hSi.

We summarize some of the zero-field properties of the
model (1) for the Point 1, 2, and 3 parameter sets in Ta-
ble III, where we present spin-wave results for the ordered
moment, Néel temperature, critical fields from Eqs. (5)
and (6), and tilt angle from Eq. (8) for all three sets.

Our LSWT calculations yield ordered moments that
are indicative of strong fluctuations, hSi⇡0.22, the value
that is in agreement with experimental estimates [15, 17]

other ways …
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#1: tilt angle α
o (classical) tilt angle α depends only on K, Γ, and Γ’  
o -- experiments: α ≈ 32º..35º, ED suggest modest quantum corrections 

J. Chaloupka and G. Khaliullin, 2016; H. B. Cao etal., 2016; Sears etal., 2020.

3

FIG. 2. Azimuthal dependence. a. Schematic diagram showing the geometry of the REXS experiment. b. Azimuthal
dependence of the magnetic di↵raction signal at (0,-1,1.43). The azimuthal dependence is fit best with a magnetic moment
angle of ✓ = +32�. The modeled intensities for ⇥ = +25�, +45� and �35� are shown for comparison.  = 0 corresponds
to the position with the in-plane direction (-2,0,0.65) pointing along the scattered beam. The magnetic peak was measured
by scanning the sample angle. Integrated intensities were found by fitting the scans with a Gaussian peak shape. Error bars
shown are the square root of the covariance value from the fit.

plane. This can be seen in the modeled intensity for the
two proposed moment directions (Fig. 2b), which show
opposite behaviour in this respect. The measured az-
imuthal dependence collected for ↵-RuCl3 is clearly fit
best by the model with the moment direction pointing
towards the RuCl6 octahedral face, indicating that the
moment direction is along the face-centered direction ex-
pected in the case of a ferromagnetic Kitaev term.

We also allow the angle within the ac plane (⇥) to vary
as shown in dashed lines in Fig. 2b. The best fit is ob-
tained when the moment is confined to the ac plane, with
⇥ = 32� ± 3�. This result is consistent with one of the
two models proposed by the neutron di↵raction result,
and also provides insight into the form of the magnetic
Hamiltonian. In the case of a ferromagnetic K term,
Chaloupka and Khaliullin showed that a substantial an-
tiferromagnetic � interaction term is required to keep the
moment in the ac plane. Specifically they showed that
with increasing �, the moment rotates away from the lo-
cal octahedral xy plane (⇥ ⇠ 50�) and slowly approaches
⇥ = 32� from the positive side. According to Ref. [22],
in order to have ⇥ ⇠ 32� the magnitude of � must be
a significant fraction of, or even exceed the magnitude
of K. We note that ⇥ ⇠ 45� was obtained for another
Kitaev material Na2IrO3 [25], which would suggest that
the � term is much smaller in Na2IrO3.

Our REXS results provide a clue for solving one of the
remaining questions regarding the magnetic properties of
↵-RuCl3: its large magnetic anisotropy. As reported by
many groups [2, 4, 26, 27], the in-plane magnetic suscep-
tibility measured by applying magnetic field along the di-

rection in the ab plane is significantly larger than the out-
of-plane susceptibility. A conventional way to explain
this would be resorting to the g-factor anisotropy. How-
ever, experimental data suggest that g-factor anisotropy
cannot be very large, certainly not large enough to ac-
count for the anisotropic susceptibility [28, 29]. Another
route to obtain a large magnetic anisotropy is via a large
� term as suggested in Ref. [30]. Physically, the e↵ect of
the � interaction is to force the moments towards the ab
plane, which accentuates magnetic anisotropy.

We demonstrate that a large � is su�cient to explain
the observed magnetic anisotropy by comparing the ex-
perimental data with theoretical calculation results. The
low-field magnetization data for fields applied in-plane
and out-of-plane are plotted in Fig. 3, which shows that
the susceptibility (slope) anisotropy is about �ab/�c ⇠ 8.
This data is fit with the classical JK� model (Eq. (1)),
where the model parameters are chosen to be consis-
tent with the magnetic moment direction determined by
REXS. Either a small �0 or J3 term was added to en-
sure the zigzag ground state of the model (details about
the calculation are provided in the Supplementary Infor-
mation). The data can be fitted for several parameter
choices with ferromagnetic K and antiferromagnetic � of
similar magnitude, demonstrating that the magnetiza-
tion data can be explained without resorting to g-factor
anisotropy. We note that in [30] it was shown that a ratio
of |�/K| ⇠ 1 can also explain the star-shaped continuum
intensity centered around the Brillouin zone center ob-
served in inelastic neutron scattering [6].

The measurements outlined in this paper have deter-
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[1] For a less humane form of (??), see, e.g., [? ]. We use a standard form of the XXZ term (cf. [? ] and others) with J=2J±
and anisotropy �=Jz/2J± in their notations and a di↵erent operator form in Hbd (??).

histogram from the tableo ➾ physical range
          30º ≲ α ≲ 37º

MM, PM, SJ, SW, RV, and SC, (unpublished).
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#2: ESR, THz, Raman (k=0 spin-flip)
o strong in-plane field, k=0 spin-flip excitation 
o LSWT: Ek=0 depends only on Γ and Γ’

      -- fluctuations renormalize Ek=0 down [RPA, ED]

A. N. Ponomaryov etal., 2017; A. Sahasrabudhe etal., 2019. S. M. Winter etal., 2018.

o ➾ strong upper and lower bounds on
        7.5 meV ≲ Γ+2Γ’ ≲ 10 meV

MONOCLINIC CRYSTAL STRUCTURE OF α-RuCl . . . PHYSICAL REVIEW B 92, 235119 (2015)

FIG. 5. (Color online) (a) Magnetic phase diagram for single-crystal α-RuCl3 in magnetic field H ⊥ c∗. Solid points mark the maxima in
the differential susceptibility dM/dH derived from data shown in panel (b) (upper traces). Open symbols mark the maximum in M(T ) VSM
temperature sweeps, as shown in the pane inset for constant magnetic field values close to the phase boundary. The dashed line is a guide
to the eye phase boundary between the zigzag antiferromagnetic phase (yellow shading) and paramagnetic (PM, blue shading). (b) M(H,T )
data recorded in the rising part of 15 T field pulses at a series of constant temperatures. At lower temperatures, the steep rise in M(H ) is
strongly suggestive of a field-induced phase transition near 8 T. (c) M(H,T ) data recorded in the rising part of 60 T field pulses in both the
antiferromagnetic and paramagnetic phases.

reported on powder α-RuCl3 samples [25]. Previous single-
crystal studies have reported two magnetic transitions near 8
and 14 K (Refs. [17,19,20]), which have been attributed to
either a mixture of two coherent stacking orders, with each
order associated with a single transition, respectively [18], or
alternatively to a single phase that supports an unexpected
magnetic ground state [17]. Here, to the contrary, we find
that the low-field magnetic susceptibility of single crystals is
consistent with that of the powder, both displaying a single
transition to magnetic order at low temperatures.

Pulsed-magnetic-field M(H,T ) data are shown for field
sweeps up to 15 T at various constant temperatures T in
Fig. 5(b). The data shown were recorded during the rising part
of the field pulses; M(H ) curves from the rising and falling
portions of the field pulse were indistinguishable within the
limit of experimental sensitivity (i.e., there was little or no
hysteresis). For H ⊥ c∗ the low-temperature M(H ) curves
show a pronounced steepening at about 8 T, characteristic
of a field-induced phase transition, which gradually shifts
down in field and fades as the temperature increases. This
trend is more clearly seen in the full phase diagram shown
in Fig. 5(a), which displays maximum values (solid symbols)
of the differential susceptibility (dM/dH ) as a function of H
and T . The inset to Fig. 5(a) shows complementary M(H,T )
data recorded in the VSM as temperature sweeps in fixed
field. The same transition is seen as a peak in M(T ) that
disappears at fields above 8 T. This trend is also drawn in
the main panel of Fig. 5(a), which completes a continuous
phase boundary (dashed line) consistent with a single enclosed
antiferromagnetic phase for α-RuCl3 at low temperatures and
modest magnetic fields applied in the honeycomb layers.

The pulsed-field data shown in Fig. 5(b) for H ∥ c∗ exhibit
M(H,T ) values that are a factor 5–6 times smaller than those
recorded on the same sample under comparable conditions for

H ⊥ c∗. This is likely to be due to Ru g-factor anisotropy [19].
Note that there is no sign of the phase transition observed in
the other field orientation, leading us to conclude that it is a
feature observed only when the field lies in the honeycomb
plane.

Having measured the magnetization along the two
nonequivalent directions on the same sample enables us to
reliably put both data sets in absolute units by calibration
against the susceptibility data measured on a powder sample
[Fig. 4(a) black symbols] under the same conditions of applied
field and temperature, thus avoiding the inherent uncertainties
associated with measuring the precise mass of very small
(of order ∼0.1 mg) crystals. The powder susceptibility is
expected to reflect the spherically averaged value, obtained
as χpowder = (2/3)χ∥ + (1/3)χ⊥ = χ∥(2 + r)/3, where r =
χ⊥/χ∥ is the susceptibility anisotropy. The single-crystal data
sets in Figs. 4(a) (red symbols) and 5(b) and 5(c) were
then scaled to satisfy the above relations with the powder
susceptibility data at µ0H = 0.1 T and 15 K, where the
susceptibility anisotropy under those conditions was obtained
as r = 0.157 from the pulsed field data.

Figure 5(c) shows M(H,T ) data recorded in 60 T pulsed-
field shots; as is the case with the lower-field data, there is little
or no hysteresis between up and down sweeps of the field and,
so, for clarity, only data recorded on the rising part of the field
pulse are shown. The M(H ) anisotropy persists to high fields,
although the data for H ⊥ c∗ show signs of the approach to
saturation. There are no further phase transitions visible up to
60 T in either field direction.

The shape of the magnetization curve at high field as
observed by the upper traces in Fig. 5(c) with a gradually
decreasing differential susceptibility upon increasing field
suggests an asymptotic approach to magnetization saturation.
Such a behavior of the magnetization near saturation is

235119-7
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#2: “ESR parameter”

physical range

P. A. Maksimov and SC, PRR 2, 033011 (2020).

o ➾ physical range
          7.5 meV ≲ Γ+2Γ’ ≲ 10 meV

MM, PM, SJ, SW, RV, and SC, (unpublished).
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#3: in-plane critical fields Hc,a ≈ Hc,b
o how is Hc,a ≈ Hc,b ??
o LSWT: ΔHc =Hc,a−Hc,b depends only on K, Γ, and Γ’  !
o -- quantum fluctuations? ➾ small ΔHc will stay small 
o -- is impossible to reconcile without  Γ’ ~ Γ/2 > 0

physical range physical range

Γ=5meV, g=2.5
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previous works: underutilized parameter space ➾ Γ’ ~ Γ/2

P. Lampen-Kelley etal., 2018.
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➾ Γ’ ~ Γ/2

P. A. Maksimov and SC, PRR 2, 033011 (2020).

o ➾ physical range
          0 T ≲ ΔHc ≲ 1.5 T

MM, PM, SJ, SW, RV, and SC, (unpublished).
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present from Giniyat…

Liu, Chaloupka, and Khaliullin, PRB (2022)

o “t/U” –downfolding/projection

K

Γ

Γ’

J

α-RuCl3

Γ’>0, not small!
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FIG. 3: (a) Schematic of p and transition-metal ion d(t2g,eg)
energy levels. tpd⇡(tpd�) is the hopping integral between p
and t2g(eg) orbitals. The corresponding pd charge-transfer
gap �pd and cubic splitting 10Dq are indicated. Sketch of
di↵erent hopping processes between d orbitals along z-type
NN-bond: (b) indirect hopping t between t2g orbitals, (c)
direct hopping t0 between c = dxy orbitals, and (d) indirect
hopping processes between t2g and eg orbitals. Notice that
there is a prefactor (�1/2) of the overlap between eg orbital
and lower ligand px orbital in (d).
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Using the projection table listed in Eqs. (7)-(11), one
can convert Eq. (6) into the form of Eq. (1) with the
exchange parameters:
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From Eq. (12), it is evident that K11, �11 and �0

11 are
related to the Hund’s coupling and vanish at JH = 0 (i.e.
E1 ⌘ E2), while the Heisenberg J11 term remains. In the
cubic limit, the exchange parameters are:

K11 = �
4

9

✓
1

E1
�

1

E2

◆
(3t2 � t

02),

J11 =
4

27

✓
2

E2
+

1

E3

◆
t
02
,

�11 =
8

9

✓
1

E1
�

1

E2

◆
tt

0
,

�0
11 = 0 , (13)

which are consistent with previous work [27]. It is clear
that J11 and �11 are both positive with the magnitudes
related to the direct hopping t

0. �0
11 = 0 is dictated by

cubic symmetry. K11 is FM since the indirect hopping
t is generally stronger than the direct hopping t

0 in real
materials. J11 is AFM and proportional to t

02, while �11

is positive and linear in t
0.

Once the trigonal crystal field � is introduced, all
these four exchange parameters are a↵ected as shown in
Fig. 4(a). K11 is slightly suppressed but remains FM in a
wide range of � = 2�/�, and the Heisenberg interaction
J11 changes from AFM to FM at small negative �. The
o↵-diagonal �11 is quite robust and remains positive in
the presented range of �. �0

11 term gradually emerges at
finite � when the orbital degeneracy is lifted.

MM, PM, SJ, SW, RV, and SC, (unpublished).
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3 constraints, 3 parameters
o Γ+2Γ’ = 7.5−10 meV;  ΔHc = 0−1.5 T;  α = 30º−37º   ➾   strongest bounds are on Γ and Γ’

Γ      Γ’

Γ

K      Γ

➾

−K = 4.4..10 meV

Γ = 3.2..5 meV

Γ’ = 1.8..2.8 meV

P. A. Maksimov and SC, PRR 2, 033011 (2020). MM, PM, SJ, SW, RV, and SC, (unpublished).
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[1] For a less humane form of (??), see, e.g., [? ]. We use a standard form of the XXZ term (cf. [? ] and others) with J=2J±
and anisotropy �=Jz/2J± in their notations and a di↵erent operator form in Hbd (??).ED
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XXZ-J±±-Jz±  model virtues?

o exchange matrix not invariant under axis transformation
o ➾ more intuitive terms and quantities; fewer bond-dependent terms
o ➾ connection to other models in frustrated magnetism
o ➾ fewer terms?, simpler model?

Z X

Y

z

x y(a) (b) (c)

Z
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b (y0)

z0 a (x0)
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XXZ

bond-
dependent
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[1] For a less humane form of (??), see, e.g., [? ]. We use a standard form of the XXZ term (cf. [? ] and others) with J=2J±
and anisotropy �=Jz/2J± in their notations and a di↵erent operator form in Hbd (??).

2

induced transition to the paramagnetic phase, but fail
above it. This dichotomy can be rationalized as due to
an e↵ective reduction of the bare parameters by quantum
fluctuations [42], which are gradually lifted by the field in
the paramagnetic phase. For a representative set of the
proposed parameters, we demonstrate that a mean-field
approach to quantum fluctuations provides a consistent
description of the field evolution of spin excitations in the
paramagnetic phase that is in agreement with the ESR,
THz, and Raman experiments [18, 42]. This approxi-
mation is further justified by a comparison to the exact
diagonalization results [43].

A di↵erent set of quantum e↵ects is also notable. As
is advocated in Refs. [35, 51], large o↵-diagonal terms
in the anisotropic-exchange magnets necessarily precipi-
tate strong anharmonic coupling of magnons, regardless
of the underlying magnetic order. These strong anhar-
monic interactions inevitably lead to large decay rates of
the higher-energy magnons into the lower-energy magnon
continua [52], such that some of the magnon modes cease
to be well-defined, leading to characteristic broad fea-
tures in the neutron-scattering spectra. We apply the
analysis of Ref. [35] to the representative sets of our
model parameters and demonstrate a coexistence of the
low-energy well-defined quasiparticles with the broad-
ened excitation continua. These results are in agreement
with the prior studies [35, 51] and are also in accord with
the experiments in ↵-RuCl3 [22, 34, 49, 53]. Our results
underscore the importance of taking into account magnon
decays in interpreting broad features in the spectra of the
strongly-anisotropic magnets [7].

There are other persistent features in the spectrum of
the generalized KH model throughout the advocated pa-
rameter space that are also present in ↵-RuCl3. One
of them is the quasi-Goldstone modes that occur away
from the ordering vector of the underlying zigzag phase
[34, 53], suggesting accidental near-degeneracy due to a
hidden symmetry. We provide an insight into its na-
ture using duality transformations of the model. First, a
global rotation in the plane of magnetic ions transforms
the generalized KH model into itself, but with the dom-
inant ferromagnetic J < 0, smaller positive and nearly
equal K and �0 terms, and a much smaller �-term. It
is important to note that this description is identical to
the original one and represents a feature of the KJ��0

parametrization of the exchange matrix. We then show
that the Klein duality [54] transforms the K–J–�0 model
with �=0 into a K–J–�̆0 model with an anti -symmetric
�̆0 term that is akin to the Dzyaloshinskyi-Moriya cou-
pling. This last model preserves a Goldstone mode of the
pure K–J model, in a close similarity to the observation
made for the same model on the triangular lattice [55].

Not only does this observation explain the ubiquitous
accidental pseudo-Goldstone modes, but it also suggests
a simpler model for ↵-RuCl3, which is more amendable
to a detailed exploration because of the lower dimension-
ality of its parameter space: the K–J–�0–J3 model ob-
tained by the first transformation described above. More-

Z X
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z

x y(a) (b) (c)

Z

XY

b (y0)

z0 a (x0)

z
x

y

M�� M
Y

FIG. 1. (a) The nearest-neighbor Ru-Ru {X,Y,Z} bonds,
crystallographic {x0, y0, z0} and cubic {x, y, z} axes, and prin-
cipal in-plane a(b) directions. (b) Cubic axes and idealized
Ru-Cl bonds. (c) Brillouin zone with the ordering vectors of
the zigzag phase Y, M, and M’.

over, the original K–J–�–�0–J3 model can be rewritten
in the “spin-ice” language [5, 10, 54, 55] that uses more
natural spin axes tied to the honeycomb plane, yield-
ing the so-called XXZ–J±±–Jz± form of the model. For
the parameter range that we advocate for ↵-RuCl3, the
model in this language consistently has two nearly van-
ishing terms, the XXZ anisotropy � and one of the
anisotropic terms J±±. That is, the model that closely
describes ↵-RuCl3 is dominated by an easy-plane ferro-
magnetic J1 and a sizable anisotropic Jz± terms. Such a
J1–Jz±–J3 model description o↵ers a much simpler way
of thinking about ↵-RuCl3, can give a new perspective
on its physics, and deserves further investigation.

The paper is organized as follows. We discuss the
model, its parameters, their empirical constraints, and
outline the resulting parameter space in Sec. II. In
Sec. III, we discuss the e↵ects of quantum fluctuations on
magnons in the paramagnetic and zigzag phases. Sec. IV
is devoted to the dual models for the advocated parame-
ter space and to di↵erent ways of representing them. We
conclude by a brief discussion in Sec. V and provide some
further details in Appendixes.

II. PARAMETERS AND CONSTRAINTS

The postulated minimal microscopic two-dimensional
(2D) spin model of ↵-RuCl3 is the K–J–�–�0–J3 or gen-
eralized Kitaev-Heisenberg model [29, 30, 41],

Ĥ = Ĥ1 + Ĥ3 =
X

hiji

S
T
i ĴijSj + J3

X

hiji3

Si · Sj , (1)

where S
T
i = (Sx

i , Sy
i , Sz

i ), the third-neighbor exchange is

assumed isotropic, and Ĵij is the nearest-neighbor bond-
dependent exchange matrix. Since the spin-rotational
symmetries in the anisotropic-exchange Hamiltonians
are, generally, absent, the allowed matrix elements of Ĵij

are determined solely by the symmetry of the lattice [47].
For ↵-RuCl3 and related materials [13], the conven-

tional choice of the Cartesian reference frames for the
spin projections are the so-called cubic axes, see Fig. 1.
They correspond to an idealized undistorted octahedral
environment of Ru3+ and are not coincidental with the
plane of magnetic ions, the point that is often lost on a
non-expert or a casual reader. These axes are natural

P. A. Maksimov and SC, PRR 2, 033011 (2020). MM, PM, SJ, SW, RV, and SC, (unpublished).



ICTP, 12-07-23

intuitive quantities…
o ESR gap, Ek=0, for k=0 spin-flip excitation

o ➾ Γ+2Γ’ is just a complicated way of writing easy-plane anisotropy

o tilt angle 

o ➾ key term: Jz± (naturally yields the out-of-plane tilt of spins)
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[1] For a less humane form of (??), see, e.g., [? ]. We use a standard form of the XXZ term (cf. [? ] and others) with J=2J±
and anisotropy �=Jz/2J± in their notations and a di↵erent operator form in Hbd (??).
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J1
�
1��

�
+ 4J±±

(3)

tan 2↵ = 4
p

2 ·
��K � �0

7�+ 2K + 2�0 (4)

[1] For a less humane form of (??), see, e.g., [? ]. We use a standard form of the XXZ term (cf. [? ] and others) with J=2J±
and anisotropy �=Jz/2J± in their notations and a di↵erent operator form in Hbd (??).

MM, PM, SJ, SW, RV, and SC, (unpublished).
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K-J-Γ-Γ ’ ➾ J1-D-[XXZ]-J±±-Jz± translation

➾

o conversion of  K, J < 0, Γ > 0
o J1, Jz± ➾ add up,
o  Δ, J±± ➾ cancel out
   ➾ simplification: Δ =Jz/Jxy≈ 0, 
   ➾ can neglect  J±± 

P. A. Maksimov and SC, PRR 2, 033011 (2020).

−(Jxy−Jz)

MM, PM, SJ, SW, RV, and SC, (unpublished).
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fewer parameters…

many prior attempts to infer α-RuCl3 parameters: 
o implied  J1-Jz±-J3 model with easy-plane FM J1, AFM J3, + large Jz±

P. A. Maksimov and SC, PRR 2, 033011 (2020). MM, PM, SJ, SW, RV, and SC, (unpublished).
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present from Giniyat…

Liu, Chaloupka, and Khaliullin, PRB (2022)

o “t/U” –downfolding/projection

K

Γ

Γ’

J

Δ ≈ 0!
J±± ≈ 0!

4

x y

z

x y

z

z-bond

pz

dxz dyz

tpdπ tpdπ

‒ t′

x y
dxy dxy dxy

eg

tpdπ

p

eg

t2g

Δpd

py

(a)

(c) (d)

(b)

10Dq

tpdπ

px

FIG. 3: (a) Schematic of p and transition-metal ion d(t2g,eg)
energy levels. tpd⇡(tpd�) is the hopping integral between p
and t2g(eg) orbitals. The corresponding pd charge-transfer
gap �pd and cubic splitting 10Dq are indicated. Sketch of
di↵erent hopping processes between d orbitals along z-type
NN-bond: (b) indirect hopping t between t2g orbitals, (c)
direct hopping t0 between c = dxy orbitals, and (d) indirect
hopping processes between t2g and eg orbitals. Notice that
there is a prefactor (�1/2) of the overlap between eg orbital
and lower ligand px orbital in (d).

respondences:

SX/Y = �s
2
✓
eSX/Y , SZ = �c2✓

eSZ . (7)

a
†
b = ip

3

⇣
c
2
✓
eSZ � s2✓

eSX

⌘
,

(a†/b†)c = ⌥
ip
3

⇣
c
2
✓
eSZ + ss✓

eSA/B

⌘
, (8)

where eSA = 1
2 (

eSX +
p
3eSY ) and eSB = 1

2 (
eSX �

p
3eSY ).

SXna/b =
1
3

⇣
c
2
✓
eSB/A + 1

2s2✓
eSZ

⌘
�

1
3
eSX ,

SY na/b =
1p
3

⇣
⌥c

2
✓
eSB/A + 1

2s2✓
eSZ

⌘
�

1
3
eSY ,

SZna/b =
1
3

⇣
s2✓

eSB/A � c2✓
eSZ

⌘
,

SX/Znc = ±
1
3

⇣
c2✓

eSX/Z ⌥ s2✓
eSZ/X

⌘
,

SY nc = �
1
3
eSY , (9)

and

SXa
†
b = 1

3c2✓
eSX + 1

6s2✓
eSZ ,

SY a
†
b = �

1
3
eSY ,

SZa
†
b = �

1
6

⇣
c
2
✓
eSZ � s2✓

eSX

⌘
+ 1

3
eSZ , (10)

and

SX(a†/b†)c = 1
3

⇣
c
2
✓
eSA/B �

1
4s2✓

eSZ

⌘
�

1
3
eSX ,

SY (a
†
/b

†)c = ±
1p
3

⇣
c
2
✓
eSA/B �

1
4s2✓

eSZ

⌘
�

1
3
eSY ,

SZ(a
†
/b

†)c = �
1
6s2✓

eSA/B + 1
6

�
1 + s

2
✓

� eSZ . (11)

Using the projection table listed in Eqs. (7)-(11), one
can convert Eq. (6) into the form of Eq. (1) with the
exchange parameters:

K11=�
4

3

✓
1

E1
�

1

E2

◆⇥
(1 + 9↵)(t2� 1

3 t
02)+µ1tt

0⇤
,

J11=
4

27

✓
2

E2
+

1

E3

◆
(t0 + 3�t)2 +

4�

9

✓
1

E2
�

1

E3

◆
tt

0

+
4

3

✓
1

E1
�

1

E2

◆
[3↵t2+(µ2+�)tt0�µ3t

02],

�11=
8

9

✓
1

E1
�

1

E2

◆⇥
(1 + µ4)tt

0 + µ5t
2
�

3
4µ2t

02⇤
,

�0
11=�

1

3

✓
1

E1
�

1

E2

◆⇥
µ6t

2 + 2µ7tt
0
� µ7t

02)
⇤
. (12)

Here ↵ = c
2
✓

�
s
2
✓
+ 1/

p
2
�
/6� 1/9, and � = c2✓/2� 1/6.

Other parameters are: µ1 = 6↵+�+3�2, µ2 = 2↵+�+2�2,
µ3 = ↵+�

2, µ4 = 3↵ � 3�2
/2, µ5 = 3(6↵ � �)/4, µ6 =

6↵ + 5� + 9�2, and µ7 = 2↵ � � � �
2. At cubic limit

with s✓ = 1/
p
3 and c✓ =

p
2/3, one obtains ↵ = � =

µ1,2,...,7 = 0.
From Eq. (12), it is evident that K11, �11 and �0

11 are
related to the Hund’s coupling and vanish at JH = 0 (i.e.
E1 ⌘ E2), while the Heisenberg J11 term remains. In the
cubic limit, the exchange parameters are:

K11 = �
4

9

✓
1

E1
�

1

E2

◆
(3t2 � t

02),

J11 =
4

27

✓
2

E2
+

1

E3

◆
t
02
,

�11 =
8

9

✓
1

E1
�

1

E2

◆
tt

0
,

�0
11 = 0 , (13)

which are consistent with previous work [27]. It is clear
that J11 and �11 are both positive with the magnitudes
related to the direct hopping t

0. �0
11 = 0 is dictated by

cubic symmetry. K11 is FM since the indirect hopping
t is generally stronger than the direct hopping t

0 in real
materials. J11 is AFM and proportional to t

02, while �11

is positive and linear in t
0.

Once the trigonal crystal field � is introduced, all
these four exchange parameters are a↵ected as shown in
Fig. 4(a). K11 is slightly suppressed but remains FM in a
wide range of � = 2�/�, and the Heisenberg interaction
J11 changes from AFM to FM at small negative �. The
o↵-diagonal �11 is quite robust and remains positive in
the presented range of �. �0

11 term gradually emerges at
finite � when the orbital degeneracy is lifted.

J1(1-Δ)

Jz±

J±±

Δ

α-RuCl3

MM, PM, SJ, SW, RV, and SC, (unpublished).
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FM

ZZ

IC

o α-RuCl3 ➾ is a J1-J3 FM-AFM
enriched by a strong Jz±-term

MM, PM, SJ, SW, RV, and SC, (unpublished).

J1-Jz±-J3 (Δ1=0) model, phase diagram?

Rastelli etal, Physica 97B (1979).

J1-Jz±-J3 model Δ=0 

Jiang etal, PRB (2023).



ICTP, 12-07-23

K

�

MM

K

Γ

0

� = �/2

�

3�/2

� = �/2

�

M

π/4
π/8

�

MM

Γ

FM

ZZ

IC
1

3π/8

AFM

stripe

IC2IC2

}

(a) (b)

K

�

MM

K

Γ
}

0

� = �/2

�

3�/2

� = �/2

�

M

π/4

π/8

FM

ZZ

IC
1

3π/8

IC2

IC
2

K

�

MM

K

Γ
}

π/2

8 7 6 5 4 3 2 1 0
0

1

2

3

4

5

−4 −1
0

−3 −2−5

4

3

2

1

J (meV)
J 3

(m
eV

)

5

0−8 −7 −6

0.3 0.2 0.1 0 −0.1 −0.3 −0.5

FM

ZZ

NCO2

Δ

H (a)c =7 T

H (a)c =14 T

NCO1

α-RuCl3

Γ
M

K
K /2

yz

x y

z

x

z-
A
FM

where are we? ZZ near IC, next to FM phase

MM, PM, SJ, SW, RV, and SC, (unpublished).
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LT vs ED

MM, PM, SJ, SW, RV, and SC, (unpublished).



ICTP, 12-07-23

-0.3 0 0.3

-0.3

0

0.3

5 10 150 5 10 15

-0.4

-0.2

0

0.2

0.4

k y

(a) (b)Q kx

(e)

y

z x
y

x z

⟨Sy
A⟩

⟨Sz
A⟩

⟨Sx
A⟩≈0

lx /a lx /a

⟨Sy
B⟩

ΔφAB = 43.2∘

(c)

⟨Sy
A⟩

(d)

⟨Sy⟩

⟨S
z ⟩

IC phases? DMRG: counter-rotating spirals!
þ two types of IC phases ➾ 

orientations of the ordering vector, 
phase shift, deformation

þ in a remarkable agreement with LT

0 5 10 15

-0.4

-0.2

0

0.2

0.4 ⟨Sx
A⟩

⟨Sz
A⟩

⟨Sy
A⟩≈0

lx /a
0 5 10 15

lx /a

⟨Sx
B⟩−0.1

⟨Sx
A⟩

ΔφAB = 0

-0.3 0 0.3

-0.3

0

0.3

⟨Sx⟩

⟨S
z ⟩

k y

(a) (b) kx

(e)(d)

yz

x
zy

xQ

k y

kx

(c)

MM, PM, SJ, SW, RV, and SC, (unpublished).
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þ there is a better, more intuitive parametrization of the α-RuCl3 model

þ α-RuCl3 is a ferro-antiferromagnet with an easy-plane FM J1, AFM J3, and 
large anisotropic Jz±. Proximity of the ZZ phase to IC phase is of interest

þ parameters yield adequate phenomenology ➾ strong constraints

þ ICs = counter-rotating helices 

summary

P. A. Maksimov and SC, PRR 2, 033011 (2020). MM, PM, SJ, SW, RV, and SC, (unpublished).


