The Saga of a-Rucly Models. Parameters. Phase Diagrams.

Sasha Chernyshev

hunt for Kitaev and beyond...

G. Jackeli and G. Khaliullin, PRL **102**, 017205 (2009).

Pavel Maksimov

LT + analytics

Marius Moeller

ED

Roser Valenti

DMRG

Steven White

P. A. Maksimov and **SC**, *Rethinking* α-*RuCl*₃, PRR **2**, 033011 (2020).

part 1: better parameters?

effective model

→ generalized Kitaev or J-K-Γ-Γ'(-J₃) model, ≈ consensus

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_1 + \hat{\mathcal{H}}_3 = \sum_{\langle ij \rangle} \mathbf{S}_i^{\mathrm{T}} \hat{J}_{ij} \mathbf{S}_j + J_3 \sum_{\langle ij \rangle_3} \mathbf{S}_i \cdot \mathbf{S}_j \left[\gamma = \{\mathbf{X}, \mathbf{Y}, \mathbf{Z}\} \right]$$

$$b$$
 Y-bond
 X -bond
 y y z y x

AF Kitaev

$$\mathcal{H}_{1} = \sum_{\langle ij \rangle_{\gamma}} \left\{ J \mathbf{S}_{i} \cdot \mathbf{S}_{j} + \left[K S_{i}^{\gamma} S_{j}^{\gamma} + \Gamma \left(S_{i}^{\alpha} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\alpha} \right) + \Gamma' \left(S_{i}^{\gamma} S_{j}^{\alpha} + S_{i}^{\gamma} S_{j}^{\beta} + S_{i}^{\alpha} S_{j}^{\gamma} + S_{i}^{\beta} S_{j}^{\gamma} \right) \right\}$$

• how to constrain parameters?

⇒ use phenomenology

 \Rightarrow effects that would not be there if not for the anisotropic terms?

• (*) note: $K=\Gamma=\Gamma'=0 \Rightarrow J_1 - J_3$ FM-AFM (Heisenberg) model

MM, PM, SJ, SW, RV, and **SC**, (unpublished).

P. A. Maksimov and **SC**, PRR **2**, 033011 (2020).

phenomenological constraints

Sahasrabudhe etal., 2019.

• B=0, zigzag order, **tilted** out of plane of Ru³⁺ ions [$\alpha \approx 35^{\circ}$]

o high field k=0, spin-flip (ESR, Raman) ⇒ non-linear vs H

o in-plane critical field are **nearly equal**: $H_{c,a} \approx H_{c,b} \approx 6-7 \text{ T}$

Sears *etal.*, 2020.

Winter *etal.*, 2017.

Wolter *etal.*, 2017.

other ways ...

Reference	Method	K	Г	Γ'	α (°)	$\Gamma + 2\Gamma'$	ΔH (T)
Kim et al. [29]	DFT+ t/U , P3	-6.55	5.25	-0.95	36.6	3.35	9.64
	DFT+SOC+t/U	-8.21	4.16	-0.93	40.9	2.3	7.03
	same+fixed lattice	-3.55	7.08	-0.54	28.4	6.01	14.4
Winter et al. [30]	DFT+ED, $C2$	-6.67	6.6	-0.87	34.4	4.87	12.2
Ran et al. [34]	LSWT, INS fit	-6.8	9.5		30.1	9.5	16.6
Hou et al. [31]	DFT+ t/U , $U = 2.5 \text{eV}$	-14.4	6.43		41.1	6.43	7.96
	same, $U = 3.0 \text{eV}$	-12.2	4.83		42.2	4.83	5.74
	same, $U = 3.5 \text{eV}$	-10.7	3.8		43.2	3.8	4.36
Wang et al. [32]	DFT+ t/U , P3	-10.9	6.1		38.9	6.1	8.15
	same, $C2$	-5.5	7.6		30.2	7.6	13.3
Winter et al. [35]	Ab initio+INS fit	-5.0	2.5		40.0	2.5	3.22
Suzuki et al. [36]	ED, C_p fit	-24.4	5.25	-0.95	47.3	3.35	6.76
Cookmeyer et al. [37]	thermal Hall fit	-5.0	2.5		40.0	2.5	3.22
Wu et al. [38]	LSWT, THz fit	-2.8	2.4		34.6	2.4	3.68
Ozel et al. [39]	same	-3.5	2.35		37.0	2.35	3.34
Eichstaedt et al. [33]	DFT+Wannier+ t/U	-14.3	9.8	-2.23	38.3	5.33	18.1
Sahasrabudhe et al. $[42]$	ED, Raman fit	-10.0	3.75		42.7	3.75	4.38
Sears et al. [40]	Magnetization fit	-10.0	10.6	-0.9	33.4	8.8	19.0
		-10.0	8.8		34.3	8.8	13.6
Laurell et al. [41]	ED, C_p fit	-15.1	10.1	-0.12	37.2	9.86	14.6
Suzuki et al. [43]	RIXS	-5.0	2.5	+0.1	39.8	2.7	3.03
Kaib et al. [44]	GGA+U	-10.1	9.35	-0.73	34.5	7.89	16.0
Andrade et al. [45]	χ	-6.6	6.6		33.1	6.6	10.6
Janssen et al. [46]	LSWT+3D	-10.0	5.0		40.0	5.0	6.43
Li et al. [47]	C_m, χ	-25.0	7.5	-0.5	44.8	6.5	9.03
Ran et al. [48]	polarized INS	-7.2	5.6		35.6	5.6	8.33
Samarakoon et al. [49]	Machine learning, INS	-5.3	0.15		36.4	0.15	0.11
Liu et al. [50]	downfolding	-5.0	2.8	+0.7	37.3	4.2	2.37

#1: tilt angle α

- o (classical) tilt angle α depends **only** on K, Γ , and Γ'
- \circ -- experiments: α ≈ 32°..35°, ED suggest modest quantum corrections

J. Chaloupka and G. Khaliullin, 2016; H. B. Cao *etal.*, 2016; Sears *etal.*, 2020.

#2: ESR, THz, Raman (k=0 spin-flip)

#2: "ESR parameter"

P. A. Maksimov and **SC**, PRR **2**, 033011 (2020).

#3: in-plane critical fields $H_{c,a} \approx H_{c,b}$

present from Giniyat...

MM, PM, SJ, SW, RV, and **SC**, (unpublished).

Liu, Chaloupka, and Khaliullin, PRB (2022)

3 constraints, 3 parameters

◦ $\Gamma + 2\Gamma' = 7.5 - 10$ meV; $\Delta H_c = 0 - 1.5$ T; $\alpha = 30^{\circ} - 37^{\circ}$ ⇒ strongest bounds are on Γ and Γ'

P. A. Maksimov and **SC**, PRR **2**, 033011 (2020).

point #0: $J-J_3$ phase diagram

main point

 \checkmark

 \checkmark

part B: better axes??

$$\begin{array}{l} XXZ-J_{\pm\pm}-J_{z\pm} \text{ model virtues?} \\ \hline \hat{\mathcal{H}} = \hat{\mathcal{H}}_{1} + \hat{\mathcal{H}}_{3} = \sum_{\langle ij \rangle} \mathbf{S}_{i}^{\mathrm{T}} \hat{J}_{ij} \mathbf{S}_{j} + J_{3} \sum_{\langle ij \rangle_{3}} \mathbf{S}_{i} \cdot \mathbf{S}_{j} \\ \hline \mathcal{H}_{1} = \sum_{\langle ij \rangle_{\gamma}} \left\{ J \mathbf{S}_{i} \cdot \mathbf{S}_{j} + KS_{i}^{\gamma} S_{j}^{\gamma} + \Gamma \left(S_{i}^{\alpha} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\alpha} \right) + \Gamma' \left(S_{i}^{\gamma} S_{j}^{\alpha} + S_{i}^{\gamma} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\gamma} \right) \right\} \end{array}$$

$$\mathcal{H}_{1} = \sum_{\langle ij \rangle} \left\{ \mathsf{J}_{1} \Big[\Delta S_{i}^{z} S_{j}^{z} + S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y} \Big] \right\} \mathsf{XXZ} \qquad \begin{bmatrix} \tilde{\varphi}_{\alpha} = \{0, 2\pi/3, -2\pi/3\} \\ -2\mathsf{J}_{\pm\pm} \Big[\cos \tilde{\varphi}_{\alpha} \left(S_{i}^{x} S_{j}^{x} - S_{i}^{y} S_{j}^{y} \right) - \sin \tilde{\varphi}_{\alpha} \left(S_{i}^{x} S_{j}^{y} + S_{i}^{y} S_{j}^{x} \right) \Big] \\ -\mathsf{J}_{z\pm} \Big[\cos \tilde{\varphi}_{\alpha} \left(S_{i}^{x} S_{j}^{z} + S_{i}^{z} S_{j}^{x} \right) + \sin \tilde{\varphi}_{\alpha} \left(S_{i}^{y} S_{j}^{z} + S_{i}^{z} S_{j}^{y} \right) \Big] \right\}$$

- exchange matrix **not invariant** under axis transformation
- $\circ \Rightarrow$ more **intuitive** terms and quantities; fewer bond-dependent terms
- $\circ \Rightarrow$ connection to other models in frustrated magnetism
- o ⇒ fewer terms?, simpler model?

intuitive quantities...

• ESR gap, $E_{k=0}$, for k=0 spin-flip excitation

$$\varepsilon_0^{(0)} = \sqrt{h(h + 3S(\Gamma + 2\Gamma'))}, \implies \varepsilon_0^{(0)} = \sqrt{h(h - 3SJ_1(1 - \Delta))}$$

- $\circ \Rightarrow \Gamma + 2\Gamma'$ is **just** a complicated way of writing **easy-plane anisotropy**
- \circ tilt angle

$$\tan 2\alpha = 4\sqrt{2} \cdot \frac{\Gamma - K - \Gamma'}{7\Gamma + 2K + 2\Gamma'} \implies \left(\tan 2\alpha = \frac{4\mathsf{J}_{\mathsf{z}\pm}}{\mathsf{J}_1(1-\Delta) + 4\mathsf{J}_{\pm\pm}}\right)$$

○ ⇒ **key** term: $J_{z\pm}$ (**naturally** yields the out-of-plane tilt of spins)

$$\mathcal{H}_{1} = \sum_{\langle ij \rangle} \left\{ \mathsf{J}_{1} \left[\Delta S_{i}^{z} S_{j}^{z} + S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y} \right] \\ - 2\mathsf{J}_{\pm\pm} \left[\cos \tilde{\varphi}_{\alpha} \left(S_{i}^{x} S_{j}^{x} - S_{i}^{y} S_{j}^{y} \right) - \sin \tilde{\varphi}_{\alpha} \left(S_{i}^{x} S_{j}^{y} + S_{i}^{y} S_{j}^{x} \right) \right] \\ - \mathsf{J}_{z\pm} \left[\cos \tilde{\varphi}_{\alpha} \left(S_{i}^{x} S_{j}^{z} + S_{i}^{z} S_{j}^{x} \right) + \sin \tilde{\varphi}_{\alpha} \left(S_{i}^{y} S_{j}^{z} + S_{i}^{z} S_{j}^{y} \right) \right] \right\}$$

MM, PM, SJ, SW, RV, and **SC**, (unpublished).

$K-J-\Gamma-\Gamma' \Rightarrow J_1-\Delta-[XXZ]-J_{\pm\pm}-J_{z\pm}$ translation

fewer parameters...

many prior attempts to infer α -RuCl₃ parameters: \circ implied J₁-J_{z±}-J₃ model with **easy-plane** FM J₁, AFM J₃, + large J_{z±}

P. A. Maksimov and **SC**, PRR **2**, 033011 (2020).

present from Giniyat...

Liu, Chaloupka, and Khaliullin, PRB (2022)

$J_1-J_{z\pm}-J_3$ ($\Delta_1=0$) model, phase diagram?

where are we? ZZ near IC, next to FM phase

MM, PM, SJ, SW, RV, and **SC**, (unpublished).

LT vs ED

MM, PM, SJ, SW, RV, and **SC**, (unpublished).

IC phases? DMRG: counter-rotating spirals!

- ☑ two types of IC phases ⇒
 orientations of the ordering vector,
 phase shift, deformation
- ☑ in a remarkable agreement with LT

ICTP, 12-07-23

summary

 \square there is a better, more intuitive parametrization of the α -RuCl₃ model

- \square α -RuCl₃ is a **ferro-antiferromagnet** with an **easy-plane** FM J₁, AFM J₃, and large anisotropic J_{z±}. Proximity of the ZZ phase to IC phase is of interest
- \square parameters yield adequate phenomenology \Rightarrow strong constraints
- \square ICs = counter-rotating helices

P. A. Maksimov and **SC**, PRR **2**, 033011 (2020).