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The quantum spin liquid is an exotic quantum state of matter in magnets. This state is a spin analog of
liquid helium that does not solidify down to the lowest temperature due to strong quantum fluctuations. In
conventional fluids, the liquid and gas possess the same symmetry and adiabatically connect to each other
by bypassing the critical end point. We find that the situation is qualitatively different in quantum spin
liquids realized in a three-dimensional Kitaev model; both gapless and gapped quantum spin liquid phases
at low temperatures are always distinguished from the high-temperature paramagnet (spin gas) by a phase
transition. The results challenge the common belief that the absence of thermodynamic singularity down to
the lowest temperature is a symptom of a quantum spin liquid.
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A magnetic state called the quantum spin liquid (QSL),
where long-range ordering is suppressed by quantum
fluctuations, is a new state of matter in condensed matter
physics [1]. Tremendous efforts have been devoted to the
realization of the QSL, and several candidates were recently
discovered in quasi two-dimensional (2D) and three-
dimensional (3D) compounds [2–6]. In these compounds,
the QSL is usually identified by the absence of anomalies in
the temperature (T) dependence of physical quantities.
Namely, it is implicitly supposed that a spin “gas” corre-
sponding to the high-T paramagnet is adiabatically con-
nected with the QSL. This common belief lends itself to the
fact that liquid and gas are adiabatically connectedwith each
other in conventional fluids. In fact, the concept of the QSL
was originally introduced on the analogy of helium in which
the liquid phase is retained down to the lowest T due to
strong quantum fluctuations [7].
In general, however, liquid and gas are distinguished by a

discontinuous phase transition, while the adiabatic con-
nection between them is guaranteed beyond the critical end
point. Hence, a phase transition separating paramagnet and
the QSL is also expected. Nevertheless, the theory for
thermodynamics of QSLs has not been seriously inves-
tigated thus far, and a thermodynamic phase transition for a
QSL has not ever been reported beyond the mean-field
approximation. It is highly nontrivial whether a liquid-gas
transition exists in quantum spin systems in a similar
manner to that in conventional fluids. The issue is critical
not only for theoretical understanding of QSLs but also for
the interpretation of existing and forthcoming experiments.
The lack of theoretical investigation of thermodynamics

of QSLs is mainly due to the following two difficulties.
One is the scarcity of well-identified QSLs. It is hard to
characterize the QSL because spatial quantum entangle-
ment and many-body effects are essential for realizing
the QSL [8,9]. The other difficulty lies in less choice of

effective theoretical tools. Any biased approximation might
be harmful for taking into account strong quantum and
thermal fluctuations.
In this Letter, we solve these difficulties by investigating

a 3D extension of the Kitaev model [10], which supports
well-identified QSLs as the exact ground states [11], by
applying an unbiased quantum Monte Carlo (MC) simu-
lation without a negative sign problem. By clarifying the
phase diagram in the whole parameter space, we show that
both the gapped and gapless quantum spin liquid phases
exhibit a finite-temperature phase transition to the high-
temperature paramagnet. The results unveil that the “vapori-
zation” of the quantum spin liquids are quantitatively
different from the conventional liquid-gas transition.
The Kitaev model is a quantum spin model with

anisotropic exchange interactions for nearest neighbor
spins, whose Hamiltonian is given by

H ¼ −Jx
X

hijix

σxi σ
x
j − Jy

X

hijiy

σyi σ
y
j − Jz

X

hijiz

σziσ
z
j: ð1Þ

Here, σxi , σ
y
i , and σzi are Pauli matrices describing a spin-

1=2 state at a site i; Jx, Jy, and Jz are exchange constants
[10]. This model was originally introduced on a honey-
comb lattice shown in Fig. 1(a). The interactions Jx, Jy, and
Jz are defined on three different types of the nearest
neighbor bonds, x (blue), y (green), and z bonds (red),
respectively [see Fig. 1(a)]. This model is exactly solvable
by introducingMajorana fermions [10]. The ground state of
the Kitaev model is a QSL, where spin-spin correlations
vanish except for nearest neighbors [12]. The ground state
phase diagram consists of gapless and gapped QSL phases
[10], as shown in Fig. 1(c). The QSL with gapless excita-
tion is stabilized in the center triangle including the isotropic
case Jx ¼ Jy ¼ Jz, while the QSL with an excitation
gap appears in the outer three triangles with anisotropic
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1=2 state at a site i; Jx, Jy, and Jz are exchange constants
[10]. This model was originally introduced on a honey-
comb lattice shown in Fig. 1(a). The interactions Jx, Jy, and
Jz are defined on three different types of the nearest
neighbor bonds, x (blue), y (green), and z bonds (red),
respectively [see Fig. 1(a)]. This model is exactly solvable
by introducingMajorana fermions [10]. The ground state of
the Kitaev model is a QSL, where spin-spin correlations
vanish except for nearest neighbors [12]. The ground state
phase diagram consists of gapless and gapped QSL phases
[10], as shown in Fig. 1(c). The QSL with gapless excita-
tion is stabilized in the center triangle including the isotropic
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A magnetic state called the quantum spin liquid (QSL),
where long-range ordering is suppressed by quantum
fluctuations, is a new state of matter in condensed matter
physics [1]. Tremendous efforts have been devoted to the
realization of the QSL, and several candidates were recently
discovered in quasi two-dimensional (2D) and three-
dimensional (3D) compounds [2–6]. In these compounds,
the QSL is usually identified by the absence of anomalies in
the temperature (T) dependence of physical quantities.
Namely, it is implicitly supposed that a spin “gas” corre-
sponding to the high-T paramagnet is adiabatically con-
nected with the QSL. This common belief lends itself to the
fact that liquid and gas are adiabatically connectedwith each
other in conventional fluids. In fact, the concept of the QSL
was originally introduced on the analogy of helium in which
the liquid phase is retained down to the lowest T due to
strong quantum fluctuations [7].
In general, however, liquid and gas are distinguished by a

discontinuous phase transition, while the adiabatic con-
nection between them is guaranteed beyond the critical end
point. Hence, a phase transition separating paramagnet and
the QSL is also expected. Nevertheless, the theory for
thermodynamics of QSLs has not been seriously inves-
tigated thus far, and a thermodynamic phase transition for a
QSL has not ever been reported beyond the mean-field
approximation. It is highly nontrivial whether a liquid-gas
transition exists in quantum spin systems in a similar
manner to that in conventional fluids. The issue is critical
not only for theoretical understanding of QSLs but also for
the interpretation of existing and forthcoming experiments.
The lack of theoretical investigation of thermodynamics

of QSLs is mainly due to the following two difficulties.
One is the scarcity of well-identified QSLs. It is hard to
characterize the QSL because spatial quantum entangle-
ment and many-body effects are essential for realizing
the QSL [8,9]. The other difficulty lies in less choice of

effective theoretical tools. Any biased approximation might
be harmful for taking into account strong quantum and
thermal fluctuations.
In this Letter, we solve these difficulties by investigating

a 3D extension of the Kitaev model [10], which supports
well-identified QSLs as the exact ground states [11], by
applying an unbiased quantum Monte Carlo (MC) simu-
lation without a negative sign problem. By clarifying the
phase diagram in the whole parameter space, we show that
both the gapped and gapless quantum spin liquid phases
exhibit a finite-temperature phase transition to the high-
temperature paramagnet. The results unveil that the “vapori-
zation” of the quantum spin liquids are quantitatively
different from the conventional liquid-gas transition.
The Kitaev model is a quantum spin model with

anisotropic exchange interactions for nearest neighbor
spins, whose Hamiltonian is given by
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Here, σxi , σ
y
i , and σzi are Pauli matrices describing a spin-

1=2 state at a site i; Jx, Jy, and Jz are exchange constants
[10]. This model was originally introduced on a honey-
comb lattice shown in Fig. 1(a). The interactions Jx, Jy, and
Jz are defined on three different types of the nearest
neighbor bonds, x (blue), y (green), and z bonds (red),
respectively [see Fig. 1(a)]. This model is exactly solvable
by introducingMajorana fermions [10]. The ground state of
the Kitaev model is a QSL, where spin-spin correlations
vanish except for nearest neighbors [12]. The ground state
phase diagram consists of gapless and gapped QSL phases
[10], as shown in Fig. 1(c). The QSL with gapless excita-
tion is stabilized in the center triangle including the isotropic
case Jx ¼ Jy ¼ Jz, while the QSL with an excitation
gap appears in the outer three triangles with anisotropic
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imaginary time vs. measurement-only

• brickwall circuit


• no disorder


• τ ≪ 1

Hamiltonian ground state

e−βH |ψ0⟩

e−τHr
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imaginary time vs. measurement-only

• brickwall circuit


• no disorder


• τ ≪ 1

Hamiltonian ground state Floquet weak measurement

(e∓τHr⋯e∓τH0) |ψ0⟩

• brickwall circuit


• Born disorder


• τ ∈ [0, + ∞)

random weak/strong measurement

• stochastic circuit


• Born disorder


• τ ∈ [0, + ∞)

e−βH |ψ0⟩

e−τHr
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random projective Kitaev measurements
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Nahum, Skinner 2020; Lavasani, Luo, Vijay 2022; Sriram, Rakovszky, Khemani, Ippoliti 2022; Zhu, Tantivasadakarn, ST 2023: + Majorana interaction

Guo-Yi Zhu
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random projective Kitaev measurements

a snapshot: randomly chosen measurements

Clifford circuit 

even interacting problem can be simulated in 
polynomial time (in Heisenberg picture)
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entanglement phase diagram
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Nahum, Skinner 2020; Lavasani, Luo, Vijay 2023; Sriram, Rakovszky, Khemani, Ippoliti 2023 
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measurement, teleportation, and beyond

long-range entangled 
“valence bond crystal”

many random 
measurements

teleportation
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measurement, teleportation, and beyond

weak strong

?
measurement strength
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dynamical protocol

time (r)

ZZ0

ρ0 ∝ 𝕀
x

y

Hastings, Haah (2021)
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Majoranas are confined in hard-core dimers
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dynamical protocol

Questions:


• How to liberate Majorana?


• Stability of the code?
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Register Gauge flux
H = ±XX±YY±∞ZZ

Majoranas are confined in hard-core dimers

Gauge flux  a glassy toric code→

⋯ x − y + r mod 3 = bond

x
y

Hastings, Haah (2021)

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

dynamical protocol

Questions:


• How to liberate Majorana?


• Stability of the code?
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Ws Ŵ

Register Gauge flux
H = ±XX±YY±∞ZZ

Majoranas are confined in hard-core dimers

Gauge flux  a glassy toric code→

⋯ x − y + r mod 3 = bond

x
y coherent error / weak measurement  


soften dimers – a channel for Majorana to escape !

→
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The quantum spin liquid is an exotic quantum state of matter in magnets. This state is a spin analog of
liquid helium that does not solidify down to the lowest temperature due to strong quantum fluctuations. In
conventional fluids, the liquid and gas possess the same symmetry and adiabatically connect to each other
by bypassing the critical end point. We find that the situation is qualitatively different in quantum spin
liquids realized in a three-dimensional Kitaev model; both gapless and gapped quantum spin liquid phases
at low temperatures are always distinguished from the high-temperature paramagnet (spin gas) by a phase
transition. The results challenge the common belief that the absence of thermodynamic singularity down to
the lowest temperature is a symptom of a quantum spin liquid.
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A magnetic state called the quantum spin liquid (QSL),
where long-range ordering is suppressed by quantum
fluctuations, is a new state of matter in condensed matter
physics [1]. Tremendous efforts have been devoted to the
realization of the QSL, and several candidates were recently
discovered in quasi two-dimensional (2D) and three-
dimensional (3D) compounds [2–6]. In these compounds,
the QSL is usually identified by the absence of anomalies in
the temperature (T) dependence of physical quantities.
Namely, it is implicitly supposed that a spin “gas” corre-
sponding to the high-T paramagnet is adiabatically con-
nected with the QSL. This common belief lends itself to the
fact that liquid and gas are adiabatically connectedwith each
other in conventional fluids. In fact, the concept of the QSL
was originally introduced on the analogy of helium in which
the liquid phase is retained down to the lowest T due to
strong quantum fluctuations [7].
In general, however, liquid and gas are distinguished by a

discontinuous phase transition, while the adiabatic con-
nection between them is guaranteed beyond the critical end
point. Hence, a phase transition separating paramagnet and
the QSL is also expected. Nevertheless, the theory for
thermodynamics of QSLs has not been seriously inves-
tigated thus far, and a thermodynamic phase transition for a
QSL has not ever been reported beyond the mean-field
approximation. It is highly nontrivial whether a liquid-gas
transition exists in quantum spin systems in a similar
manner to that in conventional fluids. The issue is critical
not only for theoretical understanding of QSLs but also for
the interpretation of existing and forthcoming experiments.
The lack of theoretical investigation of thermodynamics

of QSLs is mainly due to the following two difficulties.
One is the scarcity of well-identified QSLs. It is hard to
characterize the QSL because spatial quantum entangle-
ment and many-body effects are essential for realizing
the QSL [8,9]. The other difficulty lies in less choice of

effective theoretical tools. Any biased approximation might
be harmful for taking into account strong quantum and
thermal fluctuations.
In this Letter, we solve these difficulties by investigating

a 3D extension of the Kitaev model [10], which supports
well-identified QSLs as the exact ground states [11], by
applying an unbiased quantum Monte Carlo (MC) simu-
lation without a negative sign problem. By clarifying the
phase diagram in the whole parameter space, we show that
both the gapped and gapless quantum spin liquid phases
exhibit a finite-temperature phase transition to the high-
temperature paramagnet. The results unveil that the “vapori-
zation” of the quantum spin liquids are quantitatively
different from the conventional liquid-gas transition.
The Kitaev model is a quantum spin model with

anisotropic exchange interactions for nearest neighbor
spins, whose Hamiltonian is given by

H ¼ −Jx
X

hijix

σxi σ
x
j − Jy

X

hijiy

σyi σ
y
j − Jz

X

hijiz

σziσ
z
j: ð1Þ

Here, σxi , σ
y
i , and σzi are Pauli matrices describing a spin-

1=2 state at a site i; Jx, Jy, and Jz are exchange constants
[10]. This model was originally introduced on a honey-
comb lattice shown in Fig. 1(a). The interactions Jx, Jy, and
Jz are defined on three different types of the nearest
neighbor bonds, x (blue), y (green), and z bonds (red),
respectively [see Fig. 1(a)]. This model is exactly solvable
by introducingMajorana fermions [10]. The ground state of
the Kitaev model is a QSL, where spin-spin correlations
vanish except for nearest neighbors [12]. The ground state
phase diagram consists of gapless and gapped QSL phases
[10], as shown in Fig. 1(c). The QSL with gapless excita-
tion is stabilized in the center triangle including the isotropic
case Jx ¼ Jy ¼ Jz, while the QSL with an excitation
gap appears in the outer three triangles with anisotropic
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A magnetic state called the quantum spin liquid (QSL),
where long-range ordering is suppressed by quantum
fluctuations, is a new state of matter in condensed matter
physics [1]. Tremendous efforts have been devoted to the
realization of the QSL, and several candidates were recently
discovered in quasi two-dimensional (2D) and three-
dimensional (3D) compounds [2–6]. In these compounds,
the QSL is usually identified by the absence of anomalies in
the temperature (T) dependence of physical quantities.
Namely, it is implicitly supposed that a spin “gas” corre-
sponding to the high-T paramagnet is adiabatically con-
nected with the QSL. This common belief lends itself to the
fact that liquid and gas are adiabatically connectedwith each
other in conventional fluids. In fact, the concept of the QSL
was originally introduced on the analogy of helium in which
the liquid phase is retained down to the lowest T due to
strong quantum fluctuations [7].
In general, however, liquid and gas are distinguished by a

discontinuous phase transition, while the adiabatic con-
nection between them is guaranteed beyond the critical end
point. Hence, a phase transition separating paramagnet and
the QSL is also expected. Nevertheless, the theory for
thermodynamics of QSLs has not been seriously inves-
tigated thus far, and a thermodynamic phase transition for a
QSL has not ever been reported beyond the mean-field
approximation. It is highly nontrivial whether a liquid-gas
transition exists in quantum spin systems in a similar
manner to that in conventional fluids. The issue is critical
not only for theoretical understanding of QSLs but also for
the interpretation of existing and forthcoming experiments.
The lack of theoretical investigation of thermodynamics

of QSLs is mainly due to the following two difficulties.
One is the scarcity of well-identified QSLs. It is hard to
characterize the QSL because spatial quantum entangle-
ment and many-body effects are essential for realizing
the QSL [8,9]. The other difficulty lies in less choice of

effective theoretical tools. Any biased approximation might
be harmful for taking into account strong quantum and
thermal fluctuations.
In this Letter, we solve these difficulties by investigating

a 3D extension of the Kitaev model [10], which supports
well-identified QSLs as the exact ground states [11], by
applying an unbiased quantum Monte Carlo (MC) simu-
lation without a negative sign problem. By clarifying the
phase diagram in the whole parameter space, we show that
both the gapped and gapless quantum spin liquid phases
exhibit a finite-temperature phase transition to the high-
temperature paramagnet. The results unveil that the “vapori-
zation” of the quantum spin liquids are quantitatively
different from the conventional liquid-gas transition.
The Kitaev model is a quantum spin model with

anisotropic exchange interactions for nearest neighbor
spins, whose Hamiltonian is given by

H ¼ −Jx
X

hijix

σxi σ
x
j − Jy

X

hijiy

σyi σ
y
j − Jz

X

hijiz

σziσ
z
j: ð1Þ

Here, σxi , σ
y
i , and σzi are Pauli matrices describing a spin-

1=2 state at a site i; Jx, Jy, and Jz are exchange constants
[10]. This model was originally introduced on a honey-
comb lattice shown in Fig. 1(a). The interactions Jx, Jy, and
Jz are defined on three different types of the nearest
neighbor bonds, x (blue), y (green), and z bonds (red),
respectively [see Fig. 1(a)]. This model is exactly solvable
by introducingMajorana fermions [10]. The ground state of
the Kitaev model is a QSL, where spin-spin correlations
vanish except for nearest neighbors [12]. The ground state
phase diagram consists of gapless and gapped QSL phases
[10], as shown in Fig. 1(c). The QSL with gapless excita-
tion is stabilized in the center triangle including the isotropic
case Jx ¼ Jy ¼ Jz, while the QSL with an excitation
gap appears in the outer three triangles with anisotropic
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conventional fluids, the liquid and gas possess the same symmetry and adiabatically connect to each other
by bypassing the critical end point. We find that the situation is qualitatively different in quantum spin
liquids realized in a three-dimensional Kitaev model; both gapless and gapped quantum spin liquid phases
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the lowest temperature is a symptom of a quantum spin liquid.
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A magnetic state called the quantum spin liquid (QSL),
where long-range ordering is suppressed by quantum
fluctuations, is a new state of matter in condensed matter
physics [1]. Tremendous efforts have been devoted to the
realization of the QSL, and several candidates were recently
discovered in quasi two-dimensional (2D) and three-
dimensional (3D) compounds [2–6]. In these compounds,
the QSL is usually identified by the absence of anomalies in
the temperature (T) dependence of physical quantities.
Namely, it is implicitly supposed that a spin “gas” corre-
sponding to the high-T paramagnet is adiabatically con-
nected with the QSL. This common belief lends itself to the
fact that liquid and gas are adiabatically connectedwith each
other in conventional fluids. In fact, the concept of the QSL
was originally introduced on the analogy of helium in which
the liquid phase is retained down to the lowest T due to
strong quantum fluctuations [7].
In general, however, liquid and gas are distinguished by a

discontinuous phase transition, while the adiabatic con-
nection between them is guaranteed beyond the critical end
point. Hence, a phase transition separating paramagnet and
the QSL is also expected. Nevertheless, the theory for
thermodynamics of QSLs has not been seriously inves-
tigated thus far, and a thermodynamic phase transition for a
QSL has not ever been reported beyond the mean-field
approximation. It is highly nontrivial whether a liquid-gas
transition exists in quantum spin systems in a similar
manner to that in conventional fluids. The issue is critical
not only for theoretical understanding of QSLs but also for
the interpretation of existing and forthcoming experiments.
The lack of theoretical investigation of thermodynamics

of QSLs is mainly due to the following two difficulties.
One is the scarcity of well-identified QSLs. It is hard to
characterize the QSL because spatial quantum entangle-
ment and many-body effects are essential for realizing
the QSL [8,9]. The other difficulty lies in less choice of

effective theoretical tools. Any biased approximation might
be harmful for taking into account strong quantum and
thermal fluctuations.
In this Letter, we solve these difficulties by investigating

a 3D extension of the Kitaev model [10], which supports
well-identified QSLs as the exact ground states [11], by
applying an unbiased quantum Monte Carlo (MC) simu-
lation without a negative sign problem. By clarifying the
phase diagram in the whole parameter space, we show that
both the gapped and gapless quantum spin liquid phases
exhibit a finite-temperature phase transition to the high-
temperature paramagnet. The results unveil that the “vapori-
zation” of the quantum spin liquids are quantitatively
different from the conventional liquid-gas transition.
The Kitaev model is a quantum spin model with

anisotropic exchange interactions for nearest neighbor
spins, whose Hamiltonian is given by

H ¼ −Jx
X

hijix

σxi σ
x
j − Jy

X

hijiy

σyi σ
y
j − Jz

X

hijiz

σziσ
z
j: ð1Þ

Here, σxi , σ
y
i , and σzi are Pauli matrices describing a spin-

1=2 state at a site i; Jx, Jy, and Jz are exchange constants
[10]. This model was originally introduced on a honey-
comb lattice shown in Fig. 1(a). The interactions Jx, Jy, and
Jz are defined on three different types of the nearest
neighbor bonds, x (blue), y (green), and z bonds (red),
respectively [see Fig. 1(a)]. This model is exactly solvable
by introducingMajorana fermions [10]. The ground state of
the Kitaev model is a QSL, where spin-spin correlations
vanish except for nearest neighbors [12]. The ground state
phase diagram consists of gapless and gapped QSL phases
[10], as shown in Fig. 1(c). The QSL with gapless excita-
tion is stabilized in the center triangle including the isotropic
case Jx ¼ Jy ¼ Jz, while the QSL with an excitation
gap appears in the outer three triangles with anisotropic
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A magnetic state called the quantum spin liquid (QSL),
where long-range ordering is suppressed by quantum
fluctuations, is a new state of matter in condensed matter
physics [1]. Tremendous efforts have been devoted to the
realization of the QSL, and several candidates were recently
discovered in quasi two-dimensional (2D) and three-
dimensional (3D) compounds [2–6]. In these compounds,
the QSL is usually identified by the absence of anomalies in
the temperature (T) dependence of physical quantities.
Namely, it is implicitly supposed that a spin “gas” corre-
sponding to the high-T paramagnet is adiabatically con-
nected with the QSL. This common belief lends itself to the
fact that liquid and gas are adiabatically connectedwith each
other in conventional fluids. In fact, the concept of the QSL
was originally introduced on the analogy of helium in which
the liquid phase is retained down to the lowest T due to
strong quantum fluctuations [7].
In general, however, liquid and gas are distinguished by a

discontinuous phase transition, while the adiabatic con-
nection between them is guaranteed beyond the critical end
point. Hence, a phase transition separating paramagnet and
the QSL is also expected. Nevertheless, the theory for
thermodynamics of QSLs has not been seriously inves-
tigated thus far, and a thermodynamic phase transition for a
QSL has not ever been reported beyond the mean-field
approximation. It is highly nontrivial whether a liquid-gas
transition exists in quantum spin systems in a similar
manner to that in conventional fluids. The issue is critical
not only for theoretical understanding of QSLs but also for
the interpretation of existing and forthcoming experiments.
The lack of theoretical investigation of thermodynamics

of QSLs is mainly due to the following two difficulties.
One is the scarcity of well-identified QSLs. It is hard to
characterize the QSL because spatial quantum entangle-
ment and many-body effects are essential for realizing
the QSL [8,9]. The other difficulty lies in less choice of

effective theoretical tools. Any biased approximation might
be harmful for taking into account strong quantum and
thermal fluctuations.
In this Letter, we solve these difficulties by investigating

a 3D extension of the Kitaev model [10], which supports
well-identified QSLs as the exact ground states [11], by
applying an unbiased quantum Monte Carlo (MC) simu-
lation without a negative sign problem. By clarifying the
phase diagram in the whole parameter space, we show that
both the gapped and gapless quantum spin liquid phases
exhibit a finite-temperature phase transition to the high-
temperature paramagnet. The results unveil that the “vapori-
zation” of the quantum spin liquids are quantitatively
different from the conventional liquid-gas transition.
The Kitaev model is a quantum spin model with

anisotropic exchange interactions for nearest neighbor
spins, whose Hamiltonian is given by

H ¼ −Jx
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Here, σxi , σ
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i , and σzi are Pauli matrices describing a spin-

1=2 state at a site i; Jx, Jy, and Jz are exchange constants
[10]. This model was originally introduced on a honey-
comb lattice shown in Fig. 1(a). The interactions Jx, Jy, and
Jz are defined on three different types of the nearest
neighbor bonds, x (blue), y (green), and z bonds (red),
respectively [see Fig. 1(a)]. This model is exactly solvable
by introducingMajorana fermions [10]. The ground state of
the Kitaev model is a QSL, where spin-spin correlations
vanish except for nearest neighbors [12]. The ground state
phase diagram consists of gapless and gapped QSL phases
[10], as shown in Fig. 1(c). The QSL with gapless excita-
tion is stabilized in the center triangle including the isotropic
case Jx ¼ Jy ¼ Jz, while the QSL with an excitation
gap appears in the outer three triangles with anisotropic
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Floquet code — conclusions

• frustration & qubit fractionalization 
by tunable weak measurement


• Floquet code breakdown to non-trivial 
state under coherent error


• Majoranas escape confinement and 
form long-range entangled liquid

Outlook


• Feed-forward deterministic preparation ?


• topological phase transition from a parent color code 
(+ Majorana interaction) ? π
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Guo-Yi Zhu & ST, arXiv: 2311.08450

dimerliquid

te
m

pe
ra

tu
re

weak strongmeasurement

qubit

Guo-Yi Zhu

http://www.thp.uni-koeln.de/trebst/




©  Simon Trebst

IBM quantum cloud devices

O
sp

re
y

Ea
gl

e

Falcon
H

um
m

ingbird

Condor

0 10 20 30 40 50
0

0.02

0.04

0.06

T [MHz]

�
m

ax

Condor
Osprey
Eagle
Hummingbird
Falcon

(a) (b)
IBM

NISQ devices built on transmon qubits

noisy intermediate
scale quantum
devices

heavy-hexagon  
geometry

Ising evolution gates
+

http://www.thp.uni-koeln.de/trebst/


©  Simon Trebst

IBM quantum cloud devices
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two-qubit parity checks
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