Qubit Fractionalization and Emergent Majorana Liquids in Quantum Circuits

Fractionalization and Emergent Gauge Fields in Quantum Matter ICTP Trieste, December 2023

Simon Trebst University of Cologne

QUANTUM COMPUTING

Fractionalization & Emergent Gauge Fields in Quantum Matter

finite-temperature Kitaev spin liquids

PRL 113, 197205 (2014)

PHYSICAL REVIEW LETTERS

Vaporization of Kitaev Spin Liquids

Joji Nasu,¹ Masafumi Udagawa,² and Yukitoshi Motome² ¹Department of Physics, Tokyo Institute of Technology, Ookayama, 2-12-1, Meguro, Tokyo 152-8551, Japan ²Department of Applied Physics, University of Tokyo, Hongo, 7-3-1, Bunkyo, Tokyo 113-8656, Japan (Received 24 July 2014; revised manuscript received 9 October 2014; published 7 November 2014)

week ending 7 NOVEMBER 2014

finite-temperature Kitaev spin liquids

PRL 113, 197205 (2014)

PHYSICAL REVIEW LETTERS

Vaporization of Kitaev Spin Liquids

Joji Nasu,¹ Masafumi Udagawa,² and Yukitoshi Motome² ¹Department of Physics, Tokyo Institute of Technology, Ookayama, 2-12-1, Meguro, Tokyo 152-8551, Japan ²Department of Applied Physics, University of Tokyo, Hongo, 7-3-1, Bunkyo, Tokyo 113-8656, Japan (Received 24 July 2014; revised manuscript received 9 October 2014; published 7 November 2014)

week ending 7 NOVEMBER 2014

finite-temperature Kitaev spin liquids

PRL 113, 197205 (2014)

PHYSICAL REVIEW LETTERS

Vaporization of Kitaev Spin Liquids

Joji Nasu,¹ Masafumi Udagawa,² and Yukitoshi Motome² ¹Department of Physics, Tokyo Institute of Technology, Ookayama, 2-12-1, Meguro, Tokyo 152-8551, Japan ²Department of Applied Physics, University of Tokyo, Hongo, 7-3-1, Bunkyo, Tokyo 113-8656, Japan (Received 24 July 2014; revised manuscript received 9 October 2014; published 7 November 2014)

week ending 7 NOVEMBER 2014

Fractionalization & Emergent Gauge Fields in Quantum Circuits

quantum circuits in a nutshell

Quantum computing in a nutshell, Qiskit documentation / IBM Quantum

quantum circuits in a nutshell

Quantum computing in a nutshell, Qiskit documentation / IBM Quantum

quantum measurements

"About your cat, Mr. Schrödinger — I have good news and bad news."

quantum measurements

"About your cat, Mr. Schrödinger — I have good news and bad news."

Quantum measurements can

extract information

from a system

quantum measurements

"About your cat, Mr. Schrödinger — I have good news and bad news."

Quantum measurements can

extract information

from a system

shape entanglement

of a quantum system

double-faced Janus

unitary circuit

unitary circuit

 $t \propto L$

- commuting
- parallelized
- no dynamics

- non-commuting
- sequential
- dynamics

- commuting
- parallelized
- no dynamics

Kitaev spin liquid

- non-commuting
- sequential
- dynamics

Nishimori's cat

- commuting
- parallelized
- no dynamics

Kitaev spin liquid

- non-commuting
- sequential
- dynamics

Nishimori's cat

Nishimori's cat

- commuting
- parallelized
- no dynamics

Kitaev spin liquid

- non-commuting
- sequential
- dynamics

Floquet codes

frustration and entanglement

ground state

minimizes global energy

dynamical state

eigenstate of measurements

frustration and entanglement

ground state

minimizes global energy

no state can satisfy every local interaction

dynamical state

eigenstate of measurements

frustration

non-commuting operators

- cannot be measured simultaneously
- will be over-written

imaginary time vs. measurement-only

Hamiltonian ground state

$$e^{-\beta H} |\psi_0\rangle$$

- brickwall circuit
- no disorder

•
$$\tau \ll 1$$

imaginary time vs. measurement-only

$$(\cdot \cdot e^{\mp \tau H_0}) |\psi_0\rangle$$

$$\in [0, +\infty)$$

imaginary time vs. measurement-only

$$\cdot \cdot e^{\mp \tau H_0} \left| \psi_0 \right\rangle$$

$$\equiv [0, +\infty)$$

random weak/strong measurement

- **stochastic** circuit
- Born disorder

•
$$\tau \in [0, +\infty)$$

random projective Kitaev measurements

Nahum, Skinner 2020; Lavasani, Luo, Vijay 2022; Sriram, Rakovszky, Khemani, Ippoliti 2022; Zhu, Tantivasadakarn, ST 2023: + Majorana interaction

© Simon Trebst

Guo-Yi Zhu

Nathanan Tantivasadakarn

random projective Kitaev measurements

Nahum, Skinner 2020; Lavasani, Luo, Vijay 2022; Sriram, Rakovszky, Khemani, Ippoliti 2022; Zhu, Tantivasadakarn, ST 2023: + Majorana interaction

Guo-Yi Zhu

Nathanan Tantivasadakarn

random projective Kitaev measurements

Nahum, Skinner 2020; Lavasani, Luo, Vijay 2022; Sriram, Rakovszky, Khemani, Ippoliti 2022; Zhu, Tantivasadakarn, ST 2023: + Majorana interaction

a snapshot: randomly chosen measurements

Guo-Yi Zhu

Nathanan Tantivasadakarn

random projective Kitaev measurements

Clifford circuit

even interacting problem can be simulated in polynomial time (in Heisenberg picture)

Nahum, Skinner 2020; Lavasani, Luo, Vijay 2022; Sriram, Rakovszky, Khemani, Ippoliti 2022; Zhu, Tantivasadakarn, ST 2023: + Majorana interaction

a snapshot: randomly chosen measurements

Guo-Yi Zhu

Nathanan Tantivasadakarn

Nahum, Skinner 2020; Lavasani, Luo, Vijay 2023; Sriram, Rakovszky, Khemani, Ippoliti 2023 **Zhu, Tantivasadakarn, ST 2023: + Majorana interaction**

Nahum, Skinner 2020; Lavasani, Luo, Vijay 2023; Sriram, Rakovszky, Khemani, Ippoliti 2023 **Zhu, Tantivasadakarn, ST 2023: + Majorana interaction**

Nahum, Skinner 2020; Lavasani, Luo, Vijay 2023; Sriram, Rakovszky, Khemani, Ippoliti 2023 **Zhu, Tantivasadakarn, ST 2023: + Majorana interaction**

Zhu, Tantivasadakarn, ST 2023: + Majorana interaction

measurement, teleportation, and beyond

long-range entangled "valence bond crystal"

measurement, teleportation, and beyond

space-time disorder

long-range entangled "valence bond crystal"

measurement, teleportation, and beyond

 $\rho_0 \propto \mathbb{I}$

 $\rho_0 \propto \mathbb{I}$

Hastings, Haah (2021)

$H = \pm \infty ZZ \quad \pm YY \quad \pm XX$

Gauge flux \rightarrow a glassy toric code

Majoranas are confined in *hard-core* dimers

 $\rho_0 \propto \mathbb{I}$

Hastings, Haah (2021)

$H = \pm \infty ZZ \quad \pm YY \quad \pm XX$

Gauge flux \rightarrow a glassy toric code

Majoranas are confined in *hard-core* dimers

Questions:

- How to liberate Majorana?
- Stability of the code?

 $\rho_0 \propto \mathbb{I}$

Hastings, Haah (2021)

$H = \pm \infty ZZ \quad \pm YY \quad \pm XX$

Gauge flux \rightarrow a glassy toric code

Majoranas are confined in *hard-core* dimers

Questions:

- How to liberate Majorana?
- Stability of the code?

coherent error / weak measurement \rightarrow soften dimers – a channel for Majorana to escape !

Guo-Yi Zhu

Guo-Yi Zhu

random Gaussian fermion circuit conditioned on gauge trajectory su

random Gaussian fermion circuit conditioned on gauge trajectory su

Majorana partition function

Born probability

but there is more – double-peaks

weak measurement-only circuit

but there is more – double-peaks

but there is more – double-peaks

purification of Majoranas

Majorana entropy density [ln 2]

$$S = \beta(E - F)$$

 $\boldsymbol{\aleph}$

dynamical critical exponent

summary

- frustration & qubit fractionalization by tunable weak measurement
- Floquet code breakdown to non-trivial state under coherent error
- Majoranas escape confinement and form long-range entangled liquid

Outlook

- Feed-forward deterministic preparation?
- topological phase transition from a parent color code (+ Majorana interaction)?

Guo-Yi Zhu & ST, arXiv: 2311.08450

IBM quantum cloud devices

NISQ devices built on transmon qubits

noisy intermediate scale quantum

geometry +

Ising evolution gates

IBM quantum cloud devices

parity checks

two-qubit parity checks

