Z2 spin liquids in spin-S Kitaev honeycomb model: An exact Z2 gauge structure in non-integrable models

HM, Phys. Rev. Lett. 130, 156701 (2023) (Editor's Suggestion) Ruizhi Liu, Ho Tat Lam, HM, Liujun Zou, arXiv:2310.16839 (2023)

Ho Tat Lam Ruizhi Liu (MIT) (Dalhousie & PI)

Liujun Zou (Perimeter)

Han Ma **Perimeter Institute**

Fractionalization and Emergent Gauge Fields in Quantum Matter, ICTP, Trieste, Dec.7, 2023

Kitaev honeycomb model

$$H = -\sum_{\mu} J_{\mu} \sum_{\langle ij \rangle \in I} J_{\mu} \sum_{\langle ij \rangle \in$$

Kitaev (2006)

- We study the higher spin version of it for possible spin liquids.
- Motivation I: It has spin liquid phases.
- Motivation II: Candidate materials have been proposed.

 $S_i^{\mu}S_j^{\mu}$

 μ

Baskaran, Sen, Shankar (2008) Lee, Kawashima, Kim (2020) Lee, Suzuki, Kim, Kawashima (2021) Chen, Genzor, Kim, and Kao (2022) Hickey, Berke, Stavropoulos, Kee and Trebst (2020) Dong and Sheng (2020)

 $\bullet \bullet \bullet \bullet \bullet \bullet$

Candidate Kitaev Materials

ONa OIr ●O

 Na_2IrO_3

honeycomb iridates

Xu, Feng, Xiang, Bellaiche (2018) Stavropoulos, Pereira, and Kee (2019) Samarakoon, Chen, Zhou, Garlea (2021)

Kitaev honeycomb model

- Motivation III: there are extensive local conserved quantities/commuting operators.
 - 1. The model of spin-1/2 is solvable
 - 2. Higher spin model is <u>not</u> solvable due to larger Hilbert space.
 - 3. $W_p(\bigcirc)$ is \mathbb{Z}_2 gauge flux in spin-1/2 model
 - 4. Can we understand the $W_p(\bigcirc)$ the same way in higher spin model?

Spin-1/2 Kitaev model

<u>Review the spin-1/2 Kitaev model and its flux operators</u>

Parton construction – spin-1/2

Local constraint: $\gamma^0 \gamma^x \gamma^y \gamma^z = 1$

 \mathbb{Z}_2 gauge redundancy: $\gamma^{0,\mu} \rightarrow -\gamma^{0,\mu}$

 $\begin{array}{c} & & & \\ &$ $\alpha, \beta = 0, \mu$ $2S^{\mu} = i\gamma^{0}\gamma^{\mu}$ $\mu = x, y, z$

Parton construction — spin-1/2

• \mathbb{Z}_2 gauge field: $u_{ij}^{\mu} = i \gamma_i^{\mu} \gamma_j^{\mu}$ commutes with Hamiltonian

• \mathbb{Z}_2 Flux operator: $W_p(\bigcirc) = \begin{cases} S^y & S^x \\ S^x & S^y \end{cases}$

• Hamiltonian: $H = -\sum_{\mu} J_{\mu} \sum_{\langle ij \rangle \in \mu} S_i^{\mu} S_j^{\mu} = -\sum_{\mu} J_{\mu} \sum_{\langle ij \rangle \in \mu} \gamma_i^0 \gamma_i^{\mu} \gamma_j^{\mu} \gamma_j^0$

Phase diagram of spin-1/2 Kitaev model

B

A

A

$$J_x = 1, J_y = J_z = 0$$

Phases are determined by the physics of $\gamma^{\rm U}$

- A: Majorana fermion γ^0 is gapped. This phase is a \mathbb{Z}_2 topological order.
- B: Majorana fermion γ^0 is gapless and is coupled to a \mathbb{Z}_2 gauge field.

Spin-1/2 -> Higher spin Kitaev model

Are the conserved quantities also \mathbb{Z}_2 gauge fluxes ?

Can we see this from Parton construction?

What are the possible phases?

Parton construction — higher spin

$$2S^{\mu} = i \sum_{a=1}^{2S} (\gamma_a^0 \gamma_a^{\mu}) = i \left[\gamma_1^0, \gamma_2^0, \dots, \gamma_{2S}^0 \right]$$

O(2S) gauge redundancy: $U^T U = 1$

1.
$$S^{\mu} = \sum_{a=1}^{2S} S^{\mu}_{a}$$

2.
$$2S_a^{\mu} = i\gamma_a^0\gamma_a^{\mu}$$
 Local c

constraints:

Giant Parton operators SO(2S) singlet

O(2S) transformation: $\Gamma^{0,\mu} = (-1)^{\frac{S(2S)}{2}}$

 $= (-1)^{\frac{S(2S)}{2}}$

 $= \det(\mathcal{U})\tilde{\Gamma}^{0,\mu} = \pm \tilde{\Gamma}^{0,\mu}$ carrying improper \mathbb{Z}_2 charge

rotation among Majorana fermions

$$\frac{S-1}{2} \prod_{a} \left[\sum_{b=1}^{2S} \mathcal{U}_{ab} \tilde{\gamma}_{b}^{0,\mu} \right]$$

$$\sum_{\sigma \in S_{2S}} \operatorname{sgn}(\sigma) (\mathcal{U}_{1\sigma_1} \dots \mathcal{U}_{2S\sigma_{2S}}) \prod_{b=1}^{2S} \tilde{\gamma}_b^{0,\mu}$$

• \mathbb{Z}_2 Flux operator: $W_p(\bigcirc) =$

 μ

• \mathbb{Z}_2 gauge field: $u_{ij}^{\mu} = i \Gamma_i^{\mu} \Gamma_j^{\mu}$ commutes with Hamiltonian

Giant string operator

- The \mathbb{Z}_2 charge is attached to a tensionless string operator.
- The string operator commutes with Hamiltonian except the two end points.

Giant string operator

deconfined or condensed.

- condensed charges $H(\mathcal{U}|gs\rangle) = E_0|gs\rangle$

- deconfined charges $H(\mathcal{U}|gs\rangle) = (E_0 + 2\delta E)|gs + 2\Gamma^0\rangle$

The tensionless string operator \mathcal{U} indicates that the charges Γ^0 are either

 $\delta E \sim \mathcal{O}(1)$ and is independent of the length of string

Giant charge

- \mathbb{Z}_2 gauge charge: $\Gamma^0 = \frac{(-1)^2}{(2\xi)^2}$
 - It is a SO(2S) singlet.
 - It carries the charge of improper \mathbb{Z}_2 of O(2S).

- It is a boson when S is an integer.
- It is a fermion when S is a half-integer.

$$\frac{S(2S-1)}{2} \epsilon_{a_1,a_2,...,a_{2S}} \gamma^0_{a_1} \gamma^0_{a_2} \dots \gamma^0_{a_{2S}}$$

Fate of Giant charge

If the string operators \mathcal{U} for charge Γ^0 are tensionless.

- Fermionic charges Γ^0

They can only be deconfined.

- Bosonic charges Γ^0

They can be condensed or deconfined depending on dynamics.

Fate of Giant charge

If the string operators \mathcal{U} for charge Γ^0 are tensionless.

- Fermionic charges Γ^0

They can only be deconfined.

- Bosonic charges Γ^0

They can be condensed or deconfined depending on dynamics.

HM, Phys. Rev. Lett. 130, 156701 (2023)

Half-integer spin systems are always in gapped/ gapless deconfined phases

Integer spin systems can be in gapped spin liquid phases or trivial phases.

Fate of giant charge in higher spin Kitaev model

<u>The fate of the giant partons in the anisotropic limit</u>

In the anisotropic limit $J_z \gg J_x \sim J_y$

The effective Hamiltonian is the same as the half spin model.

Lee, Suzuki, Kim, Kawashima (2021)

In the anisotropic limit $J_z \gg J_x \sim J_y$

Half-integer spin model: Wen-plaquette model

Ground state is the \mathbb{Z}_2 topological order.

 $\Gamma_i^{0,x,y,z} \sim \varepsilon, e \times m$ **Excitations:**

 $i\Gamma_i^x \Gamma_i^y \sim e \times e$

 $i\Gamma_i^x \Gamma_{i+\hat{z}}^y \sim m \times m$

Lee, Suzuki, Kim, Kawashima (2021)

In the anisotropic limit $J_z \gg J_x \sim J_y$

Integer spin model: trivial

 $\sim 4S$ th

The effective Hamiltonian is trivial. Ground state is the trivial paramagnet with $\Gamma_i^x = \Gamma_i^y = \Gamma_{i+\hat{z}}^x = \Gamma_{i+\hat{z}}^y$

Any string operator is 1. Since $H(\Gamma^0 |gs\rangle) = E_0 (\Gamma^0 |gs\rangle)$, the boson Γ^0 is condensed.

Lee, Suzuki, Kim, Kawashima (2021)

Half-integer spin

Integer spin

General claim for the isotropic model?

HM, Phys. Rev. Lett. 130, 156701 (2023) **Higher spin Kitaev model**

$$J_z = 1, J_x = J_y = 0$$

O Z2 topological order

Half-integer spin systems are always in gapped/ gapless deconfined phases

$$O_{x} = 1, J_{y} = J_{z} = 0$$

$$J_{y} = 1, J_{x} = J_{z} = 0$$

Half-integer spin

$$J_z = 1, J_x = J_y = 0$$

O Trivial

Integer spin systems can be in gapped spin liquid phases or trivial phases.

$$\mathbf{O}$$

$$J_x = 1, J_y = J_z = 0$$

$$J_y = 1, J_x = J_z$$

Integer spin

= 0

Even-odd effect

Haldane chain Haldane (1983)

Lieb-Schultz-Mattis (LSM) theorem: In a spin system with translation and spin rotation symmetry, half-integer spin per unit cell does not admit a gapped symmetric ground state lacking fractionalized excitations. Half-spin per site on Honeycomb lattice is anomaly-free.

Our system?

Oshikawa, "Oddness in the spin-S Kitaev honeycomb model," Journal Club for Condensed Matter Physics (2023)

Ruizhi Liu, Ho Tat Lam, HM, Liujun Zou, arXiv:2310.16839 (2023)

HM, Phys. Rev. Lett. 130, 156701 (2023)

Lieb, Schultz, and Mattis (1961) Affleck and Lieb, (1986) Oshikawa (2000) Hastings (2004)

.

Even-odd effect

• The exact Z2 1-form symmetry is anomalous in half-integer spin systems

.

Summary

Ruizhi Liu, Ho Tat Lam, HM, Liujun Zou, arXiv:2310.16839 (2023)

- The Z2 charge is a Majorana fermion in the half-integer spin model. The liquid phase.
- when the bosons condense.
- being anomalous in half-integer spin systems.

HM, Phys. Rev. Lett. 130, 156701 (2023)

In the higher spin Kitaev model, local commuting operators are Z2 fluxes.

system always has deconfined excitations and is expected to form a spin

• The Z2 charge is a boson in the integer spin model. The system can be trivial

• The fundamental reason for this even-odd effect is the exact 1-form symmetry

Open questions

- Is the full SO(2S) confined in the isotropic limit?
- Are bosonic charges condensed in the isotropic model?
- Given the Z2 1-form symmetry is anomalous, what is the extra effect of lattice symmetries?
- How does the solvability depend on the number of local conserved quantities and the dimension of Hilbert space?

•

Thank you for your attention!

