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Universality near critical points

magnetic field

@ Long-distance properties of critical points described by
fixed points of renormalization group flows

@ Different microscopic systems may ultimately flow to the
same fixed point (universality)

e Critical exponents act as fingerprints (e.g., O ~ (T, — T)?
as T — T, from below, y ~ |T — T;|~7 etc)

@ Typically fixed by nature of order parameter+dimensionality
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Continuosly varying critical exponents

H= —JZ<I~/->(O','O'I' + 7i7j) — KZ(U) 00T

(Ashkin-Teller model on 2D square lattice [Phys. Rev. 64, 178 (1943)]) Kadanoff and
Brown, Annals of Physics 121, 318 (1979), Cardy, J. Phys A: Math. Gen. 20, L891
(1987), Delfino and Grinza, Nucl. Phys. B 682, 521 (2004), - - -
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Red line is self-dual with exp(—2K) = sinh(2J)

BKT — decoupled Ising — 4-state Potts (v € (c0,2/3)) v/v =7/4, B/v = 1/8,
n = 1/4 “weak universality”, Suzuki, Prog. Theor. Phys. 51, 1992 (1974)
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Self-dual critical points
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Question: Nature of hc =1 for the non-integrable model

x
Penson, Jullien, Pfeuty, Phys Rev. B 26 6334 (1982), Kolb, Penson, J. Phys. A 19,

L779 (1986), Alcaraz, Barber, J. Phys. A 20, 179 (1987)
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Order parameter

Hs = — Z/’L:1[ /+1 /+2 + ho*]
Consider PBC and L a multiple of 3

A B G A B G A B G o= —

For h — 0, the ground states are

ettt () = (#1,41,41)
--+——(+——)+——+——--- = (+1,-1,-1)
: —(—+ )t =+ = (1,41,1)
--——+(——+)——+——+--- (-1,-1,+1)

Define magc =7 ZL/S 04 .c and

m= \/ (m3) + (m2) + (m2)
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H3*—2—1[ 071197 + Mo
Consider PBC and L a multiple of 3

Dy = HU? Ly} ‘75,! D; = H/L/f og ch’ D3 = HL/13 ‘Tc UA

[Di, H3] = 0 and Dy D, D3 = I. H3 model has Zy x Zp symmetry
(1,1,1),(1,-1,—-1),(-1,1,—-1), (=1, —1, 1) have equal number of states
T(Dy + wDy 4+ w?D3) T~ = exp(—i27w/3)(D; + wDs + w?D3)

[¥k)s |bk—27/3) = (D1 + wDs 4+ w?D3)|¢k) and
[¥kt2m/3) = (D1 +w™'Ds 4+ w=2D3)|y) are degenerate. Not true for (1,1,1)

@ In the entire spectrum, three-fourths of the states have an exact three-fold deg.
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Data for the critical point from ED

Exponent Method used Three-spin Two-spin
V4 A scaling with L at he | 1.0267 (14) | 1.0026 (3)

B/v m scaling with L at he | 0.1291 (18) | 0.1337 (64)
/v x scaling with L at h, | 1.7976 (34) | 1.7936 (20)

v §7(AL) scaling with L | 0.7538 (45) | 1.0335 (42)
at he
c EE Scaling at h, 1.0644 (72) | 0.5096 (13)

Energy scaling at he | 0.9585 (15) | 0.5034 (68)

@ Self-dual point seems consistent with AT criticality
@ v ~ 0.75 consistent with earlier studies. Critical point
intermediate between 4-state Potts and decoupled Ising?
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Heuristic arguments for four-state Potts criticality
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@ Four-state Potts CFT have several relevant and marginal operators with following

degeneracies and conformal dimensions:
3x (75 15) 1% (5:3)8% (5. %) and 3 x (1,1)

Dijkgraaf, Verlinde, Verlinde, Commun. Math. Phys. 115, 649 (1988)
For a critical spin chain (with PBC and L > 1), E, = A+ BZ'r (Ao —5)+-

Affleck, Gepner, Schulz, Ziman, J. Phys. A 22, 511 (1989), Zou, Milsted, Vidal,

Phys. Rev. Lett. 121, 230402 (2018)

@ Four-state Potts CFT has S; symmetry
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DMRG data on long open chains (I)
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@ S(/) = glog (Lsin (7)) + ¢ [Calabrese, Cardy, J. Stat. Mech. P06002
(2004)] gives ¢ = 1 for a long chain with L = 600 at hc = 1 for the H3 model

d(AL)
Al

d
v ~ 0.75 from ED. Note that this result assumes “standard” scaling

AL = F((h— he)LV/7)

@ Assuming he ™ L'/v gives v & 0.72 which is marginally lower compared to

@ Four-state Potts CFT, however, is multicritical. Conventional scaling may not
follow due to interference of multiple critical lines
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DMRG data on long open chains (ll)
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@ Important additive and multiplicative log corrections known for 2D classical
four-state Potts criticality [Cardy, Nauenberg, Scalapino, Phys. Rev. B 22, 2560
(1980), Salas and Sokal, J. Stat. Phys. 88, 567 (1997)]

° A“;C‘ =& + by . @ ~ 9.86(9.61) for Hy model (AT model at A = 1)

@ AL=F(Ah— hc)L3/2(Iog L)~3/4) which implies £F |, ~ L3/2(log L)=%/4. This
mimics L'/¥ with v & 0.72 for the acce33|ble sizes from DMRG (L < 390)

4
@ Pseudo-first-order behavior in Up = 3 — 3 (3;”2;2 [Jin, Sen, Sandvik, PRL (2012)]
@ Har = —h Ty (of + 77 + AT 1) = Dy (0 oFy + T TRy + AT TE)
(Quantum AT model) A\ = 0(1) decoupled Ismg (four-state Potts)
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Conclusions (1)
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@ Self-dual point of the three-spin model seems to be in
four-state Potts universality class

@ Addition of other terms to this model to see how the nature
of criticality changes?

@ Quantum many-body scars+anomalous infinite
temperature autocorrelations [not discussed here]

Udupa, Sur, Nandy, Sen, Sen; arXiv:2307.11161v3
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Confinement-deconfinement transitions
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@ Hpyy=— [ 01 +9> o(ILien?)]; [jepof =1 forall +
@ Dual of 2D TFIM on square lattice
Kogut, Rev. Mod. Phys. 51, 659 (1979)

@ Gauge-invariant states must satisfy appropriate Gauss law
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Polyakov loop and center symmetry (l)
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@ Consider LGTs without dynamical matter
@ Wilson loop W, = Tr H{W}ec U, (n) (gauge-invariant)
@ Gauge symmetry (local)
Uu(n) = Uy, (n) = Q(n)U,(n)Q1(n + )
@ Polyakov loop P(7i) = Tr [y ' Ua(A, 1)
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Polyakov loop and center symmetry (ll)

0.1
-
1 {3 0.05
D)
P —+ [N _
[
1 —{ rl A £
P N
- 0.05
v
£
-0.1
Z=0

F non - e bradsble lo’ﬁ“«s (n
Lmo:@{nm/a, time Re(P)

@ Center symmetry (global) Uy (A, 70) — zU4(A, 79) for all A
@ E.g., z = exp(i2rk/3) 53 with k = 0, 1,2 for SU(3) LGT
@ Action invariant but P — zP under this symmetry

@ Center symm spontaneously broken in deconfined phase
[Celik, Engels, Satz, Phys. Lett. 125 B, 411 (1983), Kovacs, PoS
LATTICE2021:238, - - -
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Svetitsky-Yaffe Conjecture

Argument of Svetitsky and Yaffe (Nucl. Phys. B 210, 423(1982)) to figure out
universality class of thermal deconfinement transitions in pure
gauge theories assuming a continuous transition

Theory with gauge symmetry group G in d + 1 dimensions
< spin model in d dimensions with center of G as global
symmetry group

SY showed that effective model of Polyakov loops has only
short-range interactions

Rest of the arguments appeal to universality

E.g., SU(2) in 3+ 1 dim < Ising in 3 dim

For abelian gauge theories, center of G is G itself

E.g, U(1)in2+1dim < U(1) in 2 dim (BKT transition)
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Quantum Link U(1) Gauge Theory (s = 1/2)

@ Two in—two out rule (spin ice constraint)

@ H=—JY (U + UL) + \J(Un + UL)? (RK type Model)
[Chandrasekharan, Wiese, Nucl. Phys. B 492, 455 (1997), Hermele, Fisher,
Balents, Phys. Rev. B 69, 064404 (2004)]

o G = ZM(E,M —Err—y), [Gr,H] =0forall r

o V =T[,exp(—i6,G) and H = VHV' = H where

0, € [0,27) [U(1) local invariance]
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Reducing U(1) LGT to Z, LGT

Y
L \
< 7
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@ Z=Tr [eMPg]; Pg=1], s{66(G/) + (G — 2) + 4(G, + 2)}
alongwith >, g, = 0 versus P = [[, d(G;) for the original theory

@ For the Z; theory, V =[], exp(—i6,G,) and H = VHV' = H
where 6, = 0, 7 [Z» local invariance]

@ Only six states satisfy the g, = 0, and two for g, = +2.
@ T controls the density of the q- = +2. Energy gap O(|)|)

Annealed disorder: impurities in thermal equilibirum.
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Magnetization, Susceptibilities, Binder Ratios

rei i KT/ 2 liquid
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@ Susceptibility
1 B
Xtot = V <M2>7 Xconn = V Z(<M)2(> - <|MX|>2)7
X
where M2 = 3"y, 5(M2), V =12, and 8 = cLr.

@ Three different Binder cumulants:

1 (IMx])? | _ (M%) _3 4>
R N e Y i

@ Cluster algorithm generalizing Baneriee, Jiang, Widmer, Wiese. J. Stat. Mech. (2013) P12010.
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Charges change the critical behaviour
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@ Following the SY conjecture: the U(1) LGT shows a BKT

transition.

@ The presence of q- = +2 changes the critical behaviour
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Estimating the critical coupling

0811 E (Qa-Crossing
I Qi

T Xto-crossing

0.000 0.005 0.010 0.015 0.020 0.025 0.030

1/L

@ Crossing points of vy - L=+, Qy, Qoa, Qup to estimate T, = 1/4.
@ Fix 2 = Z, value for 2d Ising model.

@ All observables give consistent estimates of 3. for L > 100a.
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Estimating the critical exponent
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@ Scaling of the peak of x.onm t0 cOmpute 7:
Xconn.mux(L) - b : LV/V — bL2*77; XZ/DOF ~ 13

@ Extracted from three different bare couplings, A

@ Independent validation of the assumption
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Weak Universality: floating v
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@ For a dimensionless phenomenological coupling R(3, L):
OR(L v —w
o) , =al'/"(1 + bL™v)

c

@ Slope of log-log plot of the derivative vs lattice size gives 1/v.

@ Consistent values of v obtained from Qq, Qoa, Qop, all > 1.
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Conclusions (Il)
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@ U(1) quantum link model with annealed Q = +2 impurity
charges in (2+1)-d seems to display weak universality

@ Interesting extension of the Svetitsky-Yaffe conjecture for
thermal deconfinement transitions

@ |dentification of marginal operator in effective field theory?

Sau, Sen, Banerjee; Phys. Rev. Lett. 130, 071901 (2023)+ongoing-work
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(Supp) Perturbative argument

Seritical + [ d9r[goO(F)] where (O(7)O(72)) ~ 1/|ry — rp|?0
Perturbation relevant (irrelevant) if yo < d (yo > d)
Perturbation marginal if yo = d

For 2D Ising model, O(r) ~ o(F) has yo = 1/8 and

O(F) ~ o(F)o(F + &) = ¢(F) has yp = 1

S~ Si+ S+ 7 [ dPr(ei(F) + ea(r)) + p [ d?rei(F)ea(T)
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(Supp) Computational Methods
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@ Cluster Algorithm for simulating the dualized version of the
model.
Banerjee, Jiang, Widmer, Wiese. J. Stat. Mech. (2013) P12010.

@ Pure Gauge Theory in (2 4+ 1)-d maps to a height model in 3d.

@ The computation is done on a Euclidean system with L x L x 3,
where the S is varied, and L — oo for thermodynamic limit.

@ Two-component order parameter (Ma, Mp) capture the ordering
of the two sublattices as well as track center symmetry.
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(Supp) Precision of estimations

Lr | Be n | (1) | v(Qea) [ v(Qep)
A=-1.0

24 || 0.814279(14) 0.2472(9) 1.35(2) | 1.38(1) | 1.38(2)

16 || 0.813783(15) | 0.2479(9) | 1.32(4) | 1.34(2) | 1.34(4)

8 | 0.811129(14) | 0.2489(8) | 1.33(3) | 1.31(2) | 1.34(3)

4 || 0.801059(12) | 0.2509(8) | 1.29(1) | 1.31(1) | 1.29(2)

2 || 0.767685(10) | 0.2497(7) | 1.19(1) | 1.20(1) | 1.20(1)
A=-09

24 || 0.885292(17) | 0.2550 (18) | 1.45(3) | 1.47(4) | 1.45(3)
A=-0.8

24 ][ 0.968196(26) | 0.2511 (10) | 1.64(9) | 1.68(4) | 1.64(8)

Estimates of 3¢, n, v for different values of L+, A. For 2d Ising,

—1
=1,

and v = 1.
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