Resonating valence-bond wave functions in the era of neural networks

Federico Becca

Fractionalization and Emergent Gauge Fields in Quantum Matter

Credits to: S. Budaraju, F. Ferrari, R. Rende, and L.L. Viteritti

Federico Becca

RVB and neural networks

ICTP 2023 1/18

Image: A math a math

On the shoulders of giants

$$|BCS
angle = \exp\left\{\sum_{k} f_k c^{\dagger}_{k,\uparrow} c^{\dagger}_{-k,\downarrow}\right\} |0
angle$$

Electron pairing (Cooper pairs) Bose condensation of pairs

J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

Image: A math a math

$$\Psi(\{z_i\}) = \prod_{i \neq j} (z_i - z_j)^m \exp\{-\frac{1}{4} \sum_i |z_i|^2\}$$

The first topologically ordered state

Fractional excitations

R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

• A few variational parameters: easy physical interpretation

• Easy construction of low-energy excitations

Federico Becca

ICTP 2023 2/18

The resonating-valence bond (RVB) picture

Looking for a magnetically disordered ground state

$$= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

P.W. Anderson, Mater. Res. Bull. 8, 153 (1973)

Linear superposition of valence-bond (singlet) configurations

+...

FROM RVB TO BEES

G. Baskaran and P.W. Anderson, Phys. Rev. B 37, 580 (1988)

G. Baskaran, reprinted in PWA90 A Life Time of Emergence (World Scientific 2016)

Federico Becca

・ロト ・日下・ ・ ヨト・

What I cannot compute, I do not understand

$$\mathcal{H} = \sum_{R,R'} J_{R,R'} \mathbf{S}_R \cdot \mathbf{S}_{R'} \qquad \qquad \mathbf{S}_R = \frac{1}{2} \sum_{\alpha,\beta} c^{\dagger}_{R,\alpha} \sigma_{\alpha,\beta} c_{R,\beta} \qquad \qquad \sum_{\alpha} c^{\dagger}_{R,\alpha} c_{R,\alpha} = 1$$

• Variational states are constructed from a fermionic auxiliary Hamiltonian

$$\mathcal{H}_0 = \sum_{R,R',lpha} t_{R,R'} c^{\dagger}_{R,lpha} c_{R',lpha}$$
 $U(1) \text{ gauge fields}$
 $c_{R,lpha} o e^{i heta_R} c_{R,lpha}$
 $t_{R,R'} o e^{i(heta_{R'} - heta_R)} t_{R,R'}$

- Fixing the hopping structure = freezing the gauge fluctuations
- The constraint of one-electron per site is inserted by the Gutzwiller projector

$$|\Psi_0
angle = \mathcal{JP}_G |\Phi_0
angle$$
 $\mathcal{P}_G = \prod_R (n_{R,\uparrow} - n_{R,\downarrow})^2$

This projection partially reintroduces gauge fluctuations

Federico Becca

The π -flux state on the triangular lattice

• For $J_2/J_1 = 0.125$, the energy of the π -flux state is $E/J_1 = -0.5019(1)$ The exact one is estimated to be $E_{ex}/J_1 = -0.5123(2)$

Y. Iqbal, W.J. Hu, R. Thomale, D. Poilblanc, and FB, Phys. Rev. B 93, 144411 (2016)

・ロト ・日下・ ・ ヨト・

Going back to the U(1) lattice gauge theory

• The low-energy theory is the quantum electrodynamics in 2 + 1D

M. Hermele, T. Senthil, M.P.A. Fisher, P.A. Lee, N. Nagaosa, and X.-G. Wen, Phys. Rev. B 70, 214437 (2004)

• Symmetry transformation of monopoles

X.-Y. Song, C. Wang, A. Vishwanath, and Y.-C. He, Nat. Comm. 10, 4254 (2019)

Verification by exact diagonalizations

A. Wietek, S. Capponi, and A.M. Läuchli, arXiv:2303.01585

Federico Becca

LOW-ENERGY SPINON EXCITATIONS

$$|q,R
angle = \mathcal{P}_{G}rac{1}{\sqrt{L}}\sum_{R'}e^{iqR'}(c^{\dagger}_{R+R',\uparrow}c_{R',\uparrow}-c^{\dagger}_{R+R',\downarrow}c_{R',\downarrow})|\Phi_{0}
angle$$

B

 $\overline{Y'}$

イロト イヨト イヨト イヨ

F. Ferrari and FB, Phys. Rev. X 9, 031026 (2019)

MONOPOLE EXCITATIONS

• The monopole excitations are gapless (as in the large-*N* limit)

S. Budaraju, Y. Iqbal, FB, and D. Poilblanc, Phys. Rev. B 108, L201116 (2023)

S. Budaraju et al., unpublished

Federico Becca

RVB and neural networks

ICTP 2023 9 / 18

Image: A math a math

On the shoulders of Carleo

- Idea: use neural networks to parametrize variational wave functions
- The simplest example: a single fully-connected layer

G. Carleo and M. Troyer, Science 355, 602 (2017)

Not easy interpretation and simple way to compute dynamical correlations

イロト イヨト イヨト

THE TRANSFORMER WAVE FUNCTION

- Map spin configurations into abstract representations using the Transformer
- Apply a complex fully connected layer to predict both amplitude and sign [similar to the so-called Visual Transformer (ViT)]

Federico Becca

RVB and neural networks

ICTP 2023 11/18

\bullet Calculations on the 10 \times 10 cluster with PBC

Energy per site	Wave function	# parameters	Marshall prior	Reference	Year
-0.48941(1)	NNQS	893994	Not available	[32]	2023
-0.494757(12)	CNN	Not available	No	[22]	2020
-0.4947359(1)	Shallow CNN	11009	Not available	[21]	2018
-0.49516(1)	Deep CNN	7676	Yes	[20]	2019
-0.495502(1)	PEPS + Deep CNN	3531	No	[33]	2021
-0.495530	DMRG	8192 SU(2) states	No	[31]	2014
-0.495627(6)	aCNN	6538	Yes	[34]	2023
-0.49575(3)	RBM-fermionic	2000	Yes	[15]	2019
-0.49586(4)	CNN	10952	Yes	[35]	2023
-0.4968(4)	RBM $(p = 1)$	Not available	Yes	[36]	2022
-0.49717(1)	Deep CNN	106529	Yes	[28]	2022
-0.497437(7)	GCNN	Not available	No	[27]	2021
-0.497468(1)	Deep CNN	421953	Yes	[30]	2022
-0.4975490(2)	VMC $(p = 2)$	5	Yes	[13]	2013
-0.497627(1)	Deep CNN	146320	Yes	[29]	2023
-0.497629(1)	RBM+PP	5200	Yes	[37]	2021
-0.497634(1)	Deep ViT	267720	No	Present work	2023

TABLE I. Ground-state energy on the 10×10 square lattice at $J_2/J_1 = 0.5$.

R. Rende, L.L. Viteritti, L. Bardone, FB, and S. Goldt, arXiv:2311.16889

• In one dimension, ViT are sometimes "better" than DMRG (with PBC)

L.L. Viteritti, R. Rende, and FB, Phys. Rev. Lett. 130, 236401 (2023)

Federico Becca

RVB and neural networks

ICTP 2023 12/18

イロト イヨト イヨト イヨト

The $\mathcal{J}_1-\mathcal{J}_2$ Heisenberg model on the square lattice

 \bullet Calculations on the 10 \times 10 cluster with periodic-boundary conditions

- With 3 parameters (no Lanczos steps): $E/J_1 \approx -0.4946$
- With 267720 parameters: $E/J_1 \approx -0.4976$

$$\mathcal{H} = J \sum_{\langle R, R' \rangle} \boldsymbol{S}_R \cdot \boldsymbol{S}_{R'} + J' \sum_{\langle \langle R, R' \rangle \rangle} \boldsymbol{S}_R \cdot \boldsymbol{S}_{R'}$$

The Heisenberg model captures the low-energy properties of $SrCu_2(BO_3)_2$ (dimer phase $J/J' \approx 0.63$)

H. Kageyama et al., Phys. Rev. Lett. 82, 3168 (1999)

0.76 0.82

0.67

PS

S. Miyahara and K. Ueda, Phys. Rev. Lett. 82, 3701 (1999)

SL

- J. Lee, Y. You, S. Sachdev, and A. Vishwanath, PRX 9 041037 (2019)
- J. Yang, A. Sandvik, and L. Wang, PRB 105 L060409 (2022)

Image: A matching of the second se

DS

0

J/J'

AFM

Image: A math a math

$$C(\mathbf{R}) = \langle Q_0 Q_R \rangle$$
 $Q_R \equiv \frac{1}{2} [P_R + P_R^{-1}]$

1

 P_R is a cyclic permutation operator on the four spins of a plaquette at **R**

The size scaling of the plaquette order parameter predicts a transition at

$$J/J' \approx 0.77$$

The size scaling of the AFM order parameter predicts a transition at

$$J/J' \approx 0.82$$

W.-Y. Liu et al., arXiv:2309.10955

J. Yang, A. Sandvik, and L. Wang, PRB 105 L060409 (2022)

• • • • • • • • • • • •

L.L. Viteritti, R. Rende, A. Parola, S. Goldt, FB, arxiv:2311.16889

At present, no simple RVB states have been found for the intermediate region

Federico Becca

• RVB states (and bees) are extremely useful

Transparent interpretation in terms of "elementary objects" Not always very accurate to reach a definite conclusion

• Neural-network states are extremely accurate and powerful

No transparent understanding (at the moment) They are becoming the paradigm to study two-dimensional systems