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Thermal (Hall) conductivity
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Thermal Hall conductivity
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Hot source
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Motivation:

 Increasingly many experimental measurements, puzzling results, sample dependence

H. Katsura, N. Nagaosa, P.A. Lee, 2010
« Some theory but not very much R. Matsumoto, S. Murakami, 2011
R. Matsumoto, R. Shindou, S. Murakami, 2014
T. Qin, J. Zhou, J. Shi, 2012

This work:

- Look for general theory, not fine-tuned

 Mostly study clean systems _____——> 1. Wedonotreally want to do disorder

2. Need fine-tuning to break symmetries etc.



“Issues”

Hot source
924N0S p|0)

Carriers: phonons, magnons, spinons, ??
Origin: intrinsic (Berry), scattering (interactions, impurities)

Theory: methods, transport v/s bulk current/energy
magnetization

Experimental issues



Kinetic equation approach for fermions

PHYSICAL REVIEW B VOLUME 59, NUMBER 23 15 JUNE 1999-1

ARTICLES

Wave-packet dynamics in slowly perturbed crystals: Gradient corrections

and Berry-phase effects

o Wavepacket approach

Ganesh Sundaram and Qian Niu

Department of Physics, University of Texas at Austin, Austin, Texas 78712-1081
(Received 8 June 1998)

We present a unified theory for wave-packet dynamics of electrons in crystals subject to perturbations Su nda ram, Niu 1999
varying slowly in space and time. We derive the wave-packet energy up to the first-order gradient correction

and obtain all kinds of Berry phase terms for the semiclassical dynamics and the quantization rule. For
electromagnetic perturbations, we recover the orbital magnetization energy and the anomalous velocity purely
within a single-band picture without invoking interband couplings. For deformations in crystals, besides a
deformation potential, we obtain a Berry-phase term in the Lagrangian due to lattice tracking, which gives rise
to new terms in the expressions for the wave-packet velocity and the semiclassical force. For multiple-valued
displacement fields surrounding dislocations, this term manifests as a Berry phase, which we show to be
proportional to the Burgers vector around each dislocation. [S0163-1829(99)07023-X]

PHYSICAL REVIEW B 88, 045308 (2013)

Effective quantum theories for Bloch dynamics in inhomogeneous systems
with nontrivial band structure

Christian Wickles” and Wolfgang Belzig' . . .
Universitdat Konstanz, Fachbereich Physik, 78457 Konstanz, Germany System atl C d e I‘Ivatl on
(Received 26 September 2012; revised manuscript received 5 June 2013; published 11 July 2013)

Starting from a general N-band Hamiltonian with weak spatial and temporal variations, we derive a low-
energy effective theory for transport within one or several overlapping bands. To this end, we use the Wigner
representation that allows us to systematically construct the unitary transformation that brings the Hamiltonian Wi C kl es B e I Zi g 2 01 3
into band-diagonal form. We address the issue of gauge invariance and discuss the necessity of using kinetic 2
variables in order to obtain a low-energy effective description that is consistent with the original theory. Essentially,
our analysis is a semiclassical one and quantum corrections appear as Berry curvatures in addition to quantities
that are related to the appearance of persistent currents. We develop a transport framework, which is manifestly
gauge invariant, and it is based on a quantum Boltzmann formulation along with suitable definitions of current
density operators such that Liouville’s theorem is satisfied. Finally, we incorporate the effects of an external
electromagnetic field into our theory.



Kinetic equation

- Non-dissipative effects: modifications ~ “onvective derivative

of intrinsic dynamics of individual _
quasiparticles, e.g. Berry phase . th o F[f]
effects, etc.

« Dissipative effects: modifications of
scattering of quasiparticles

Boltzmann equation
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How chargeless bosons can become chiral

« “Topological magnons”. sharp consequences for bosons?

\/C =1 Higher energy bosonic \/
bands are only excited
e.g. thermall
‘ - “ ’ /_\

TS~——am= — bosons

fermion

 More generally: Berry phase effects

* For phonons: “phonon Hall viscosity”

« Perhaps more relevant: skew scattering ‘_jﬁ -

Dif =T'[f]




How chargeless bosons can become chiral
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Nagaosa et al, RMP 2010:
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Origin of electrical AHE depending on the size of the longitudinal conductivity:

scattering Must understand all effects!

. dominated
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 More generally: Berry phase effects

« For phonons: “phonon Hall viscosity”

* Perhaps more relevant: skew scattering ‘_jﬁ

Dif = F[f]




Whatwe do

(- )
Dyf =T [f ]
g .
- Systematic derivation of the kinetic « Constraints and systematic effect
equation of phonons (or other bosons)
Mangeolle, Savary, Balents scatterlpg off of magnetic |
upcoming fluctuations (or other, fermions etc)

Mangeolle, Balents, Savary
PRB 106, 245139,

- Microscopic origin and symmetry PRV, DR ey

constraints for “Hall viscosity” term

Ye, Savary, Balents
arxiv:2103.04223
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Derivation of a QKE for bosons, including all the Berry
curvature effects.

The resultis general enough that it can be applied to any
bosonic modes directly.

Does not rely on fictitious “gravitational field.”




Quantum kinetic equation for bosons

Ingredients:

u;, r; for phonons

- Hermitian Bose fields  ®,(7) f
m,, n; for magnons

1
« Quadratic Hamiltonian H = 5 / P, (r)Hap (7, 7)) Dy () Any hermitian form

- Commutation relations [®.(7), Pp(r")] = Al 4 (7, 7")

Build:

 Observables Fab("“,rl) = % ({1 Pa(r), (I)b("“’)}>



Possible examples

 Example: phonons

1 Ciiuy ’I"
Helasticity — @ﬂ-i(r)ﬂ-i(r) T JMZ g a,uui(’r)ayuj (T‘)

mi(r) = pi(r) — Zg’_g@auauuj(’r) ([ms(r), mi(r")] o< imijpm)

(“phonon Hall viscosity”, e.g. Ye, Savary, Balents 2021)
« Example: magnons

1
2x(7)

Hsigma = @ E)Mnié)un’i +

2 mim® + gij (’l“) ntn’ (. (1)

(e.g. from DM interaction)

m, n are Néel and net magnetization fluctuations

Note the inhomogeneous coefficients



Magnetoelastic coupling

S, S;

J

< 0 —>
T Ly =T U tij e

]

Example:

Hg[{r;}] = SISy J*(xr; —r;) «— (include SOC)
i’j

»J

spins phonons



Phase space formulation

Tools:
. o XL xr
- Wigner transform F(B,X) = [dee™F(X +>, X —2)
Fourier 2 2
transform center of
of relative mass
coordinate Eogciate
%% Note: can exactly formulate
[A ® B] — A(k7 Qj‘) * B(kv ZE) quantum mechanics in this way
- h ( A B A B) Captures non-commutativity of
/L_ P
A* B =¢2 Vi Vz =V Vi AB operators

Altshuler,

Gradient expansion” => semiclassics Rammer Smith,...

é Slow variations in real space



Quantum kinetic equation

0:F(k,X) = —i (KxF — FxKT) K=T+H

Not hermitian!

... sSemiclassical expansion, diagonalization, gauge invariance, tricks ...

~

\_

O f + (%g + Qe x, O w + Qkukﬁ&g) Ox [
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o —

QQB = 8aA5 — (75Aa

One can recognize all the usual Berry phase effects



Quantum kinetic equation

0:F(k,X) = —i (K*F — FxKT) =T+

Not hermitian!

... sSemiclassical expansion, diagonalization, gauge invariance, tricks ...

ety reciprocal space
veI%C|ty / Berry curvature
e VY A
_ £ Lo J
real space Berry / “mixed” Berry  force
curvature curvatures

lap = OaPp — Opha One can recognize all the usual Berry phase effects



Observables

« Energy density

H = H(k, X)
kX

- Use conservation of energy

=> continuity equation in phase space

OhH A+ 0aTo =0

~ . B
H(k, X) = ZTI (HxF+FxH)
— _

f 1

Ta(k, X) = §ea5Re Tr (0sK(F x H))
\_

~

J

(eXukv = Ttk X, = 5#’/)



Phase space current

... semiclassical expansion, diagonalization, gauge invariance, tricks ...

T =T + TP

1

jo(él) — iéaﬁ (1 — %GW\Q’M) (5’5ga T Eﬁpﬂﬁpaﬁga)ia
1
T = 560456%67 (mkﬁia)

1
with Mag = = {Ag, [Aa, Kq]}



Real space component of local current

« Transport current

~

~
(1) 1 Ow,, | ow,, Ow,,
Ty = 2(1+Qk”X”)<8ku -k, x, . + 2, e )f

— _J

Momentum integral gives the transport current

- Magnetization current

7@ = 1 (aiy (zmﬁ?ﬁkuja) — aff,, (fmz(i)kuia))

Momentum integral gives pure magnetization current
Can one measure it?

« Global total current through a surface: Jt};t — / / (ji(/l) + j(Z))
N~ X,/

total derivatives drop

N



l.ocal currents




Also recover Murakami / Shi’s formula

: 1
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Next: Textures

Skyrmion lattice

Superconducting vortex lattice
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Hall and longitudinal have different scaling forms

New “detailed balance”

General formulas can be directly applied to fluctuations of any
origin

Thermal Hall exists out of plane
[.arge contribution

Should look at resistivity




Kinetic equation

Convective derivative. Dynamics.

l

- Non-dissipative effects: modifications > th — F[f]
of intrinsic dynamics of individual
quasiparticles, e.g. Berry phase
effects, etc.

 Dissipative effects: modifications of
scattering of quasiparticles

Boltzmann equation

Mangeolle, Balents, Savary
PRX 12, 041031 (2022)
PRB 106, 245139 (2022)



Phonons coupled to other degrees of freedom

Boltzmann’s equation
(simple version):

V= Vi W i - scattering with collective excitations
" " - extrinsic phonon Hall conductivity
JE = Z Uy, kWn kN k (but no disorder/impurities)
n,k
jon:  Hyo, = Hyu + Ho + H; Hpy=) a' Q' +h
Formulation: Lt ph + Ho + Hing s a,, &, +h.c.
k
[
phonon other
Recall: spin-phonon coupling:
S, S, Hs[{r;}] Z SISY T (r; — 1) «—(include SOC)
% J(r; — r) %
« _H S“S”Z?JW o (u? A
r; r+u S{rl Z : oo, (ui = u5) +

X Ty

splns | phonons



General results

KH involves mainly 4-point correlators:

Wit~ | e ([0 ). e V)] {ad ) ae Vo)) Skew

B scattering rate

nongaussian correlations

(solve K_)
the KE)

Involves only equilibrium properties of the O system ——»  ‘ready for use’ formula

Model — || Que | — | (@eKe@y | — [ X/ || — kL, ko




Application to an AFM
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Skew-scattering-induced extrinsic
thermal Hall effect of phonons:

- Hall resistivity displays ‘universal’
scaling
(cf ku ~ W/D? whereas ou ~ W)

K~ k%

- ‘'isotropic’ Hall conductivity: - o

- only phonon-magnon scattering
(inelastic scattering, no impurities)

Quantitative estimate:

- ‘large’ Hall angle: Oy ~ k; 0y ~ 1077

Parameter values: inspired by copper formate tetradeuterate (CFTD)

To=54K 00=59m-K-W!

)\SOC ~ 5% )\iso

my ~ 5% Jiso  Ronnow et al., PRL 87, 037202



Phonons and out-of-plane Hall effect

Cuprates — Grissonnanche et al., Nature 571, 376-380 & Nat. Phys. 16, 1108-1111

b 1
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Kip &~ Ky = phonons? (~ isotropic)

(magnetic excitations remain in the xy planes)
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