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Periodic intensity variations in the measured Compton profile anisotropies of ordinary ice Ih
correspond to distances of 1.72 and 2.85 Å, which are close to the hydrogen bond length and the nearest-
neighbor O-O distance, respectively. We interpret this result as direct evidence for the substantial
covalent nature of the hydrogen bond. Very good quantitative agreement between the data and a
fully quantum mechanical bonding model for ice Ih and the disagreement with a purely electrostatic
(classical) bonding model support this interpretation and demonstrate how exquisitely sensitive Compton
scattering is to the phase of the electronic wave function. [S0031-9007(98)08227-1]

PACS numbers: 71.15.Cr, 32.80.Cy, 61.10.Eq

Hydrogen bonds play a crucial role in determining
many of the distinctive properties of water and biological
complexes. In particular, in ice, hydrogen forms two dis-
tinct types of bonds with neighboring oxygen. The shorter
(1.00 Å) covalent bond is a typical molecular s bond be-
tween the oxygen and hydrogen. It has been appreciated
since Pauling [1] that the longer (1.75 Å) so-called hy-
drogen bond is most probably partly covalent. Even so,
a microscopic quantitative understanding of the hydrogen
bonds covalent, or quantum mechanical, character remains
experimentally untested and controversial [2].
In this paper we describe high momentum transfer in-

elastic (Compton) x-ray scattering studies of the hydrogen
bond in ice Ih. In particular, we have measured Comp-
ton profile anisotropies which are exceptionally sensitive
to the phase of the electronic wave function and therefore
to the covalency of the hydrogen bond. Periodic inten-
sity variations in the anisotropy reveal two distances, one
of 1.72 Å, near the hydrogen bond length of 1.75 Å, and
another at 2.85 Å, close to the nearest-neighbor O-O dis-
tance of 2.75 Å [3]. The presence of these two dominant
lengths in the Compton profile anisotropy is interpreted
as the first direct experimental evidence for the substan-
tial covalent character of the hydrogen bond. Very good
quantitative agreement between the data and a fully quan-
tum mechanical bonding model for ice Ih [4] and the dis-
agreement with a purely electrostatic (classical) bonding
model are strong support for this interpretation.
Ice is a molecular solid in which the intermolecular

bonding consists primarily of hydrogen bonds. In par-
ticular, in ordinary ice �Ih⇥ the oxygen atoms sit on a
lattice of two interpenetrating hexagonal close-packed
structures with space group P63⇤mmc (see Fig. 1) [5].
The molecular orientations are such that one hydrogen
atom lies along the axis joining each of the neighboring,
tetrahedrally coordinated oxygen atoms. As determined
by neutron (in D2O) [6] and x-ray diffraction [3], the two
O-H distances on a given axis are approximately 1.00 Å
for the covalent bond and 1.75 Å for the hydrogen bond,

the bond energies being 4.8 and 0.29 eV, respectively [3].
The molecular orientations are correlated in such a way as
to maintain this arrangement (obeying Bernal-Fowler ice
rules), but do not have long-range order [1,7]. Moreover,
the 50% concentration of hydrogen bonds relative to co-
valent bonds, the simplicity of the molecules, and the co-
herency of the ordered structure make the ice Ih an ideal
system in which to probe the covalent nature of the hy-
drogen bonds. Unfortunately, neither neutron nor x-ray
diffraction is sensitive to the extended wave function of
the electrons in the hydrogen bond.
Very high momentum transfer inelastic x-ray scattering,

so-called Compton scattering, has been shown to be an
ideal probe for measuring the Fourier transform of the

FIG. 1(color). Crystal structure of Bernal-Fowler ice Ih. Red
(white) balls give the positions of the oxygen (hydrogen). The
crystallographic c-axis is in the vertical direction.
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Bernal-Fowler ice rules (1933):

O2-
H+

long O-H  H-bond

short O-H covalent bond

Each O2− has four neighbouring  H+ 

Local charge neutrality ⇒ Only 
two  H+  are close to the O2− 
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tetrahedrally coordinated oxygen atoms. As determined
by neutron (in D2O) [6] and x-ray diffraction [3], the two
O-H distances on a given axis are approximately 1.00 Å
for the covalent bond and 1.75 Å for the hydrogen bond,

the bond energies being 4.8 and 0.29 eV, respectively [3].
The molecular orientations are correlated in such a way as
to maintain this arrangement (obeying Bernal-Fowler ice
rules), but do not have long-range order [1,7]. Moreover,
the 50% concentration of hydrogen bonds relative to co-
valent bonds, the simplicity of the molecules, and the co-
herency of the ordered structure make the ice Ih an ideal
system in which to probe the covalent nature of the hy-
drogen bonds. Unfortunately, neither neutron nor x-ray
diffraction is sensitive to the extended wave function of
the electrons in the hydrogen bond.
Very high momentum transfer inelastic x-ray scattering,

so-called Compton scattering, has been shown to be an
ideal probe for measuring the Fourier transform of the

FIG. 1(color). Crystal structure of Bernal-Fowler ice Ih. Red
(white) balls give the positions of the oxygen (hydrogen). The
crystallographic c-axis is in the vertical direction.
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Bernal-Fowler ice rules (1933):

Each O2− has four neighbouring  H+ 

Local charge neutrality ⇒ Only 
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O2-
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Pauling ice degeneracy (1935):
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It is certain that the long tail of the peak extends
far beyond the critical 6eld, so that there is extra Aux
in the sample after the sample has become normal
conducting according to the Silsbee hypothesis. London'
found a similar tail for the resistance approach to
normal resistance when the transition is made with
current alone in zero field. Theoretical description of
the paramagnetic Qux behavior beyond the peak is not
available.
In conclusion one notes the similarity in behavior of

the superconducting metals tested, and the agreement
with Meissner's theory, at least beyond the threshold.

These facts support the argument that the eGect is a
property of the intermediate state. The fast response
time coupled with the reversible nature of the transition
again emphasizes the dependence on current and field,
not on method of measurement or history of the
specimen.
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The octahedral sites in the spinel structure form one of the anomalous lattices in which it is possible to
achieve essentially perfect short-range order while maintaining a Gnite entropy. In such a lattice nearest-
neighbor forces alone can never lead to long-range order, while calculations indicate that even the long-
range Coulomb forces are only 5% eii'ective in creating long-range order. This is shown to have many
possible consequences both for antiferromagnetism in "normal" ferrites and for ordering in "inverse"
ferrites.

I. LATTICE OF OCTAHEDRAL SITES
HE ferrites are a class of oxides of iron-group
metals, many of them of technical importance as

ferromagnets, which crystallize in the spinel structure
or structures closely related to it. The ideal ferrite has
the formula ABs04 (e.g., NiFes04) and the smaller
metal ions A and 8 occupy certain interstices between
the large oxygen ions, which latter are arranged in an
approximation to the cubic close-packed structure.

F&G. 1. Photograph of a model of the spinel lattice. The dark
balls are oxygen; the tetrahedral sites are connected to their
neighboring oxygens by four diagonal bonds, the octahedral by
six vertical and horizontal ones.

The structure is shown in Fig. 1. The distortion of
the lattice of oxygen ions is such that a cell of 32 oxygens
has cubic symmetry again. There are, for each oxygen,
one interstice surrounded by an octahedron of oxygen
and two surrounded by a tetrahedron; half of the former
and only one-eighth of the latter are occupied by metal
ions. This means that in the unit cell there are 8 "tetra-
hedral sites" and 16 "octahedral sites. "
In a "normal" spinel, the 8 A ions occupy the 8 tetra-

hedral sites, the 168 ions the octahedral ones. In an
"inverse" spinel, 8 of the 8 ions occupy the tetrahedral
sites, the other 8 and the 8 A's occupying the octahedral
sites. Ferrites are known which range all the way from
purely normal to purely inverse. We are here interested
in two problems, both having to do with ordering on the
octahedral sites: (a) the problem of atomic ordering in
inverse ferrites; (b) in normal ferrites with small or no
magnetic moments on the A ions, the problem of anti-
ferromagnetic ordering of spins.
To attack these problems we need to study carefully

only the crystal lattice of the magnetic ions, particu-
larly that of the octahedral sites. The occupied tetra-
hedral sites form a diamond-type lattice, the octahedral
sites (see Fig. 2) a somewhat more complex cubic
lattice which could be generated from this tetrahedral
site lattice by displacing it through half the cube edge
and then placing an atom at the center of each bond,
' T. F. W. Barth and E. Posnjak, Z. Krist. 82, 325 (1932).
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AB2O4 spinel, e.g. magnetite (Fe3O4) : 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Abstract. A pyrochlore lattice is considered where the average electron number of electrons per site is
half-integer, concentrating on the case of exactly half an electron per site. Strong on-site repulsions are
assumed, so that all sites are either empty or singly occupied. When there are in addition strong nearest-
neighbour repulsions, a tetrahedron rule comes into effect, as previously suggested for magnetite. We
show that in this case, there exist excitations with fractional charge ±e/2. These are intimately connected
with the high degeneracy of the ground state in the absence of kinetic energy terms. When an additional
electron is inserted into the system, it decays into two point like excitations with charge −e/2, connected
by a Heisenberg spin-chain which carries the electron’s spin.

1 Introduction

The experimental observation of heavy-fermion behaviour of LiV2O4 [1–3] has drawn attention
to pyrochlore lattice systems with half-integer valency of the involved ions. For example, the
average valency of V in LiV2O4 is +3.5, and the same is true for Ti in LiTi2O4. Therefore,
the average 3d electron number is d1.5 in the first case, and d0.5 in the second one. From
LDA band-structure calculations [4–7] it is known that the conduction bands have 3d-t2g

character, and are well separated from higher energy valence electron states. However the
LDA effective electron mass found for LiV2O4 is a factor of twenty-five smaller than the
quasiparticle mass inferred from specific heat and spin susceptibility data. This is a sign
of strong electronic correlations. On-site Hubbard U interactions alone are not sufficient to
explain the large measured quasiparticle mass. They merely reduce the atomic configurations
of the V ions to 3d1 and 3d2, i. e., they exclude 3d0, 3d3 configurations, etc.In order to obtain
a sufficiently high density of low-energy excitations one must therefore include correlations
between neighbouring sites. The nearest-neighbour interactions are minimised if, for each of
the corner sharing tetrahedra which make up the pyrochlore lattice, there are two 3d1 and two
3d2 configurations. This so-called “tetrahedron rule”, which is implicit in Verwey’s treatment
of the metal-insulator transition in the spinel Fe3O4 [8], was first stated explicitly by Anderson
[9]. The number of configurations which obey the tetrahedron rule grows exponentially with
the number of tetrahedra, so in the absence of any perturbation (such as the electrons’ kinetic
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Ring exchange splits the degeneracy of the ice manifold.
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values −0.37 ! V < 1, we find a non–magnetic resonat-
ing plaquette phase, terminating in a Rokhsar–Kivelson
(RK) point at V = 1. For V > 1, the system retains
an extensive ground state degeneracy and is quantum
disorderd (or more properly, quantum critical). Spinon
excitations are deconfined.

Finally in Section ?? we discuss the broader implica-
tions of our results and place them in the context of ex-
isting work on other frustrated spin models.

II. SPIN HAMILTONIAN AND ICE–STATE
HILBERT SPACE

We take as a starting point the spin–1/2 anisotropic
Heisenberg model :

H = Jz

∑

〈ij〉

Sz
i Sz

j +
Jxy

2

∑

〈ij〉

(

S+
i S−

j + S−
i S+

j

)

(1)

with antiferromagnetic interactions Jz, Jxy > 0, in the
limit Jz " Jxy. The sum

∑

〈ij〉 denotes summation over
the bonds of the checkerboard lattice, often known as the
pyrochlore slab.

(a) (b)

FIG. 1: a) The checkerboard lattice on which the ice states
are defined and b) the corresponding square lattice on which
the states of the six–vertex model are defined. The checker-
board lattice is the dual lattice of the square lattice (and
vise–versa). Both are bipartite, the square lattice in sites, the
checkerboard lattice in tetrahedra (cross–linked squares).

The checkerboard lattice, illustrated in Fig. ??a), is
composed of regular corner sharing tetrahedra projected
onto the plane, to give a square lattice of sites with alter-
nating empty and cross–linked plaquettes. As such it is
the two–dimensional analogue of the three–dimensional
pyrochlore lattice. In the Ising limit, Jxy = 0, an in-
dividual tetrahedron has six possible degenerate ground
states. These correspond to the six different ways of dis-
tributing two up and two down spins between four sites,
such that the z–component of the total spin of the tetra-
hedron is zero.

In fact exactly the same local degeneracy occurs in the
theory of Verway charge ordering on a pyrochlore lattice
[Anderson] and in the tetrahedrally–coordinated protons
and oxygen ions of water ice [Pauling,Bernal-Folwler].
For this reason, the condition that Ising configuration

of an individual tetrahedron has zero total spin is re-
ferred to both as the Anderson tetrahedron rule, and the
Bernal–Fowler–Pauling ice rule.

What makes these problems so interesting is that
a substantial fraction of this local degeneracy persists
when tetrahedra are joined at the corners to form a py-
rochlore or checkerboard lattice. Pauling’s original esti-
mate, made in the context of water ice, was that the size
of the ground state manifold grows as

W ∼
(

3

2

)N

(2)

where N is the number of tetrahedra This simple es-
timate applies equally to the two–dimensional checker-
board lattice we wish to consider, but in this case the
exact powerlaw is known

W = α

(

4

3

)
3N

2

= α × (1.5396 . . .)N (3)

where the precise value of the prefactor α depends on the
details of the boundary conditions imposed on the lattice
[Lieb].

Exact results for the Ising model on a pyrochlore slab
such Eq. (??), can be found mapping it onto the exactly
solved six–vertex model (6VM). Widely studied in sta-
tistical physics as a two–dimensional analogue of water
ice, the six–vertex model is defined by drawing arrows
on the bonds of a square lattice such that there are ex-
actly two arrows pointing into, and two pointing out of,
each lattice site (vertex). There are six such allowed ver-
tex configurations, shown in Fig. ??. By deviding the
checkeboard lattice into A and B sublattices of tetrahe-
dra (cross–linked squares), and joining the centre points
of neighbouring tetrahedra with arrows that point from
A to B sublattice tetrahedra where they lie on top of an
up spin, and from B to A where they lie on top of a down
spin, it is possible to make a one–to–one mapping of the
Ising states permitted by the ice rule onto those of the
6VM.

1 2 3 4 5 6

FIG. 2: The six possible allowed verticies of the six–vertex
model labeled following the conventions of Baxter

In fact there are many different equivalent representa-
tions of the states in the ground state manifold of the
6VM. Besides the Ising limit of the Heisenberg model on
a checkerboard lattice, and the water ice and pyrochlore
charge ordering problems referred to above, the 6VM
can be mapped onto the fully–packed loop model (FPLM)
studied in polymer physics. It also has a representation
in terms of an integer “height variable” defined on the
empty plaquettes of the checkerboard lattice.
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(a)
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FIG. 3: Any Ising state obeying the ice rules, e.g. that shown
in (a), is equivalent to (b) a Fully Packed Loop model or (c)
six–vertex model configuration. In the state shown, the upper
left corner has Néel order, while the lower right corner has
collinear order. Flippable plaquettes are denoted with circles.
In the case of the six–vertex model, these have a defininate
sense of clockwise or anticlockwise rotation

The FPLM representation is obtained by joining the
centers of tetrahedra (cross–linked squares) with lines
which are one colour where they lie on top of up spins,
and another where they lie on top of down spins. The
FPLM brings out an important topological property of
the ground state manifold, namely that each Ising up
(down) spin belongs to one, and only one, closed? loop
of up (down) spins, and that the ground state manifold
is the set of all possible loop coverings of the lattice. In
what follows we use both the notations of the 6VM and
FPLM to discuss the states of the XXZ Heisenberg model
on the checkerboard lattice.

So far we have discussed only the classical, 6VM–like,
Ising limit of Eq. (??). Now let us consider what happens
when we introduce quantum dynamics by restoring a fi-
nite Jxy ! Jz . Short–lived virtual excitations enable the

system to tunnel from one ice–rule state to another, but
subject to a rigorous topological constraint. The only ac-
tive sites are those on “flippable plaquettes’” where pairs
of up spins and down spins are found diagonally oppo-
site one another on one of the empty square plaquettes of
the checkerboard lattice. Since Ising spins are bosonic de-
grees of freedom, there is no interference between the dif-
ferent virtual excitations contributing to flipping any one
plaquette. We note in passing that Fermi statistics lead
to substantially different physics in the classically equiv-
alent problem of spin–less Fermions with strong nearest
neighbour interactions? .

The allowed reconfigurations of our bosonic Q6VM
can be described in perturbation theory by the effective
Hamiltonian

H2nd = −
J2

xy

Jz

∑

!

(S+
1 S−

2 S+
3 S−

4 + S−
1 S+

2 S−
3 S+

4 ) (4)

where the indicies 1 to 4 count consecutive sites (either
clockwise or anticlockwise), of an empty plaquette. We
have dropped a constant term, also of order J2

xy/Jz. In
terms of the 6VM representation, a “flippable plaque-
tte” is a closed loop of four arrows joined nose to tail so
that the plaquette has a definite sense of “rotation”. The
Hamiltonian (??) acts to invert all the arrows of a flip-
pable plaquette so that it has the opposite sense. In terms
of the FPLM, a flippable plaquette occurs where two ad-
jacent sections of loop run parallel to one another, and
the action Eq (??) either joins two neighbouring loops,
or separates one loop into two distinct pieces.

The quantum dynamics which we have introduced into
the classical 6VM model is clearly directly analogous to
the resonance of dimers in the QDM considered by RK.
Formally, infact, the Hamiltonian is exactly the same,
although the Hilbert space on which it acts is different.
And, as in the QDM, we anticipate that quantum effects
will in general select a ground state with finite degener-
acy from the vast manifold of classically allowed states.
As such, there is only one energy scale in the problem,
J2

xy/Jz. However in order to study the different possible
phases of the model it is useful to introduce a further
control parameter. In the case of the classical 6VM this
can be done by varying the relative strength of the three
pairs of like vertices. A suitable control parameter for
the QDM is a diagonal term which counts the number of
dimers which can resonate in any given dimer covering.
By direct analogy, we introduce a diagonal interaction V
to the Q6VM which counts the number of flippable pla-
quettes, and therefore acts like a chemical potential for
excitations within the ground state manifold of the ice
rule states

H =
∑

!

[

−t
(

|!〉〈" | + |"〉〈! |
)

+ V
(

|!〉〈! | + |"〉〈" |
)]

(5)
where the | !〉 and | "〉 states represent squares with
the respective circular arrow configuration on the square
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The checkerboard lattice, illustrated in Fig. ??a), is
composed of regular corner sharing tetrahedra projected
onto the plane, to give a square lattice of sites with alter-
nating empty and cross–linked plaquettes. As such it is
the two–dimensional analogue of the three–dimensional
pyrochlore lattice. In the Ising limit, Jxy = 0, an in-
dividual tetrahedron has six possible degenerate ground
states. These correspond to the six different ways of dis-
tributing two up and two down spins between four sites,
such that the z–component of the total spin of the tetra-
hedron is zero.

In fact exactly the same local degeneracy occurs in the
theory of Verway charge ordering on a pyrochlore lattice
[Anderson] and in the tetrahedrally–coordinated protons
and oxygen ions of water ice [Pauling,Bernal-Folwler].
For this reason, the condition that Ising configuration

of an individual tetrahedron has zero total spin is re-
ferred to both as the Anderson tetrahedron rule, and the
Bernal–Fowler–Pauling ice rule.

What makes these problems so interesting is that
a substantial fraction of this local degeneracy persists
when tetrahedra are joined at the corners to form a py-
rochlore or checkerboard lattice. Pauling’s original esti-
mate, made in the context of water ice, was that the size
of the ground state manifold grows as
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timate applies equally to the two–dimensional checker-
board lattice we wish to consider, but in this case the
exact powerlaw is known
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where the precise value of the prefactor α depends on the
details of the boundary conditions imposed on the lattice
[Lieb].

Exact results for the Ising model on a pyrochlore slab
such Eq. (??), can be found mapping it onto the exactly
solved six–vertex model (6VM). Widely studied in sta-
tistical physics as a two–dimensional analogue of water
ice, the six–vertex model is defined by drawing arrows
on the bonds of a square lattice such that there are ex-
actly two arrows pointing into, and two pointing out of,
each lattice site (vertex). There are six such allowed ver-
tex configurations, shown in Fig. ??. By deviding the
checkeboard lattice into A and B sublattices of tetrahe-
dra (cross–linked squares), and joining the centre points
of neighbouring tetrahedra with arrows that point from
A to B sublattice tetrahedra where they lie on top of an
up spin, and from B to A where they lie on top of a down
spin, it is possible to make a one–to–one mapping of the
Ising states permitted by the ice rule onto those of the
6VM.
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FIG. 2: The six possible allowed verticies of the six–vertex
model labeled following the conventions of Baxter

In fact there are many different equivalent representa-
tions of the states in the ground state manifold of the
6VM. Besides the Ising limit of the Heisenberg model on
a checkerboard lattice, and the water ice and pyrochlore
charge ordering problems referred to above, the 6VM
can be mapped onto the fully–packed loop model (FPLM)
studied in polymer physics. It also has a representation
in terms of an integer “height variable” defined on the
empty plaquettes of the checkerboard lattice.
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extensive degeneracy. and, to leading order in Jxy, deconfined spinon excitations. We explore the role of cyclic
exchange arising at order Jxy

2 /Jz on the ice states and their associated spinon excitations. By mapping the
original problem onto an equivalent quantum six-vertex model, we identify three different phases as a function
of the chemical potential for flippable plaquettes—a phase with long range Néel order and confined spinon
excitations, a nonmagnetic state of resonating square plaquettes, and a quasicollinear phase with gapped but
deconfined spinon excitations. The relevance of the results to the square-lattice quantum dimer model is also
discussed.
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The past decade has seen a great renaissance in the study
of frustrated quantum spin systems. On the experimental
front, advances in the synthesis of magnetic oxides have
given rise to a great wealth of new frustrated materials with
highly unusual and interesting properties. And, at the same
time, highly frustrated models have become a favorite play-
ground of theorists seeking to understand unconventional
phase transitions and excitations.
Recently, it was proposed that the geometric frustration

present on the pyrochlore lattice could give rise to fractional
charges in two or three dimensions,1 in a physically realistic
model based on strong nearest neighbor repulsion close to
commensurate filling.2 The charge ordering problem consid-
ered in Ref. 1 is classically equivalent to one of Ising anti-
ferromagnetism, and in this paper we consider the simplest
possible test case for these ideas, the XXZ Heisenberg model
on a checkerboard (2D pyrochlore) lattice. We proceed by
mapping this model onto an equivalent, quantum six-vertex
model (Q6VM), and describe the nature of the ground state
and low lying spin excitations of this model as a function of
a control parameter V, which acts as a chemical potential for
those “flippable plaquettes” accessible to cyclic exchange.
We identify three different ground states, a phase with

long range Néel order, a nonmagnetic state of resonating
square plaquettes, and a partially disordered phase of “iso-
lated states” with extremely large ground state degeneracy,
referred to as the “quasicollinear” phase below. Because of
the anisotropy of the model, all spin excitations are gapped.
It is possible to identify the lowest lying excitations of the
Néel phase as spin waves, and those of the quasicollinear
phase as deconfined spinons. We also identify the special
role of the isolated states in supporting fractional excitations.
Many of these results are also relevant to the much studied
square lattice quantum dimer model (QDM).3
Model and mapping onto Q6VM: We take as a starting

point the spin-1 /2 anisotropic Heisenberg model with anti-

ferromagnetic interactions, Jz, Jxy!0, in the limit Jz"Jxy

H = Jz!
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Here the sum !"ij# runs over the bonds of the 2D pyrochlore
or checkerboard lattice, shown in Fig. 1(a). In the Ising limit,
Jxy=0, this model has an extensive ground state
degeneracy—every state with exactly two up and two down
spins per tetrahedron (cross linked square) is a ground state.
For historical reasons, this is known as the “ice rules” con-
straint. Topologically, “ice” states have the structure of
closely packed loops of up and down spins, and are separated
by a gap Jz from the lowest lying excited state. Flipping any

FIG. 1. (Color online) (a) The checkerboard lattice on which the
ice states, and (b) the square lattice on which the states of the
six-vertex model are defined. Any Ising state obeying the ice rules,
e.g., that shown in (a), is equivalent to (b) six-vertex model con-
figuration. In the state shown, the upper left corner has Néel order,
while the lower right corner has collinear order. Flippable
plaquettes are denoted with circles. In the case of the six-vertex
model, these have a definite sense of rotation.
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tunneling between ice-configurations

given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects (spinons),
which propagate independently.1,4 The pyrochlore (checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.
By drawing an arrow from the center of A to B sublattice

tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classical six vertex model (6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that (a) the
ground state manifold of the Ising model grows as W
! !4/3"3N/4 where N is the number lattice sites7 and (b) all
correlation functions decay algebraically.8
Up to this point, our analysis contains only classical sta-

tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finite Jxy"Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
erate perturbation theory by the effective Hamiltonian

H2nd = −
Jxy
2

Jz
#
!

!S1
+S2
−S3
+S4
− + S1

−S2
+S3
−S4
+" , !2"

where the indices 1–4 count consecutive sites (either clock-
wise or anticlockwise), of an empty plaquette.6
In terms of the 6VM representation, Eq. (2) acts on a

plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette (cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.
As such, there is only one (kinetic) energy scale in the

problem, t=Jxy
2 /Jz. However in order to study the different

possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interaction V to the Q6VM
which counts the number of flippable plaquettes

H =#
!

$V!% ! &'! % + % " &'" %" − t!% ! &'" % + % " &'! %"( ,

!3"

where the %! & and %" & states represent squares with the
respective circular arrow configuration on the square edges,

as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian (3).
Our approach to determining the different phases of the

Hamiltonian (3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13
Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettes, V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.
Negative values of V favor states with flippable

plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state for V→−#. The Néel state is twofold degen-
erate in the thermodynamic limit. For finite V / t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM (Fig. 3). We
find a single phase for V$−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value of V)−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum (Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.
We find a single phase extending from −0.3t$V% t, in-

cluding the XXZ point V=0. This phase terminates in the
special high symmetry point V= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V / t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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The antiferromagnetic Ising model on a checkerboard lattice has an ice-like ground state manifold with
extensive degeneracy. and, to leading order in Jxy, deconfined spinon excitations. We explore the role of cyclic
exchange arising at order Jxy

2 /Jz on the ice states and their associated spinon excitations. By mapping the
original problem onto an equivalent quantum six-vertex model, we identify three different phases as a function
of the chemical potential for flippable plaquettes—a phase with long range Néel order and confined spinon
excitations, a nonmagnetic state of resonating square plaquettes, and a quasicollinear phase with gapped but
deconfined spinon excitations. The relevance of the results to the square-lattice quantum dimer model is also
discussed.
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The past decade has seen a great renaissance in the study
of frustrated quantum spin systems. On the experimental
front, advances in the synthesis of magnetic oxides have
given rise to a great wealth of new frustrated materials with
highly unusual and interesting properties. And, at the same
time, highly frustrated models have become a favorite play-
ground of theorists seeking to understand unconventional
phase transitions and excitations.
Recently, it was proposed that the geometric frustration

present on the pyrochlore lattice could give rise to fractional
charges in two or three dimensions,1 in a physically realistic
model based on strong nearest neighbor repulsion close to
commensurate filling.2 The charge ordering problem consid-
ered in Ref. 1 is classically equivalent to one of Ising anti-
ferromagnetism, and in this paper we consider the simplest
possible test case for these ideas, the XXZ Heisenberg model
on a checkerboard (2D pyrochlore) lattice. We proceed by
mapping this model onto an equivalent, quantum six-vertex
model (Q6VM), and describe the nature of the ground state
and low lying spin excitations of this model as a function of
a control parameter V, which acts as a chemical potential for
those “flippable plaquettes” accessible to cyclic exchange.
We identify three different ground states, a phase with

long range Néel order, a nonmagnetic state of resonating
square plaquettes, and a partially disordered phase of “iso-
lated states” with extremely large ground state degeneracy,
referred to as the “quasicollinear” phase below. Because of
the anisotropy of the model, all spin excitations are gapped.
It is possible to identify the lowest lying excitations of the
Néel phase as spin waves, and those of the quasicollinear
phase as deconfined spinons. We also identify the special
role of the isolated states in supporting fractional excitations.
Many of these results are also relevant to the much studied
square lattice quantum dimer model (QDM).3
Model and mapping onto Q6VM: We take as a starting

point the spin-1 /2 anisotropic Heisenberg model with anti-

ferromagnetic interactions, Jz, Jxy!0, in the limit Jz"Jxy

H = Jz!
"ij#

Si
zSj
z +

Jxy
2 !

"ij#
$Si
+Sj
− + Si

−Sj
+% . $1%

Here the sum !"ij# runs over the bonds of the 2D pyrochlore
or checkerboard lattice, shown in Fig. 1(a). In the Ising limit,
Jxy=0, this model has an extensive ground state
degeneracy—every state with exactly two up and two down
spins per tetrahedron (cross linked square) is a ground state.
For historical reasons, this is known as the “ice rules” con-
straint. Topologically, “ice” states have the structure of
closely packed loops of up and down spins, and are separated
by a gap Jz from the lowest lying excited state. Flipping any

FIG. 1. (Color online) (a) The checkerboard lattice on which the
ice states, and (b) the square lattice on which the states of the
six-vertex model are defined. Any Ising state obeying the ice rules,
e.g., that shown in (a), is equivalent to (b) six-vertex model con-
figuration. In the state shown, the upper left corner has Néel order,
while the lower right corner has collinear order. Flippable
plaquettes are denoted with circles. In the case of the six-vertex
model, these have a definite sense of rotation.
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The past decade has seen a great renaissance in the study
of frustrated quantum spin systems. On the experimental
front, advances in the synthesis of magnetic oxides have
given rise to a great wealth of new frustrated materials with
highly unusual and interesting properties. And, at the same
time, highly frustrated models have become a favorite play-
ground of theorists seeking to understand unconventional
phase transitions and excitations.
Recently, it was proposed that the geometric frustration

present on the pyrochlore lattice could give rise to fractional
charges in two or three dimensions,1 in a physically realistic
model based on strong nearest neighbor repulsion close to
commensurate filling.2 The charge ordering problem consid-
ered in Ref. 1 is classically equivalent to one of Ising anti-
ferromagnetism, and in this paper we consider the simplest
possible test case for these ideas, the XXZ Heisenberg model
on a checkerboard (2D pyrochlore) lattice. We proceed by
mapping this model onto an equivalent, quantum six-vertex
model (Q6VM), and describe the nature of the ground state
and low lying spin excitations of this model as a function of
a control parameter V, which acts as a chemical potential for
those “flippable plaquettes” accessible to cyclic exchange.
We identify three different ground states, a phase with

long range Néel order, a nonmagnetic state of resonating
square plaquettes, and a partially disordered phase of “iso-
lated states” with extremely large ground state degeneracy,
referred to as the “quasicollinear” phase below. Because of
the anisotropy of the model, all spin excitations are gapped.
It is possible to identify the lowest lying excitations of the
Néel phase as spin waves, and those of the quasicollinear
phase as deconfined spinons. We also identify the special
role of the isolated states in supporting fractional excitations.
Many of these results are also relevant to the much studied
square lattice quantum dimer model (QDM).3
Model and mapping onto Q6VM: We take as a starting

point the spin-1 /2 anisotropic Heisenberg model with anti-

ferromagnetic interactions, Jz, Jxy!0, in the limit Jz"Jxy

H = Jz!
"ij#

Si
zSj
z +

Jxy
2 !

"ij#
$Si
+Sj
− + Si
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Here the sum !"ij# runs over the bonds of the 2D pyrochlore
or checkerboard lattice, shown in Fig. 1(a). In the Ising limit,
Jxy=0, this model has an extensive ground state
degeneracy—every state with exactly two up and two down
spins per tetrahedron (cross linked square) is a ground state.
For historical reasons, this is known as the “ice rules” con-
straint. Topologically, “ice” states have the structure of
closely packed loops of up and down spins, and are separated
by a gap Jz from the lowest lying excited state. Flipping any

FIG. 1. (Color online) (a) The checkerboard lattice on which the
ice states, and (b) the square lattice on which the states of the
six-vertex model are defined. Any Ising state obeying the ice rules,
e.g., that shown in (a), is equivalent to (b) six-vertex model con-
figuration. In the state shown, the upper left corner has Néel order,
while the lower right corner has collinear order. Flippable
plaquettes are denoted with circles. In the case of the six-vertex
model, these have a definite sense of rotation.
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XXZ Heisenberg model

tunneling between ice-configurations

given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects (spinons),
which propagate independently.1,4 The pyrochlore (checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.
By drawing an arrow from the center of A to B sublattice

tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classical six vertex model (6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that (a) the
ground state manifold of the Ising model grows as W
! !4/3"3N/4 where N is the number lattice sites7 and (b) all
correlation functions decay algebraically.8
Up to this point, our analysis contains only classical sta-

tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finite Jxy"Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
erate perturbation theory by the effective Hamiltonian

H2nd = −
Jxy
2

Jz
#
!

!S1
+S2
−S3
+S4
− + S1

−S2
+S3
−S4
+" , !2"

where the indices 1–4 count consecutive sites (either clock-
wise or anticlockwise), of an empty plaquette.6
In terms of the 6VM representation, Eq. (2) acts on a

plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette (cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.
As such, there is only one (kinetic) energy scale in the

problem, t=Jxy
2 /Jz. However in order to study the different

possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interaction V to the Q6VM
which counts the number of flippable plaquettes

H =#
!

$V!% ! &'! % + % " &'" %" − t!% ! &'" % + % " &'! %"( ,

!3"

where the %! & and %" & states represent squares with the
respective circular arrow configuration on the square edges,

as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian (3).
Our approach to determining the different phases of the

Hamiltonian (3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13
Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettes, V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.
Negative values of V favor states with flippable

plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state for V→−#. The Néel state is twofold degen-
erate in the thermodynamic limit. For finite V / t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM (Fig. 3). We
find a single phase for V$−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value of V)−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum (Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.
We find a single phase extending from −0.3t$V% t, in-

cluding the XXZ point V=0. This phase terminates in the
special high symmetry point V= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V / t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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add a Rokhsar-Kivelson-like diagonal term 

given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects (spinons),
which propagate independently.1,4 The pyrochlore (checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.
By drawing an arrow from the center of A to B sublattice

tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classical six vertex model (6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that (a) the
ground state manifold of the Ising model grows as W
! !4/3"3N/4 where N is the number lattice sites7 and (b) all
correlation functions decay algebraically.8
Up to this point, our analysis contains only classical sta-

tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finite Jxy"Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
erate perturbation theory by the effective Hamiltonian

H2nd = −
Jxy
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where the indices 1–4 count consecutive sites (either clock-
wise or anticlockwise), of an empty plaquette.6
In terms of the 6VM representation, Eq. (2) acts on a

plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette (cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.
As such, there is only one (kinetic) energy scale in the

problem, t=Jxy
2 /Jz. However in order to study the different

possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interaction V to the Q6VM
which counts the number of flippable plaquettes

H =#
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$V!% ! &'! % + % " &'" %" − t!% ! &'" % + % " &'! %"( ,
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where the %! & and %" & states represent squares with the
respective circular arrow configuration on the square edges,

as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian (3).
Our approach to determining the different phases of the

Hamiltonian (3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13
Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettes, V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.
Negative values of V favor states with flippable

plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state for V→−#. The Néel state is twofold degen-
erate in the thermodynamic limit. For finite V / t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM (Fig. 3). We
find a single phase for V$−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value of V)−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum (Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.
We find a single phase extending from −0.3t$V% t, in-

cluding the XXZ point V=0. This phase terminates in the
special high symmetry point V= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V / t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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The past decade has seen a great renaissance in the study
of frustrated quantum spin systems. On the experimental
front, advances in the synthesis of magnetic oxides have
given rise to a great wealth of new frustrated materials with
highly unusual and interesting properties. And, at the same
time, highly frustrated models have become a favorite play-
ground of theorists seeking to understand unconventional
phase transitions and excitations.
Recently, it was proposed that the geometric frustration

present on the pyrochlore lattice could give rise to fractional
charges in two or three dimensions,1 in a physically realistic
model based on strong nearest neighbor repulsion close to
commensurate filling.2 The charge ordering problem consid-
ered in Ref. 1 is classically equivalent to one of Ising anti-
ferromagnetism, and in this paper we consider the simplest
possible test case for these ideas, the XXZ Heisenberg model
on a checkerboard (2D pyrochlore) lattice. We proceed by
mapping this model onto an equivalent, quantum six-vertex
model (Q6VM), and describe the nature of the ground state
and low lying spin excitations of this model as a function of
a control parameter V, which acts as a chemical potential for
those “flippable plaquettes” accessible to cyclic exchange.
We identify three different ground states, a phase with

long range Néel order, a nonmagnetic state of resonating
square plaquettes, and a partially disordered phase of “iso-
lated states” with extremely large ground state degeneracy,
referred to as the “quasicollinear” phase below. Because of
the anisotropy of the model, all spin excitations are gapped.
It is possible to identify the lowest lying excitations of the
Néel phase as spin waves, and those of the quasicollinear
phase as deconfined spinons. We also identify the special
role of the isolated states in supporting fractional excitations.
Many of these results are also relevant to the much studied
square lattice quantum dimer model (QDM).3
Model and mapping onto Q6VM: We take as a starting

point the spin-1 /2 anisotropic Heisenberg model with anti-

ferromagnetic interactions, Jz, Jxy!0, in the limit Jz"Jxy

H = Jz!
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Here the sum !"ij# runs over the bonds of the 2D pyrochlore
or checkerboard lattice, shown in Fig. 1(a). In the Ising limit,
Jxy=0, this model has an extensive ground state
degeneracy—every state with exactly two up and two down
spins per tetrahedron (cross linked square) is a ground state.
For historical reasons, this is known as the “ice rules” con-
straint. Topologically, “ice” states have the structure of
closely packed loops of up and down spins, and are separated
by a gap Jz from the lowest lying excited state. Flipping any

FIG. 1. (Color online) (a) The checkerboard lattice on which the
ice states, and (b) the square lattice on which the states of the
six-vertex model are defined. Any Ising state obeying the ice rules,
e.g., that shown in (a), is equivalent to (b) six-vertex model con-
figuration. In the state shown, the upper left corner has Néel order,
while the lower right corner has collinear order. Flippable
plaquettes are denoted with circles. In the case of the six-vertex
model, these have a definite sense of rotation.
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exchange arising at order Jxy
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original problem onto an equivalent quantum six-vertex model, we identify three different phases as a function
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deconfined spinon excitations. The relevance of the results to the square-lattice quantum dimer model is also
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The past decade has seen a great renaissance in the study
of frustrated quantum spin systems. On the experimental
front, advances in the synthesis of magnetic oxides have
given rise to a great wealth of new frustrated materials with
highly unusual and interesting properties. And, at the same
time, highly frustrated models have become a favorite play-
ground of theorists seeking to understand unconventional
phase transitions and excitations.
Recently, it was proposed that the geometric frustration

present on the pyrochlore lattice could give rise to fractional
charges in two or three dimensions,1 in a physically realistic
model based on strong nearest neighbor repulsion close to
commensurate filling.2 The charge ordering problem consid-
ered in Ref. 1 is classically equivalent to one of Ising anti-
ferromagnetism, and in this paper we consider the simplest
possible test case for these ideas, the XXZ Heisenberg model
on a checkerboard (2D pyrochlore) lattice. We proceed by
mapping this model onto an equivalent, quantum six-vertex
model (Q6VM), and describe the nature of the ground state
and low lying spin excitations of this model as a function of
a control parameter V, which acts as a chemical potential for
those “flippable plaquettes” accessible to cyclic exchange.
We identify three different ground states, a phase with

long range Néel order, a nonmagnetic state of resonating
square plaquettes, and a partially disordered phase of “iso-
lated states” with extremely large ground state degeneracy,
referred to as the “quasicollinear” phase below. Because of
the anisotropy of the model, all spin excitations are gapped.
It is possible to identify the lowest lying excitations of the
Néel phase as spin waves, and those of the quasicollinear
phase as deconfined spinons. We also identify the special
role of the isolated states in supporting fractional excitations.
Many of these results are also relevant to the much studied
square lattice quantum dimer model (QDM).3
Model and mapping onto Q6VM: We take as a starting

point the spin-1 /2 anisotropic Heisenberg model with anti-

ferromagnetic interactions, Jz, Jxy!0, in the limit Jz"Jxy
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Here the sum !"ij# runs over the bonds of the 2D pyrochlore
or checkerboard lattice, shown in Fig. 1(a). In the Ising limit,
Jxy=0, this model has an extensive ground state
degeneracy—every state with exactly two up and two down
spins per tetrahedron (cross linked square) is a ground state.
For historical reasons, this is known as the “ice rules” con-
straint. Topologically, “ice” states have the structure of
closely packed loops of up and down spins, and are separated
by a gap Jz from the lowest lying excited state. Flipping any

FIG. 1. (Color online) (a) The checkerboard lattice on which the
ice states, and (b) the square lattice on which the states of the
six-vertex model are defined. Any Ising state obeying the ice rules,
e.g., that shown in (a), is equivalent to (b) six-vertex model con-
figuration. In the state shown, the upper left corner has Néel order,
while the lower right corner has collinear order. Flippable
plaquettes are denoted with circles. In the case of the six-vertex
model, these have a definite sense of rotation.
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XXZ Heisenberg model

tunneling between ice-configurations

given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects (spinons),
which propagate independently.1,4 The pyrochlore (checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.
By drawing an arrow from the center of A to B sublattice

tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classical six vertex model (6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that (a) the
ground state manifold of the Ising model grows as W
! !4/3"3N/4 where N is the number lattice sites7 and (b) all
correlation functions decay algebraically.8
Up to this point, our analysis contains only classical sta-

tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finite Jxy"Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
erate perturbation theory by the effective Hamiltonian

H2nd = −
Jxy
2

Jz
#
!

!S1
+S2
−S3
+S4
− + S1

−S2
+S3
−S4
+" , !2"

where the indices 1–4 count consecutive sites (either clock-
wise or anticlockwise), of an empty plaquette.6
In terms of the 6VM representation, Eq. (2) acts on a

plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette (cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.
As such, there is only one (kinetic) energy scale in the

problem, t=Jxy
2 /Jz. However in order to study the different

possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interaction V to the Q6VM
which counts the number of flippable plaquettes

H =#
!

$V!% ! &'! % + % " &'" %" − t!% ! &'" % + % " &'! %"( ,

!3"

where the %! & and %" & states represent squares with the
respective circular arrow configuration on the square edges,

as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian (3).
Our approach to determining the different phases of the

Hamiltonian (3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13
Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettes, V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.
Negative values of V favor states with flippable

plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state for V→−#. The Néel state is twofold degen-
erate in the thermodynamic limit. For finite V / t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM (Fig. 3). We
find a single phase for V$−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value of V)−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum (Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.
We find a single phase extending from −0.3t$V% t, in-

cluding the XXZ point V=0. This phase terminates in the
special high symmetry point V= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V / t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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add a Rokhsar-Kivelson-like diagonal term 

given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects (spinons),
which propagate independently.1,4 The pyrochlore (checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.
By drawing an arrow from the center of A to B sublattice

tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classical six vertex model (6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that (a) the
ground state manifold of the Ising model grows as W
! !4/3"3N/4 where N is the number lattice sites7 and (b) all
correlation functions decay algebraically.8
Up to this point, our analysis contains only classical sta-

tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finite Jxy"Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
erate perturbation theory by the effective Hamiltonian
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where the indices 1–4 count consecutive sites (either clock-
wise or anticlockwise), of an empty plaquette.6
In terms of the 6VM representation, Eq. (2) acts on a

plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette (cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.
As such, there is only one (kinetic) energy scale in the

problem, t=Jxy
2 /Jz. However in order to study the different

possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interaction V to the Q6VM
which counts the number of flippable plaquettes
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where the %! & and %" & states represent squares with the
respective circular arrow configuration on the square edges,

as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian (3).
Our approach to determining the different phases of the

Hamiltonian (3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13
Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettes, V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.
Negative values of V favor states with flippable

plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state for V→−#. The Néel state is twofold degen-
erate in the thermodynamic limit. For finite V / t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM (Fig. 3). We
find a single phase for V$−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value of V)−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum (Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.
We find a single phase extending from −0.3t$V% t, in-

cluding the XXZ point V=0. This phase terminates in the
special high symmetry point V= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V / t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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cf. Quantum-dimer model

Quantum 6-vertex model

The model is also known as the (2+1)-dimensional U(1) quantum link model



ℋV=t=1 = ∑
□

( ∣↺⟩ − ∣↻⟩)(⟨↺∣ − ⟨↻∣ )

given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects (spinons),
which propagate independently.1,4 The pyrochlore (checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.
By drawing an arrow from the center of A to B sublattice

tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classical six vertex model (6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that (a) the
ground state manifold of the Ising model grows as W
! !4/3"3N/4 where N is the number lattice sites7 and (b) all
correlation functions decay algebraically.8
Up to this point, our analysis contains only classical sta-

tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finite Jxy"Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
erate perturbation theory by the effective Hamiltonian

H2nd = −
Jxy
2

Jz
#
!

!S1
+S2
−S3
+S4
− + S1

−S2
+S3
−S4
+" , !2"

where the indices 1–4 count consecutive sites (either clock-
wise or anticlockwise), of an empty plaquette.6
In terms of the 6VM representation, Eq. (2) acts on a

plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette (cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.
As such, there is only one (kinetic) energy scale in the

problem, t=Jxy
2 /Jz. However in order to study the different

possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interaction V to the Q6VM
which counts the number of flippable plaquettes

H =#
!

$V!% ! &'! % + % " &'" %" − t!% ! &'" % + % " &'! %"( ,

!3"

where the %! & and %" & states represent squares with the
respective circular arrow configuration on the square edges,

as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian (3).
Our approach to determining the different phases of the

Hamiltonian (3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13
Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettes, V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.
Negative values of V favor states with flippable

plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state for V→−#. The Néel state is twofold degen-
erate in the thermodynamic limit. For finite V / t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM (Fig. 3). We
find a single phase for V$−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value of V)−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum (Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.
We find a single phase extending from −0.3t$V% t, in-

cluding the XXZ point V=0. This phase terminates in the
special high symmetry point V= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V / t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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Why did Rokhsar-Kivelson add the V term? 

The ground state wave function is an equal 
amplitude superposition of all configurations:

+ + +

For V=t the Hamiltonian is a sum of projectors:



given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects (spinons),
which propagate independently.1,4 The pyrochlore (checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.
By drawing an arrow from the center of A to B sublattice

tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classical six vertex model (6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that (a) the
ground state manifold of the Ising model grows as W
! !4/3"3N/4 where N is the number lattice sites7 and (b) all
correlation functions decay algebraically.8
Up to this point, our analysis contains only classical sta-

tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finite Jxy"Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
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where the indices 1–4 count consecutive sites (either clock-
wise or anticlockwise), of an empty plaquette.6
In terms of the 6VM representation, Eq. (2) acts on a

plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette (cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.
As such, there is only one (kinetic) energy scale in the

problem, t=Jxy
2 /Jz. However in order to study the different

possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interaction V to the Q6VM
which counts the number of flippable plaquettes
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where the %! & and %" & states represent squares with the
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as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian (3).
Our approach to determining the different phases of the

Hamiltonian (3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13
Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettes, V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.
Negative values of V favor states with flippable

plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state for V→−#. The Néel state is twofold degen-
erate in the thermodynamic limit. For finite V / t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM (Fig. 3). We
find a single phase for V$−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value of V)−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum (Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.
We find a single phase extending from −0.3t$V% t, in-

cluding the XXZ point V=0. This phase terminates in the
special high symmetry point V= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V / t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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The antiferromagnetic Ising model on a checkerboard lattice has an ice-like ground state manifold with
extensive degeneracy. and, to leading order in Jxy, deconfined spinon excitations. We explore the role of cyclic
exchange arising at order Jxy

2 /Jz on the ice states and their associated spinon excitations. By mapping the
original problem onto an equivalent quantum six-vertex model, we identify three different phases as a function
of the chemical potential for flippable plaquettes—a phase with long range Néel order and confined spinon
excitations, a nonmagnetic state of resonating square plaquettes, and a quasicollinear phase with gapped but
deconfined spinon excitations. The relevance of the results to the square-lattice quantum dimer model is also
discussed.
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The past decade has seen a great renaissance in the study
of frustrated quantum spin systems. On the experimental
front, advances in the synthesis of magnetic oxides have
given rise to a great wealth of new frustrated materials with
highly unusual and interesting properties. And, at the same
time, highly frustrated models have become a favorite play-
ground of theorists seeking to understand unconventional
phase transitions and excitations.
Recently, it was proposed that the geometric frustration

present on the pyrochlore lattice could give rise to fractional
charges in two or three dimensions,1 in a physically realistic
model based on strong nearest neighbor repulsion close to
commensurate filling.2 The charge ordering problem consid-
ered in Ref. 1 is classically equivalent to one of Ising anti-
ferromagnetism, and in this paper we consider the simplest
possible test case for these ideas, the XXZ Heisenberg model
on a checkerboard (2D pyrochlore) lattice. We proceed by
mapping this model onto an equivalent, quantum six-vertex
model (Q6VM), and describe the nature of the ground state
and low lying spin excitations of this model as a function of
a control parameter V, which acts as a chemical potential for
those “flippable plaquettes” accessible to cyclic exchange.
We identify three different ground states, a phase with

long range Néel order, a nonmagnetic state of resonating
square plaquettes, and a partially disordered phase of “iso-
lated states” with extremely large ground state degeneracy,
referred to as the “quasicollinear” phase below. Because of
the anisotropy of the model, all spin excitations are gapped.
It is possible to identify the lowest lying excitations of the
Néel phase as spin waves, and those of the quasicollinear
phase as deconfined spinons. We also identify the special
role of the isolated states in supporting fractional excitations.
Many of these results are also relevant to the much studied
square lattice quantum dimer model (QDM).3
Model and mapping onto Q6VM: We take as a starting

point the spin-1 /2 anisotropic Heisenberg model with anti-

ferromagnetic interactions, Jz, Jxy!0, in the limit Jz"Jxy

H = Jz!
"ij#

Si
zSj
z +

Jxy
2 !

"ij#
$Si
+Sj
− + Si

−Sj
+% . $1%

Here the sum !"ij# runs over the bonds of the 2D pyrochlore
or checkerboard lattice, shown in Fig. 1(a). In the Ising limit,
Jxy=0, this model has an extensive ground state
degeneracy—every state with exactly two up and two down
spins per tetrahedron (cross linked square) is a ground state.
For historical reasons, this is known as the “ice rules” con-
straint. Topologically, “ice” states have the structure of
closely packed loops of up and down spins, and are separated
by a gap Jz from the lowest lying excited state. Flipping any

FIG. 1. (Color online) (a) The checkerboard lattice on which the
ice states, and (b) the square lattice on which the states of the
six-vertex model are defined. Any Ising state obeying the ice rules,
e.g., that shown in (a), is equivalent to (b) six-vertex model con-
figuration. In the state shown, the upper left corner has Néel order,
while the lower right corner has collinear order. Flippable
plaquettes are denoted with circles. In the case of the six-vertex
model, these have a definite sense of rotation.
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given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects (spinons),
which propagate independently.1,4 The pyrochlore (checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.
By drawing an arrow from the center of A to B sublattice

tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classical six vertex model (6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that (a) the
ground state manifold of the Ising model grows as W
! !4/3"3N/4 where N is the number lattice sites7 and (b) all
correlation functions decay algebraically.8
Up to this point, our analysis contains only classical sta-

tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finite Jxy"Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
erate perturbation theory by the effective Hamiltonian

H2nd = −
Jxy
2

Jz
#
!

!S1
+S2
−S3
+S4
− + S1

−S2
+S3
−S4
+" , !2"

where the indices 1–4 count consecutive sites (either clock-
wise or anticlockwise), of an empty plaquette.6
In terms of the 6VM representation, Eq. (2) acts on a

plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette (cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.
As such, there is only one (kinetic) energy scale in the

problem, t=Jxy
2 /Jz. However in order to study the different

possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interaction V to the Q6VM
which counts the number of flippable plaquettes

H =#
!

$V!% ! &'! % + % " &'" %" − t!% ! &'" % + % " &'! %"( ,

!3"

where the %! & and %" & states represent squares with the
respective circular arrow configuration on the square edges,

as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian (3).
Our approach to determining the different phases of the

Hamiltonian (3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13
Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettes, V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.
Negative values of V favor states with flippable

plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state for V→−#. The Néel state is twofold degen-
erate in the thermodynamic limit. For finite V / t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM (Fig. 3). We
find a single phase for V$−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value of V)−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum (Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.
We find a single phase extending from −0.3t$V% t, in-

cluding the XXZ point V=0. This phase terminates in the
special high symmetry point V= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V / t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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Plaquette phase

given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects (spinons),
which propagate independently.1,4 The pyrochlore (checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.
By drawing an arrow from the center of A to B sublattice

tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classical six vertex model (6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that (a) the
ground state manifold of the Ising model grows as W
! !4/3"3N/4 where N is the number lattice sites7 and (b) all
correlation functions decay algebraically.8
Up to this point, our analysis contains only classical sta-

tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finite Jxy"Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
erate perturbation theory by the effective Hamiltonian

H2nd = −
Jxy
2

Jz
#
!

!S1
+S2
−S3
+S4
− + S1

−S2
+S3
−S4
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where the indices 1–4 count consecutive sites (either clock-
wise or anticlockwise), of an empty plaquette.6
In terms of the 6VM representation, Eq. (2) acts on a

plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette (cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.
As such, there is only one (kinetic) energy scale in the

problem, t=Jxy
2 /Jz. However in order to study the different

possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interaction V to the Q6VM
which counts the number of flippable plaquettes

H =#
!

$V!% ! &'! % + % " &'" %" − t!% ! &'" % + % " &'! %"( ,
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where the %! & and %" & states represent squares with the
respective circular arrow configuration on the square edges,

as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian (3).
Our approach to determining the different phases of the

Hamiltonian (3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13
Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettes, V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.
Negative values of V favor states with flippable

plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state for V→−#. The Néel state is twofold degen-
erate in the thermodynamic limit. For finite V / t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM (Fig. 3). We
find a single phase for V$−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value of V)−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum (Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.
We find a single phase extending from −0.3t$V% t, in-

cluding the XXZ point V=0. This phase terminates in the
special high symmetry point V= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V / t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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given down spin connects two adjacent loops of up spins,
creating two “T-junction” like topological defects (spinons),
which propagate independently.1,4 The pyrochlore (checker-
board) lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.
By drawing an arrow from the center of A to B sublattice

tetrahedra where they share an up spin, and from B to A
where they share a down spin, one can show that the many
ground states of the Ising model on a checkerboard lattice are
in exact, one-to-one correspondence with the states of the
classical six vertex model (6VM),5,6 widely studied as a 2D
analog of water ice. From this mapping, we know that (a) the
ground state manifold of the Ising model grows as W
! !4/3"3N/4 where N is the number lattice sites7 and (b) all
correlation functions decay algebraically.8
Up to this point, our analysis contains only classical sta-

tistical mechanics and simple topological arguments. Quan-
tum mechanics reenters the problem when we consider a
small but finite Jxy"Jz. In this case, the ice states are no
longer eigenstates. Short lived virtual excitations enable the
system to tunnel between different ice state configurations
wherever pairs of upspins and downspins occur diagonally
opposite one another on one of the empty square plaquettes
of the checkerboard lattice.9 The allowed reconfigurations of
these “flippable plaquettes” can be described within degen-
erate perturbation theory by the effective Hamiltonian

H2nd = −
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where the indices 1–4 count consecutive sites (either clock-
wise or anticlockwise), of an empty plaquette.6
In terms of the 6VM representation, Eq. (2) acts on a

plaquette where four arrows are joined nose to tail, so as to
invert all of the arrows and change the sense of rotation of
the plaquette (cf. Ref. 10). The quantum dynamics in the
Q6VM we consider are directly analogous to the resonance
of dimers in the QDM,3 studied as an simplified model of a
resonating valence bond state.11 Formally, in fact, the Hamil-
tonian is exactly the same, although the Hilbert space on
which it acts is different. And, as in the QDM, we anticipate
that quantum effects will in general select a ground state with
finite degeneracy from the vast manifold of classically al-
lowed ice states.
As such, there is only one (kinetic) energy scale in the

problem, t=Jxy
2 /Jz. However in order to study the different

possible phases of the model it is useful to introduce a fur-
ther control parameter. A suitable control parameter for the
QDM is a diagonal term which counts the number of dimers
which can resonate in any given dimer covering. By direct
analogy, we introduce a diagonal interaction V to the Q6VM
which counts the number of flippable plaquettes

H =#
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$V!% ! &'! % + % " &'" %" − t!% ! &'" % + % " &'! %"( ,
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where the %! & and %" & states represent squares with the
respective circular arrow configuration on the square edges,

as seen in Fig. 1(b). We note that, for a system with periodic
boundary conditions, the net flux of vertex arrows through
any given horizontal or vertical cut defines a set of winding
numbers which are conserved by the Hamiltonian (3).
Our approach to determining the different phases of the

Hamiltonian (3) is the numerical diagonalization of clusters
with periodic boundary conditions of up to 64 spins, within
the ice rules manifold of states, supplemented with topologi-
cal and symmetry arguments. Details of these, together with
further analysis of the related fermionic charge-ordering
problem will be discussed further in separate
publications.12,13
Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettes, V. Our results are summarized in the phase dia-
gram Fig. 2, and the numerical evidence for each phase dis-
cussed below.
Negative values of V favor states with flippable

plaquettes. The state with the greatest possible number of
flippable plaquettes is the Néel state, and this must be the
grounds state for V→−#. The Néel state is twofold degen-
erate in the thermodynamic limit. For finite V / t, in a finite
size system, quantum fluctuations lift this degeneracy, as
seen in the low-energy spectrum of the Q6VM (Fig. 3). We
find a single phase for V$−0.3t, which we identify as the
Néel phase. Both the symmetric and antisymmetric combi-
nations of the two symmetry-breaking. Néel ground states
are visible in the spectrum, marked “GS” and “Neel,” respec-
tively. At a value of V)−0.3t, a third energy level, marked
“Plaq” crosses the first excitation “Neel.” We interpret this as
evidence for a quantum phase transition into a resonating
plaquette phase, discussed below. From finite size scaling of
the spectrum (Fig. 4) we estimate the critical value to be
Vc=−0.3727t in the thermodynamic limit. As the competing
Néel and plaquette order parameters break lattice symmetries
in very different ways, the transition between them is pre-
sumably of first order.
We find a single phase extending from −0.3t$V% t, in-

cluding the XXZ point V=0. This phase terminates in the
special high symmetry point V= t for which the Hamiltonian
(3) of the Q6VM can be written as a sum of projection op-
erators:

FIG. 2. (Color online) The phase diagram of the model as a
function of V / t. The Néel phase breaks the point group, while the
plaquette phase breaks the translational symmetry. The Rokhsar-
Kivelson point is marked RK.
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disordered ground state (“line state”) of
subextensive entropy (8).
To probe equilibrium properties in these

cases, we strobed the transverse field in a re-
peated relaxation protocol (23), starting from
a randomly generated classical spin state. We
simultaneously turned on both quantum (G ≈
JMAX/3) and thermal (T = 10 mK ≈ JMAX/12)
fluctuations for an exposure time of 256 ms
then turned them off rapidly and read out a
projected classical spin state. A single program-
ming of the chip repeats this on/off cycle of
fluctuations 128 times, producing a chain of
128 classical spin states; each is in or near the
ground state manifold of the classical Ising
Hamiltonian. We performedmany repeated
experiments with J ranging from JMAX/32 to
JMAX. Classical spin states for the Ising model
depicted in Fig. 1D were read from the QA
then converted to states for the checkerboard
Ising model (Fig. 1C), which in turn were con-
verted to dipole configurations (Fig. 1B). An
example is provided in fig. S7 (18).
The results of thismeasurement for the 14 by

14 ice system are shown in Fig. 2 at different
energy scales J for the three cases J⊥ ¼ J∥ ,
J⊥ > J∥, and J⊥ < J∥. The first column shows
the relative frequency of vertex types through-
out the lattice; the other columns show the spin
structure factor, including pinch-point detail,
computed fromaverage spatial correlations (18).
A larger coupling J leads to ensembles closer
to the predicted ground states, withmonopole
excitations appearing only rarely. At the de-
generacy pointJ∥ ¼ J⊥, the relative occurrences
of Type I and Type II at high J very closely
match those expected in the monopole-free
degenerate ground state of spin ice, described
by the six-vertexmodel (24). From the above, the
coupling at the crossover to the icemanifold can
be estimated to beJice ≃ JMAX=12, and thus, the
data points J/JMAX = 1/16, 1/8 sit near the
crossover, where monopoles become sparse.
Minimal (2%) tuning of J⊥=J∥ away from

degeneracy leads to the relative promotion of
Type I or Type II vertices, with an effect that
increases with J. The strong sensitivity to de-
generacy lifting is also apparent in the static
spin structure factor S(q). For weak coupling,
bias toward Type I or Type II is barely percep-
tible. For strong coupling, we see at degeneracy
the familiar, transverse structure—including
the typical pinch-point singularities—associated
with the Coulomb phase in an algebraic spin
liquid (26). As the system is tilted toward Type I
vertices, the structure factor becomes domi-
nated by the Bragg peaks of the long-range
Néel ordering. Likewise, tilting the system
away from Type I vertices shows a line state of
Type II vertices with long-range collinear spin-
spin correlation.
We next concentrated on the degenerate

case J⊥ ¼ J∥. Unlike in nanomagnetic realiza-
tions, longitudinal fields in qubit ice (Eq. 1, hi)

can act on individual qubits. We used these
fields to pin a subset of spins and to demon-
strate induction of a single, itinerantmonopole,
by Gauss’s law, as well as entropic interactions
between monopoles.
We first pinned the boundary spins into a

fixed antiferromagnetic boundary condition.

By Gauss’s law, the net flux of magnetization
into the system is equal to the charge inside
the system. Therefore, when we annealed the
degenerate system under these boundary con-
ditions, we typically found zero monopoles—
a ground state. But if we flipped one fixed
boundary spin, as shown in real-space in Fig. 3,
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Fig. 1. Realizing square ice in a quantum annealer. (A) Each square ice vertex involves four dipoles
that point in or out; 6 of 16 configurations satisfy the two-in-two-out ice rule. The remaining vertices have charge
±2 (Type III) or ±4 (Type IV) and host monopoles. Two coupling energies, J∥ and J⊥, determine energetic
preference between Type I and Type II vertices in the artificial spin ice. (B) Schematic of a square spin ice with
dipoles colored according to their Ising representation (red = 1, blue = –1), with a monopole of net charge
of +2 (yellow sphere). (C) Ising spin representation of (A). Ice vertices (squares with dotted diagonals) form
corner-sharing checkerboard plaquettes of four Ising spins (circles) each. (D) Embedding of (C) into the qubit
connectivity graph (supplementary materials). To realize the checkerboard geometry, each spin in (C) is
represented by using four qubits (circles), which are forced to act collectively through strong ferromagnetic
coupling (blue lines). Two chains impinging on the same ice vertex are coupled by using two antiferromagnetic
couplers, so each J⊥ or J∥ term is split into two equal coupling terms (red lines).
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disordered ground state (“line state”) of
subextensive entropy (8).
To probe equilibrium properties in these

cases, we strobed the transverse field in a re-
peated relaxation protocol (23), starting from
a randomly generated classical spin state. We
simultaneously turned on both quantum (G ≈
JMAX/3) and thermal (T = 10 mK ≈ JMAX/12)
fluctuations for an exposure time of 256 ms
then turned them off rapidly and read out a
projected classical spin state. A single program-
ming of the chip repeats this on/off cycle of
fluctuations 128 times, producing a chain of
128 classical spin states; each is in or near the
ground state manifold of the classical Ising
Hamiltonian. We performedmany repeated
experiments with J ranging from JMAX/32 to
JMAX. Classical spin states for the Ising model
depicted in Fig. 1D were read from the QA
then converted to states for the checkerboard
Ising model (Fig. 1C), which in turn were con-
verted to dipole configurations (Fig. 1B). An
example is provided in fig. S7 (18).
The results of thismeasurement for the 14 by

14 ice system are shown in Fig. 2 at different
energy scales J for the three cases J⊥ ¼ J∥ ,
J⊥ > J∥, and J⊥ < J∥. The first column shows
the relative frequency of vertex types through-
out the lattice; the other columns show the spin
structure factor, including pinch-point detail,
computed fromaverage spatial correlations (18).
A larger coupling J leads to ensembles closer
to the predicted ground states, withmonopole
excitations appearing only rarely. At the de-
generacy pointJ∥ ¼ J⊥, the relative occurrences
of Type I and Type II at high J very closely
match those expected in the monopole-free
degenerate ground state of spin ice, described
by the six-vertexmodel (24). From the above, the
coupling at the crossover to the icemanifold can
be estimated to beJice ≃ JMAX=12, and thus, the
data points J/JMAX = 1/16, 1/8 sit near the
crossover, where monopoles become sparse.
Minimal (2%) tuning of J⊥=J∥ away from

degeneracy leads to the relative promotion of
Type I or Type II vertices, with an effect that
increases with J. The strong sensitivity to de-
generacy lifting is also apparent in the static
spin structure factor S(q). For weak coupling,
bias toward Type I or Type II is barely percep-
tible. For strong coupling, we see at degeneracy
the familiar, transverse structure—including
the typical pinch-point singularities—associated
with the Coulomb phase in an algebraic spin
liquid (26). As the system is tilted toward Type I
vertices, the structure factor becomes domi-
nated by the Bragg peaks of the long-range
Néel ordering. Likewise, tilting the system
away from Type I vertices shows a line state of
Type II vertices with long-range collinear spin-
spin correlation.
We next concentrated on the degenerate

case J⊥ ¼ J∥. Unlike in nanomagnetic realiza-
tions, longitudinal fields in qubit ice (Eq. 1, hi)

can act on individual qubits. We used these
fields to pin a subset of spins and to demon-
strate induction of a single, itinerantmonopole,
by Gauss’s law, as well as entropic interactions
between monopoles.
We first pinned the boundary spins into a

fixed antiferromagnetic boundary condition.

By Gauss’s law, the net flux of magnetization
into the system is equal to the charge inside
the system. Therefore, when we annealed the
degenerate system under these boundary con-
ditions, we typically found zero monopoles—
a ground state. But if we flipped one fixed
boundary spin, as shown in real-space in Fig. 3,
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Fig. 1. Realizing square ice in a quantum annealer. (A) Each square ice vertex involves four dipoles
that point in or out; 6 of 16 configurations satisfy the two-in-two-out ice rule. The remaining vertices have charge
±2 (Type III) or ±4 (Type IV) and host monopoles. Two coupling energies, J∥ and J⊥, determine energetic
preference between Type I and Type II vertices in the artificial spin ice. (B) Schematic of a square spin ice with
dipoles colored according to their Ising representation (red = 1, blue = –1), with a monopole of net charge
of +2 (yellow sphere). (C) Ising spin representation of (A). Ice vertices (squares with dotted diagonals) form
corner-sharing checkerboard plaquettes of four Ising spins (circles) each. (D) Embedding of (C) into the qubit
connectivity graph (supplementary materials). To realize the checkerboard geometry, each spin in (C) is
represented by using four qubits (circles), which are forced to act collectively through strong ferromagnetic
coupling (blue lines). Two chains impinging on the same ice vertex are coupled by using two antiferromagnetic
couplers, so each J⊥ or J∥ term is split into two equal coupling terms (red lines).

RESEARCH | REPORT

D
ow

nloaded from
 https://w

w
w

.science.org at Indian Institute of Technology, M
adras on A

ugust 23, 2022
MAGNETISM

Qubit spin ice
Andrew D. King1*, Cristiano Nisoli2*, Edward D. Dahl1,3,
Gabriel Poulin-Lamarre1, Alejandro Lopez-Bezanilla2

Artificial spin ices are frustrated spin systems that can be engineered, in which fine tuning of geometry
and topology has allowed the design and characterization of exotic emergent phenomena at the
constituent level. Here, we report a realization of spin ice in a lattice of superconducting qubits.
Unlike conventional artificial spin ice, our system is disordered by both quantum and thermal
fluctuations. The ground state is classically described by the ice rule, and we achieved control over
a fragile degeneracy point, leading to a Coulomb phase. The ability to pin individual spins allows us to
demonstrate Gauss’s law for emergent effective monopoles in two dimensions. The demonstrated
qubit control lays the groundwork for potential future study of topologically protected artificial
quantum spin liquids.

A
rtificial spin ices are systems of interact-
ing components characterized by frus-
trated binary variables whose collective
behavior emerges from local constraints
based on the two-in-two-out “ice rule”

(Fig. 1A). They were initially introduced (1, 2)
as analogs of the frustrated rare earth pyro-
chlores (3, 4) but then evolved to generate,
through frustration and disorder, exotic emer-
gent phenomena not found in natural systems
(5). In simple ice-rule systems, the low-energy
collective states can be described in terms of
their excitations, which are emergent mag-
neticmonopole quasiparticles (6–9). Themost
common artificial spin ice realizations have
been based on lithographically patterned
nanomagnets (10, 11). The more general set of
ideas has been exported to other platforms,
including colloids and superconducting vorti-
ces confined to bistable traps, and even to
liquid crystals (12) and exotic mechanics of
soft modes (13).
We implementeda two-dimensional (2D) spin

ice of superconducting qubits—macroscopic
quantumobjects (14)—in a quantumannealing
(QA) system and drove it between low-energy
quasi-classical states by means of primarily
quantum rather than thermal fluctuations,
thus opening the door to future studies of
quantum phases in these systems (15, 16).
Our “qubit spin ice” does not require fixed pre-
fabrication; instead, its energetic coupling
terms can be fine tuned, and spins can be
pinned at will. We exploited this flexibility to
demonstrate how Gauss’s law emerges from
geometric constraints in two dimensions. By
fixing the total flux of magnetization into the
system’s boundary, we injected topological
charges into the ground state, demonstrating

induction ofmagneticmonopole quasiparticles
that, unlike in dipolar implementations, inter-
act purely entropically.
Square spin ice consists of a set of classical

dipole spins placed along the edges of a square
lattice (Fig. 1B). The spins impinging on verti-
ces realize 16 different vertex configurations
that are grouped by topology into Type I, …,
Type IV (Fig. 1A). The first two types obey the
so-called “ice rule” (two spins point in, two
point out) and are energetically favored in
spin ice materials. The other two violate the
ice rule, as signaled by their topological charge
(defined as the difference between spins point-
ing in and out) of ±2 and ±4, respectively, and
are monopole excitations. Vertex energies are
dictated by the antiferromagnetic couplings
J∥; J⊥ between spins impinging on the vertex
collinearly and perpendicularly, respectively,
and are eI ¼ "4J⊥ þ 2J∥, eII ¼ "2J∥, eIII ¼ 0,
andeIV ¼ 4J⊥ þ 2J∥. The resulting system is
geometrically frustrated.
Before discussing the phases of this ice sys-

tem, we describe the QA system with which
we realized square ice in its well-known Ising
form (15). The QA system comprises a set of
superconducting flux qubits that interact
through two-body couplers (17, 18), physically
realizing the transverse-field Ising model ge-
nerically described by the Hamiltonian

H ¼ J
X
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where ŝi are Pauli matrices describing the
qubit degrees of freedom, the tensor Jij de-
scribes the action of the couplers, and hi is
a per-qubit longitudinal field. The terms Jij
and hi can be programmed at will; local fields
hi are always set to zero except when specified.
Unlike in the Hamiltonians proposed to de-

scribe quantum spin ice in pyrochlores (19),

we have no quantumentanglement in the two-
body coupling terms. Thus, in absence of the
transverse field G, the ground state of H is a
set of Fock states that can be mapped into
purely classical ones—namely, the Fock pro-
duct of eigenvectors of the Pauli matrices ŝz.
However, switching on the transverse field en-
tangles the binary quantum variables, subject-
ing them to quantum fluctuations.
At finite temperature, the QA system relaxes

toward the thermal equilibrium ofH. Rapidly
decreasing G and increasing J projects this
thermal distribution to the ŝz basis. This ap-
proach has recently been used for a variety of
quantum Ising systems at finite temperature
(20–22) and has provided the most direct ob-
servation of many-body quantum annealing
dynamics to date (23).
To realize square ice in the QA system, we

began with an Ising model (15): We consider
an alternatingA/B bipartition of vertices in the
square lattice, calling a spin S = 1 (Fig. 1B, red)
if it points toward an A vertex, or S = –1 (Fig.
1B, blue) if it points toward a B vertex. This
gives an antiferromagnetic Ising model on a
checkerboard lattice (Fig. 1C) whose quantum
extension is captured by the Hamiltonian in
Eq. 1. However, the geometry of qubit pairs
that can be directly coupled is described by a
“Chimera” graph (17, 18), which does not con-
tain the required checkerboard lattice as a
subgraph. We therefore represent each ice
spin with a chain of four qubits, forced to act
collectively with strong ferromagnetic cou-
plings. These chains are intercoupled in a
checkerboard geometry (Fig. 1D), whose tiling
across the QA chip gives a 14 by 14 grid of ice
vertices, with eight site vacancies resulting
from inoperable qubits.
We calibrated the system to degeneracy

(18) and used this point to define the nominal
ratio J∥=J⊥ ¼ 1. The overall energy scale J ¼
J∥ ¼ J⊥ is taken as the average total coupling
between coupled four-qubit chains. JMAX indi-
cates the maximum achievable value of this
Ising energy scale. The relationship between
J⊥ and J∥ determines the relative energies of
Type I and Type II vertices. Three cases are
possible.
When J⊥ ¼ J∥ ¼ J , the six ice rule–obeying

vertices (Type I and Type II) have the lowest
energy, and the ground state is a degenerate
manifold with residual entropy described by
the degenerate six-vertex model (24). Its ele-
mentary excitations are monopoles (Type III),
and the crossover temperature into the ice state
is Tice ≃ J , or half the energy of a monopole.
When J⊥ > J∥, the Type I vertices have the

lowest energy, and their tiling forms a long-
range ordered, classical ground state that is
typical of the early antiferromagnetic artificial
spin ice realizations (1, 25).
WhenJ⊥ < J∥, the Type II vertices have the

lowest energy, and their tiling forms a
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Qubit spin ice
Andrew D. King1*, Cristiano Nisoli2*, Edward D. Dahl1,3,
Gabriel Poulin-Lamarre1, Alejandro Lopez-Bezanilla2

Artificial spin ices are frustrated spin systems that can be engineered, in which fine tuning of geometry
and topology has allowed the design and characterization of exotic emergent phenomena at the
constituent level. Here, we report a realization of spin ice in a lattice of superconducting qubits.
Unlike conventional artificial spin ice, our system is disordered by both quantum and thermal
fluctuations. The ground state is classically described by the ice rule, and we achieved control over
a fragile degeneracy point, leading to a Coulomb phase. The ability to pin individual spins allows us to
demonstrate Gauss’s law for emergent effective monopoles in two dimensions. The demonstrated
qubit control lays the groundwork for potential future study of topologically protected artificial
quantum spin liquids.

A
rtificial spin ices are systems of interact-
ing components characterized by frus-
trated binary variables whose collective
behavior emerges from local constraints
based on the two-in-two-out “ice rule”

(Fig. 1A). They were initially introduced (1, 2)
as analogs of the frustrated rare earth pyro-
chlores (3, 4) but then evolved to generate,
through frustration and disorder, exotic emer-
gent phenomena not found in natural systems
(5). In simple ice-rule systems, the low-energy
collective states can be described in terms of
their excitations, which are emergent mag-
neticmonopole quasiparticles (6–9). Themost
common artificial spin ice realizations have
been based on lithographically patterned
nanomagnets (10, 11). The more general set of
ideas has been exported to other platforms,
including colloids and superconducting vorti-
ces confined to bistable traps, and even to
liquid crystals (12) and exotic mechanics of
soft modes (13).
We implementeda two-dimensional (2D) spin

ice of superconducting qubits—macroscopic
quantumobjects (14)—in a quantumannealing
(QA) system and drove it between low-energy
quasi-classical states by means of primarily
quantum rather than thermal fluctuations,
thus opening the door to future studies of
quantum phases in these systems (15, 16).
Our “qubit spin ice” does not require fixed pre-
fabrication; instead, its energetic coupling
terms can be fine tuned, and spins can be
pinned at will. We exploited this flexibility to
demonstrate how Gauss’s law emerges from
geometric constraints in two dimensions. By
fixing the total flux of magnetization into the
system’s boundary, we injected topological
charges into the ground state, demonstrating

induction ofmagneticmonopole quasiparticles
that, unlike in dipolar implementations, inter-
act purely entropically.
Square spin ice consists of a set of classical

dipole spins placed along the edges of a square
lattice (Fig. 1B). The spins impinging on verti-
ces realize 16 different vertex configurations
that are grouped by topology into Type I, …,
Type IV (Fig. 1A). The first two types obey the
so-called “ice rule” (two spins point in, two
point out) and are energetically favored in
spin ice materials. The other two violate the
ice rule, as signaled by their topological charge
(defined as the difference between spins point-
ing in and out) of ±2 and ±4, respectively, and
are monopole excitations. Vertex energies are
dictated by the antiferromagnetic couplings
J∥; J⊥ between spins impinging on the vertex
collinearly and perpendicularly, respectively,
and are eI ¼ "4J⊥ þ 2J∥, eII ¼ "2J∥, eIII ¼ 0,
andeIV ¼ 4J⊥ þ 2J∥. The resulting system is
geometrically frustrated.
Before discussing the phases of this ice sys-

tem, we describe the QA system with which
we realized square ice in its well-known Ising
form (15). The QA system comprises a set of
superconducting flux qubits that interact
through two-body couplers (17, 18), physically
realizing the transverse-field Ising model ge-
nerically described by the Hamiltonian

H ¼ J
X
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where ŝi are Pauli matrices describing the
qubit degrees of freedom, the tensor Jij de-
scribes the action of the couplers, and hi is
a per-qubit longitudinal field. The terms Jij
and hi can be programmed at will; local fields
hi are always set to zero except when specified.
Unlike in the Hamiltonians proposed to de-

scribe quantum spin ice in pyrochlores (19),

we have no quantumentanglement in the two-
body coupling terms. Thus, in absence of the
transverse field G, the ground state of H is a
set of Fock states that can be mapped into
purely classical ones—namely, the Fock pro-
duct of eigenvectors of the Pauli matrices ŝz.
However, switching on the transverse field en-
tangles the binary quantum variables, subject-
ing them to quantum fluctuations.
At finite temperature, the QA system relaxes

toward the thermal equilibrium ofH. Rapidly
decreasing G and increasing J projects this
thermal distribution to the ŝz basis. This ap-
proach has recently been used for a variety of
quantum Ising systems at finite temperature
(20–22) and has provided the most direct ob-
servation of many-body quantum annealing
dynamics to date (23).
To realize square ice in the QA system, we

began with an Ising model (15): We consider
an alternatingA/B bipartition of vertices in the
square lattice, calling a spin S = 1 (Fig. 1B, red)
if it points toward an A vertex, or S = –1 (Fig.
1B, blue) if it points toward a B vertex. This
gives an antiferromagnetic Ising model on a
checkerboard lattice (Fig. 1C) whose quantum
extension is captured by the Hamiltonian in
Eq. 1. However, the geometry of qubit pairs
that can be directly coupled is described by a
“Chimera” graph (17, 18), which does not con-
tain the required checkerboard lattice as a
subgraph. We therefore represent each ice
spin with a chain of four qubits, forced to act
collectively with strong ferromagnetic cou-
plings. These chains are intercoupled in a
checkerboard geometry (Fig. 1D), whose tiling
across the QA chip gives a 14 by 14 grid of ice
vertices, with eight site vacancies resulting
from inoperable qubits.
We calibrated the system to degeneracy

(18) and used this point to define the nominal
ratio J∥=J⊥ ¼ 1. The overall energy scale J ¼
J∥ ¼ J⊥ is taken as the average total coupling
between coupled four-qubit chains. JMAX indi-
cates the maximum achievable value of this
Ising energy scale. The relationship between
J⊥ and J∥ determines the relative energies of
Type I and Type II vertices. Three cases are
possible.
When J⊥ ¼ J∥ ¼ J , the six ice rule–obeying

vertices (Type I and Type II) have the lowest
energy, and the ground state is a degenerate
manifold with residual entropy described by
the degenerate six-vertex model (24). Its ele-
mentary excitations are monopoles (Type III),
and the crossover temperature into the ice state
is Tice ≃ J , or half the energy of a monopole.
When J⊥ > J∥, the Type I vertices have the

lowest energy, and their tiling forms a long-
range ordered, classical ground state that is
typical of the early antiferromagnetic artificial
spin ice realizations (1, 25).
WhenJ⊥ < J∥, the Type II vertices have the

lowest energy, and their tiling forms a
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we forced a net flux, such as =2, into the sys-
tem. Upon annealing, we then observed a net
charge in the bulk, in the form of a free mono-
pole of charge 2—in this case, the ground state
contained a monopole by Gauss’s law. Thus,
an isolated monopole charge was induced in
absence of a corresponding anticharge, by
forcing a net flux on the boundaries. Wemust
also pin the interior boundary spins produced
by any vacancies caused by inoperable qubits.
We also observed a quantum-activated ran-

dom walk of these monopoles. Thermal fluc-
tuations have been used to drive spin dynamics
in superparamagnetic nanoislands (27–29);
in this work, the spin dynamics are driven by
both quantum and thermal fluctuations (fig.
S5) (18). Modifying the previous protocol (with
J∥ ¼ J⊥ ¼ JMAX), we strobed fluctuations for
exposures of 1 ms, the minimum interval per-
mitted by the control circuitry.
For large G or long exposure, one expects

that the quantum fluctuations would erase
the systemmemory. However, for a carefully
chosen value of G = 0.34JMAX for 1 ms, the
quantum-activated system preservesmemory
of its previous classical state, and the qubit
kinetics, although activated primarily by quan-
tum fluctuations, reveals monopole motion,
monopole pair creation and annihilation, and
collective flipping of closed loops of spins.
These phenomena are shown in Fig. 3 in a

sequence of samples from a QA experiment.

In Fig. 3, we highlight the difference between
successiveQA states. These are suggestive of a
randomwalk of a monopole, although we can-
not rule out intermediate creation and anni-
hilation of additional monopole pairs. Most
samples contain only the isolated monopole
induced into the ground state by means of a
nonzero-flux boundary condition, but after
70 exposures to fluctuations, a surplus mono-
pole pair appears,making the ensuing sequence
particularly interesting to visualize. After 70 ex-
posures, there are threemonopoles for an over-
all net charge +2,whichmatches the boundary
flux. At time (t) = 71 ms, twomonopoles of oppo-
site charge have mutually annihilated, return-
ing the system to the ground state. At t = 72 ms,
the induced monopole has moved again, and
by t = 77 ms, several steps later, it has traversed
much of the available space. These time scales
are in sharp contrast to themultisecond relaxa-
tion observations in nanoisland and colloidal
implementations (9, 28, 30). Example state se-
quences are shown in movies S1 to S6 (18).
Unlike in fully dipolar spin ice (6), ourmono-

poles cannot interact directly because no ap-
preciable long-range dipolar interaction exists
between the qubits. Monopoles, however, can
be thought of as emergent quasiparticles in
an underlying spin structure and are therefore
correlated by the divergence-free spin vacuum.
This correlation can be described as a pairwise
interaction by which oppositely charged par-

ticles attract, but the attraction is merely a re-
sult of the degeneracy of spin configurations
that are compatible with the monopole posi-
tions: It is an entropic interaction, and its cou-
pling constant depends on temperature (31).
In this 2D system, it corresponds to the 2D
Coulomb law between charges q1 and q2 at dis-
tance x, which is logarithmic ~q1q2Tln(x), and
thus leads to a Bessel screening, or q xð Þh iº
K0 x=xð Þ, whereK0 is themodified Bessel func-
tion and x is a temperature-dependent corre-
lation length (31).
We can probe this purely entropic screening

betweenmonopoles by pinning amonopole at
the center of our geometry. The result of this
pinning is shown in Fig. 4, which compares it
to the boundary conditions described above.
With open boundaries or with zero net flux
(Fig. 4, A and B), monopoles are absent in the
ground state and therefore are only rarely ob-
served after annealing. With a net flux of 2 (as
in Fig. 3), by Gauss’s law a monopole is forced
into the system’s ground state. Simulating the
system repeatedly with random assignments
of the flipped boundary spin, we found that
the probability of finding a monopole is fairly
flat across the lattice (Fig. 4C). Thus, when flux
inside the system is fixed, the forcedmonopole
is delocalized in the bulk, as one would expect.
By contrast, when amonopole is pinned at the
center and boundaries enclose zero flux (Fig.
4D), we observed a second, free monopole in
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Fig. 2. Experimental results: fine-tuning the ice ensemble. The degenerate
cases (top) J⊥ ¼ J∥, (middle) J⊥ ¼ 1:02J∥, and (bottom) J⊥ ¼ 0:98J∥. (Left)
Frequencies of the different vertex types (Fig. 1A) versus the energy scale J/JMAX,
averaged over many measurements in a 14 by 14 ice system. (Middle left, middle,
and middle right) Structure factor S(q) (arbitrary intensity units) for varying
coupling energy scale in the three cases, in reciprocal lattice space. (Right) Cross

sections of S(q) at the pinch points. The degenerate case shows the pinch point
singularity associated with the Coulomb phase. (Inset) The FWHM is the
reciprocal correlation length, decaying as coupling energy increases (temper-
ature is constant) and saturating in the strong coupling limit owing to finite
system size. Tuning away from degeneracy results in the expected Bragg peaks
(middle row) and collinear correlations (bottom row).
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Qubit spin ice
Andrew D. King1*, Cristiano Nisoli2*, Edward D. Dahl1,3,
Gabriel Poulin-Lamarre1, Alejandro Lopez-Bezanilla2

Artificial spin ices are frustrated spin systems that can be engineered, in which fine tuning of geometry
and topology has allowed the design and characterization of exotic emergent phenomena at the
constituent level. Here, we report a realization of spin ice in a lattice of superconducting qubits.
Unlike conventional artificial spin ice, our system is disordered by both quantum and thermal
fluctuations. The ground state is classically described by the ice rule, and we achieved control over
a fragile degeneracy point, leading to a Coulomb phase. The ability to pin individual spins allows us to
demonstrate Gauss’s law for emergent effective monopoles in two dimensions. The demonstrated
qubit control lays the groundwork for potential future study of topologically protected artificial
quantum spin liquids.

A
rtificial spin ices are systems of interact-
ing components characterized by frus-
trated binary variables whose collective
behavior emerges from local constraints
based on the two-in-two-out “ice rule”

(Fig. 1A). They were initially introduced (1, 2)
as analogs of the frustrated rare earth pyro-
chlores (3, 4) but then evolved to generate,
through frustration and disorder, exotic emer-
gent phenomena not found in natural systems
(5). In simple ice-rule systems, the low-energy
collective states can be described in terms of
their excitations, which are emergent mag-
neticmonopole quasiparticles (6–9). Themost
common artificial spin ice realizations have
been based on lithographically patterned
nanomagnets (10, 11). The more general set of
ideas has been exported to other platforms,
including colloids and superconducting vorti-
ces confined to bistable traps, and even to
liquid crystals (12) and exotic mechanics of
soft modes (13).
We implementeda two-dimensional (2D) spin

ice of superconducting qubits—macroscopic
quantumobjects (14)—in a quantumannealing
(QA) system and drove it between low-energy
quasi-classical states by means of primarily
quantum rather than thermal fluctuations,
thus opening the door to future studies of
quantum phases in these systems (15, 16).
Our “qubit spin ice” does not require fixed pre-
fabrication; instead, its energetic coupling
terms can be fine tuned, and spins can be
pinned at will. We exploited this flexibility to
demonstrate how Gauss’s law emerges from
geometric constraints in two dimensions. By
fixing the total flux of magnetization into the
system’s boundary, we injected topological
charges into the ground state, demonstrating

induction ofmagneticmonopole quasiparticles
that, unlike in dipolar implementations, inter-
act purely entropically.
Square spin ice consists of a set of classical

dipole spins placed along the edges of a square
lattice (Fig. 1B). The spins impinging on verti-
ces realize 16 different vertex configurations
that are grouped by topology into Type I, …,
Type IV (Fig. 1A). The first two types obey the
so-called “ice rule” (two spins point in, two
point out) and are energetically favored in
spin ice materials. The other two violate the
ice rule, as signaled by their topological charge
(defined as the difference between spins point-
ing in and out) of ±2 and ±4, respectively, and
are monopole excitations. Vertex energies are
dictated by the antiferromagnetic couplings
J∥; J⊥ between spins impinging on the vertex
collinearly and perpendicularly, respectively,
and are eI ¼ "4J⊥ þ 2J∥, eII ¼ "2J∥, eIII ¼ 0,
andeIV ¼ 4J⊥ þ 2J∥. The resulting system is
geometrically frustrated.
Before discussing the phases of this ice sys-

tem, we describe the QA system with which
we realized square ice in its well-known Ising
form (15). The QA system comprises a set of
superconducting flux qubits that interact
through two-body couplers (17, 18), physically
realizing the transverse-field Ising model ge-
nerically described by the Hamiltonian

H ¼ J
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where ŝi are Pauli matrices describing the
qubit degrees of freedom, the tensor Jij de-
scribes the action of the couplers, and hi is
a per-qubit longitudinal field. The terms Jij
and hi can be programmed at will; local fields
hi are always set to zero except when specified.
Unlike in the Hamiltonians proposed to de-

scribe quantum spin ice in pyrochlores (19),

we have no quantumentanglement in the two-
body coupling terms. Thus, in absence of the
transverse field G, the ground state of H is a
set of Fock states that can be mapped into
purely classical ones—namely, the Fock pro-
duct of eigenvectors of the Pauli matrices ŝz.
However, switching on the transverse field en-
tangles the binary quantum variables, subject-
ing them to quantum fluctuations.
At finite temperature, the QA system relaxes

toward the thermal equilibrium ofH. Rapidly
decreasing G and increasing J projects this
thermal distribution to the ŝz basis. This ap-
proach has recently been used for a variety of
quantum Ising systems at finite temperature
(20–22) and has provided the most direct ob-
servation of many-body quantum annealing
dynamics to date (23).
To realize square ice in the QA system, we

began with an Ising model (15): We consider
an alternatingA/B bipartition of vertices in the
square lattice, calling a spin S = 1 (Fig. 1B, red)
if it points toward an A vertex, or S = –1 (Fig.
1B, blue) if it points toward a B vertex. This
gives an antiferromagnetic Ising model on a
checkerboard lattice (Fig. 1C) whose quantum
extension is captured by the Hamiltonian in
Eq. 1. However, the geometry of qubit pairs
that can be directly coupled is described by a
“Chimera” graph (17, 18), which does not con-
tain the required checkerboard lattice as a
subgraph. We therefore represent each ice
spin with a chain of four qubits, forced to act
collectively with strong ferromagnetic cou-
plings. These chains are intercoupled in a
checkerboard geometry (Fig. 1D), whose tiling
across the QA chip gives a 14 by 14 grid of ice
vertices, with eight site vacancies resulting
from inoperable qubits.
We calibrated the system to degeneracy

(18) and used this point to define the nominal
ratio J∥=J⊥ ¼ 1. The overall energy scale J ¼
J∥ ¼ J⊥ is taken as the average total coupling
between coupled four-qubit chains. JMAX indi-
cates the maximum achievable value of this
Ising energy scale. The relationship between
J⊥ and J∥ determines the relative energies of
Type I and Type II vertices. Three cases are
possible.
When J⊥ ¼ J∥ ¼ J , the six ice rule–obeying

vertices (Type I and Type II) have the lowest
energy, and the ground state is a degenerate
manifold with residual entropy described by
the degenerate six-vertex model (24). Its ele-
mentary excitations are monopoles (Type III),
and the crossover temperature into the ice state
is Tice ≃ J , or half the energy of a monopole.
When J⊥ > J∥, the Type I vertices have the

lowest energy, and their tiling forms a long-
range ordered, classical ground state that is
typical of the early antiferromagnetic artificial
spin ice realizations (1, 25).
WhenJ⊥ < J∥, the Type II vertices have the

lowest energy, and their tiling forms a
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we forced a net flux, such as =2, into the sys-
tem. Upon annealing, we then observed a net
charge in the bulk, in the form of a free mono-
pole of charge 2—in this case, the ground state
contained a monopole by Gauss’s law. Thus,
an isolated monopole charge was induced in
absence of a corresponding anticharge, by
forcing a net flux on the boundaries. Wemust
also pin the interior boundary spins produced
by any vacancies caused by inoperable qubits.
We also observed a quantum-activated ran-

dom walk of these monopoles. Thermal fluc-
tuations have been used to drive spin dynamics
in superparamagnetic nanoislands (27–29);
in this work, the spin dynamics are driven by
both quantum and thermal fluctuations (fig.
S5) (18). Modifying the previous protocol (with
J∥ ¼ J⊥ ¼ JMAX), we strobed fluctuations for
exposures of 1 ms, the minimum interval per-
mitted by the control circuitry.
For large G or long exposure, one expects

that the quantum fluctuations would erase
the systemmemory. However, for a carefully
chosen value of G = 0.34JMAX for 1 ms, the
quantum-activated system preservesmemory
of its previous classical state, and the qubit
kinetics, although activated primarily by quan-
tum fluctuations, reveals monopole motion,
monopole pair creation and annihilation, and
collective flipping of closed loops of spins.
These phenomena are shown in Fig. 3 in a

sequence of samples from a QA experiment.

In Fig. 3, we highlight the difference between
successiveQA states. These are suggestive of a
randomwalk of a monopole, although we can-
not rule out intermediate creation and anni-
hilation of additional monopole pairs. Most
samples contain only the isolated monopole
induced into the ground state by means of a
nonzero-flux boundary condition, but after
70 exposures to fluctuations, a surplus mono-
pole pair appears,making the ensuing sequence
particularly interesting to visualize. After 70 ex-
posures, there are threemonopoles for an over-
all net charge +2,whichmatches the boundary
flux. At time (t) = 71 ms, twomonopoles of oppo-
site charge have mutually annihilated, return-
ing the system to the ground state. At t = 72 ms,
the induced monopole has moved again, and
by t = 77 ms, several steps later, it has traversed
much of the available space. These time scales
are in sharp contrast to themultisecond relaxa-
tion observations in nanoisland and colloidal
implementations (9, 28, 30). Example state se-
quences are shown in movies S1 to S6 (18).
Unlike in fully dipolar spin ice (6), ourmono-

poles cannot interact directly because no ap-
preciable long-range dipolar interaction exists
between the qubits. Monopoles, however, can
be thought of as emergent quasiparticles in
an underlying spin structure and are therefore
correlated by the divergence-free spin vacuum.
This correlation can be described as a pairwise
interaction by which oppositely charged par-

ticles attract, but the attraction is merely a re-
sult of the degeneracy of spin configurations
that are compatible with the monopole posi-
tions: It is an entropic interaction, and its cou-
pling constant depends on temperature (31).
In this 2D system, it corresponds to the 2D
Coulomb law between charges q1 and q2 at dis-
tance x, which is logarithmic ~q1q2Tln(x), and
thus leads to a Bessel screening, or q xð Þh iº
K0 x=xð Þ, whereK0 is themodified Bessel func-
tion and x is a temperature-dependent corre-
lation length (31).
We can probe this purely entropic screening

betweenmonopoles by pinning amonopole at
the center of our geometry. The result of this
pinning is shown in Fig. 4, which compares it
to the boundary conditions described above.
With open boundaries or with zero net flux
(Fig. 4, A and B), monopoles are absent in the
ground state and therefore are only rarely ob-
served after annealing. With a net flux of 2 (as
in Fig. 3), by Gauss’s law a monopole is forced
into the system’s ground state. Simulating the
system repeatedly with random assignments
of the flipped boundary spin, we found that
the probability of finding a monopole is fairly
flat across the lattice (Fig. 4C). Thus, when flux
inside the system is fixed, the forcedmonopole
is delocalized in the bulk, as one would expect.
By contrast, when amonopole is pinned at the
center and boundaries enclose zero flux (Fig.
4D), we observed a second, free monopole in
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Fig. 2. Experimental results: fine-tuning the ice ensemble. The degenerate
cases (top) J⊥ ¼ J∥, (middle) J⊥ ¼ 1:02J∥, and (bottom) J⊥ ¼ 0:98J∥. (Left)
Frequencies of the different vertex types (Fig. 1A) versus the energy scale J/JMAX,
averaged over many measurements in a 14 by 14 ice system. (Middle left, middle,
and middle right) Structure factor S(q) (arbitrary intensity units) for varying
coupling energy scale in the three cases, in reciprocal lattice space. (Right) Cross

sections of S(q) at the pinch points. The degenerate case shows the pinch point
singularity associated with the Coulomb phase. (Inset) The FWHM is the
reciprocal correlation length, decaying as coupling energy increases (temper-
ature is constant) and saturating in the strong coupling limit owing to finite
system size. Tuning away from degeneracy results in the expected Bragg peaks
(middle row) and collinear correlations (bottom row).
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Qubit spin ice
Andrew D. King1*, Cristiano Nisoli2*, Edward D. Dahl1,3,
Gabriel Poulin-Lamarre1, Alejandro Lopez-Bezanilla2

Artificial spin ices are frustrated spin systems that can be engineered, in which fine tuning of geometry
and topology has allowed the design and characterization of exotic emergent phenomena at the
constituent level. Here, we report a realization of spin ice in a lattice of superconducting qubits.
Unlike conventional artificial spin ice, our system is disordered by both quantum and thermal
fluctuations. The ground state is classically described by the ice rule, and we achieved control over
a fragile degeneracy point, leading to a Coulomb phase. The ability to pin individual spins allows us to
demonstrate Gauss’s law for emergent effective monopoles in two dimensions. The demonstrated
qubit control lays the groundwork for potential future study of topologically protected artificial
quantum spin liquids.

A
rtificial spin ices are systems of interact-
ing components characterized by frus-
trated binary variables whose collective
behavior emerges from local constraints
based on the two-in-two-out “ice rule”

(Fig. 1A). They were initially introduced (1, 2)
as analogs of the frustrated rare earth pyro-
chlores (3, 4) but then evolved to generate,
through frustration and disorder, exotic emer-
gent phenomena not found in natural systems
(5). In simple ice-rule systems, the low-energy
collective states can be described in terms of
their excitations, which are emergent mag-
neticmonopole quasiparticles (6–9). Themost
common artificial spin ice realizations have
been based on lithographically patterned
nanomagnets (10, 11). The more general set of
ideas has been exported to other platforms,
including colloids and superconducting vorti-
ces confined to bistable traps, and even to
liquid crystals (12) and exotic mechanics of
soft modes (13).
We implementeda two-dimensional (2D) spin

ice of superconducting qubits—macroscopic
quantumobjects (14)—in a quantumannealing
(QA) system and drove it between low-energy
quasi-classical states by means of primarily
quantum rather than thermal fluctuations,
thus opening the door to future studies of
quantum phases in these systems (15, 16).
Our “qubit spin ice” does not require fixed pre-
fabrication; instead, its energetic coupling
terms can be fine tuned, and spins can be
pinned at will. We exploited this flexibility to
demonstrate how Gauss’s law emerges from
geometric constraints in two dimensions. By
fixing the total flux of magnetization into the
system’s boundary, we injected topological
charges into the ground state, demonstrating

induction ofmagneticmonopole quasiparticles
that, unlike in dipolar implementations, inter-
act purely entropically.
Square spin ice consists of a set of classical

dipole spins placed along the edges of a square
lattice (Fig. 1B). The spins impinging on verti-
ces realize 16 different vertex configurations
that are grouped by topology into Type I, …,
Type IV (Fig. 1A). The first two types obey the
so-called “ice rule” (two spins point in, two
point out) and are energetically favored in
spin ice materials. The other two violate the
ice rule, as signaled by their topological charge
(defined as the difference between spins point-
ing in and out) of ±2 and ±4, respectively, and
are monopole excitations. Vertex energies are
dictated by the antiferromagnetic couplings
J∥; J⊥ between spins impinging on the vertex
collinearly and perpendicularly, respectively,
and are eI ¼ "4J⊥ þ 2J∥, eII ¼ "2J∥, eIII ¼ 0,
andeIV ¼ 4J⊥ þ 2J∥. The resulting system is
geometrically frustrated.
Before discussing the phases of this ice sys-

tem, we describe the QA system with which
we realized square ice in its well-known Ising
form (15). The QA system comprises a set of
superconducting flux qubits that interact
through two-body couplers (17, 18), physically
realizing the transverse-field Ising model ge-
nerically described by the Hamiltonian

H ¼ J
X

ijh i
Jij ŝi

z ŝ
j
z þ

X

i

hi ŝi
z

0

@

1

A

" G
X

i

ŝ
i
x ð1Þ

where ŝi are Pauli matrices describing the
qubit degrees of freedom, the tensor Jij de-
scribes the action of the couplers, and hi is
a per-qubit longitudinal field. The terms Jij
and hi can be programmed at will; local fields
hi are always set to zero except when specified.
Unlike in the Hamiltonians proposed to de-

scribe quantum spin ice in pyrochlores (19),

we have no quantumentanglement in the two-
body coupling terms. Thus, in absence of the
transverse field G, the ground state of H is a
set of Fock states that can be mapped into
purely classical ones—namely, the Fock pro-
duct of eigenvectors of the Pauli matrices ŝz.
However, switching on the transverse field en-
tangles the binary quantum variables, subject-
ing them to quantum fluctuations.
At finite temperature, the QA system relaxes

toward the thermal equilibrium ofH. Rapidly
decreasing G and increasing J projects this
thermal distribution to the ŝz basis. This ap-
proach has recently been used for a variety of
quantum Ising systems at finite temperature
(20–22) and has provided the most direct ob-
servation of many-body quantum annealing
dynamics to date (23).
To realize square ice in the QA system, we

began with an Ising model (15): We consider
an alternatingA/B bipartition of vertices in the
square lattice, calling a spin S = 1 (Fig. 1B, red)
if it points toward an A vertex, or S = –1 (Fig.
1B, blue) if it points toward a B vertex. This
gives an antiferromagnetic Ising model on a
checkerboard lattice (Fig. 1C) whose quantum
extension is captured by the Hamiltonian in
Eq. 1. However, the geometry of qubit pairs
that can be directly coupled is described by a
“Chimera” graph (17, 18), which does not con-
tain the required checkerboard lattice as a
subgraph. We therefore represent each ice
spin with a chain of four qubits, forced to act
collectively with strong ferromagnetic cou-
plings. These chains are intercoupled in a
checkerboard geometry (Fig. 1D), whose tiling
across the QA chip gives a 14 by 14 grid of ice
vertices, with eight site vacancies resulting
from inoperable qubits.
We calibrated the system to degeneracy

(18) and used this point to define the nominal
ratio J∥=J⊥ ¼ 1. The overall energy scale J ¼
J∥ ¼ J⊥ is taken as the average total coupling
between coupled four-qubit chains. JMAX indi-
cates the maximum achievable value of this
Ising energy scale. The relationship between
J⊥ and J∥ determines the relative energies of
Type I and Type II vertices. Three cases are
possible.
When J⊥ ¼ J∥ ¼ J , the six ice rule–obeying

vertices (Type I and Type II) have the lowest
energy, and the ground state is a degenerate
manifold with residual entropy described by
the degenerate six-vertex model (24). Its ele-
mentary excitations are monopoles (Type III),
and the crossover temperature into the ice state
is Tice ≃ J , or half the energy of a monopole.
When J⊥ > J∥, the Type I vertices have the

lowest energy, and their tiling forms a long-
range ordered, classical ground state that is
typical of the early antiferromagnetic artificial
spin ice realizations (1, 25).
WhenJ⊥ < J∥, the Type II vertices have the

lowest energy, and their tiling forms a
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classical ice models (Baxter book)

8 ICE-TYPE MODELS 

Fig. 8.1. An arrangement of hydrogen ions on a 3 by 3 square lattice (with cyclic 
boundary conditions), satisfying the ice rule: (a) the positions of the hydrogen ions 
on the bonds, (b) the corresponding electric dipoles, (c) the corresponding line 

representation. 

Of course real ice, and other crystals, are three-dimensional, but unfor- 
tunately the only exact solutions we have for three-dimensional ice-type 
models are for very special 'frozen' states (Nagle, 1969b). 

In this chapter only ice-type models on the square lattice will be con- 
sidered. They exhibit similar behaviour to three-dimensional reality, and 
have the enormous advantage of being solvable! (In particular, square ice 
is really quite a good approximation to real ice, since the residual entropy 
is only weakly sensitive to the structure of the lattice.) 

The hydrogen-ion bonds between atoms form electric dipoles, so can 
conveniently be represented by arrows placed on the bonds pointing toward 
the end occupied by the ion, as in Fig. 8.l(b). The ice rule is then equivalent 
to stating that at each site (or vertex) of the lattice there are two arrows 
in, and two arrows out. There are just six such ways of arranging the 
arrows, as shown in Fig. 8.2. (For this reason the ice-type models are 
sometimes known as 'six-vertex' models, as opposed to the 'eight-vertex' 
model of Chapter 10.) 

In general, each of these six local arrangements will have a distinct 
energy: let us call them &I, . . . , c6, using the ordering of Fig. 8.2. Then the 
partition function is given by (8.1. I ) ,  where 

and n, is the number of vertices in the lattice of type j .  

Fig. 8.2. The six arrow configurations allowed at a vertex, and the corresponding 
line configurations. 

8.1 INTRODUCTION 129 

We now have a very general model that includes three important models 
as special cases. 

Ice 
As was remarked above, the ice model is obtained by taking all energies 
to be zero, i.e. 

E I = E ~ =  . . . =  e,j=O. (8.1.4) 

KDP 
Potassium dihydrogen phosphate, KH2P04 (referred to hereafter as KDP), 
forms a hydrogen-bonded crystal of coordination number four, and orders 
ferroelectrically at low temperatures (i.e. all dipoles tend to point in the 
same general direction). Slater (1941) argued that it could be represented 
by an ice-type model with an appropriate choice of el, . . . , .c6. For the 
square lattice such a choice is 

The ground state is then either the one with all arrows pointing up and to 
the right, or all pointing down and to the left. Either state is typical of 
an ordered ferroelectric. 

F Model 
Rys (1963) suggested that a model of anti-ferroelectrics could be obtained 
by choosing 

E, = ~2 = ~3 = ~4 > 0, ES = ~6 = 0 . (8.1.6) 

The ground state is then one in which only vertex arrangements 5 and 6 
occur. There are only two ways of doing this. One is shown in Fig. 8.3, 

Fig. 8.3. One of the two ground-state energy configurations of the anti-ferroelectric 
ice-type model. Only vertex configurations 5 and 6 occur. 
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and the other is obtained by reversing all arrows. Note that arrows alternate 
in direction, as would be expected in an ordered antiferroelectric (Nagle, 
l969a). 

Restrictions 

In this chapter the following restrictions will be imposed on . . . , E~ : 

These ensure that the model is unchanged by reversing all dipole arrows, 
which one would expect to be the situation for a model in zero external 
electric field. Thus this is a 'zero-field' model which includes the ice, KDP 
and F models as special cases. 

In fact the third condition zj = Q is no restriction at all. From Fig. 8.2 
it is obvious that vertex arrangement 5 is a 'sink' of horizontal arrows, 
whereas 6 is a 'source'. If cylindrical or toroidal boundary conditions are 
imposed, then there must be as many sinks as sources, so n5 = ns. From 
(8.1.3) it follows that ~5 and &6 only enter the partition function in the 
combination ~5 + Q, SO there is no loss of generality in choosing ES = E ~ .  

The other two conditions = ~ 2  and e3 = E ~ )  are more ones of con- 
venience than necessity, since the working of Sections 8.2-8.7 can easily 
be generalized to the unrestricted case (so long as each of the six energies, 
e.g. E , ,  is the same for all sites of the square lattice). The effect of relaxing 
them (i.e. introducing electric fields) will be discussed in Section 8.12. 

8.2 The Transfer Matrix 

Yet another way of representing the hydrogen-ion dipoles is to draw a line 
on an edge if the corresponding arrow points down or to the left, otherwise 
to leave the edge empty. A typical arrangement of lines is shown in Fig. 
8.l(c), and the six allowed line arrangements at a vertex are shown in Fig. 
8.2. 

Suppose the lattice has M rows and N columns, and impose cyclic (i.e. 
toroidal) boundary conditions. Consider a row of N vertical edges (between 
two adjacent rows of sites). There are M such rows: label them r = 1, 2, 
. . . , M sequentially upwards. Let g?, denote the 'state' of row r: i.e. the 
arrangement of lines on the N vertical edges. Since each edge may or may 
not be occupied by a line, 47, has 2N possible values. Then as usual we can 
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weights a, b, c, it follows from (8.3.21) that there are four cases to consider, 
the four regimes being shown in Fig. 8.5. 

I. Ferroelectric Phase: a > b + c 
In this case A > 1 and, from (8.3.2) and (8.3.3), < E ~ ,  ES. Thus the lowest 
energy state is one in which all vertices are of type 1, or all of type 2. 
Either all arrows point up or to the right, or all point down or to the left. 

Fig. 8.5. The phase diagram of the zero field ice-type model, in terms of the 
Boltzmann weights a, b, c. The dotted circular quadrant corresponds to t h ~ ,  free- 

fermion case, when A = 0 and the model can be solved by Pfaffians. 

Thus at very low temperatures the system is ferroelectrically ordered (all 
parallel arrows point the same way), and the free energy f is equal to 

However, from Section 8.6, this is the value off throughout the regime 
I. This means that excited states give a negligible contribution to the 
partition function and throughout the regime I the system is frozen in one 
or other of the two ground states. As explained in Section 8.6, there is 
complete ferroelectric order. 

11. Ferroelectric Phase: b > a + c 
This is the same as case I, except that now it is vertex types 3 and 4 that 
are dominant. There is complete ferroelectric order: effectively all arrows 
either point up and to the left, or they all point down and to the right. 

111. Disordered Phase: a, b, c < $(a + b + c )  
This is the case when - 1 < A < 1. It includes the infinite temperature case 
a = b  = c = 1, so one might expect the system to be disordered. This is 
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or other of these two directions, never down or to the left. The cyclic 
boundary conditions ensure that a path never ends. 

Suppose there are n such paths from the bottom of the lattice to the top. 
Each path will go through a row of vertical edges once and only once. It 
follows that: 

if there are n lines on the bottom row of vertical edges, then there are n 
lines on every row. 
In particular, there must be n lines on the second row, which means that 

V(q, q') is zero unless q and q' contain the same number of lines. 
The matrix V therefore breaks up into N + 1 diagonal blocks, one 

between the state with no lines, another between states with one line, and 
so on up to the state with N lines. Thus n, the number of lines per row, 
is a 'quantum number' of the matrix V. We can restrict our attention to 
states with a given value of n. 

The obvious way to identify such a state is to specify the positions 
xl, . . . , x, of the lines, ordered so that 

Let X ={xl, . . . , x,) be such a specification, and let g(X) be the corre- 
sponding element of the eigenvector g. Then (8.2.3) can be written 

where V(X, Y) is the element of V between states X and Y, and is still 
given by (8.2.2). Using (8.1.7)' it is convenient to set 

(Thus 0 1  , . . . , 0 6  are the Boltzmann weights of vertex arrange- 
ments 1, . . . ,6.)  Then (8.2.2) becomes 

where X, Y replace 4 ,  4'; again the summation is over the allowed arrange- 
ments of lines on the intervening row of horizontal edges; and 
ml, . . . , m6 are the numbers of intervening vertices of types 1, . . . ,6 .  Two 
typical cases are shown in Fig. 8.4 (with n = 2). 

The problem now is to solve the eigenvalue equation (8.3.1) for a given 
value of n. It is very helpful to begin by considering the simple cases 
n = 0 , l  and 2. 
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We now have a very general model that includes three important models 
as special cases. 

Ice 
As was remarked above, the ice model is obtained by taking all energies 
to be zero, i.e. 

E I = E ~ =  . . . =  e,j=O. (8.1.4) 

KDP 
Potassium dihydrogen phosphate, KH2P04 (referred to hereafter as KDP), 
forms a hydrogen-bonded crystal of coordination number four, and orders 
ferroelectrically at low temperatures (i.e. all dipoles tend to point in the 
same general direction). Slater (1941) argued that it could be represented 
by an ice-type model with an appropriate choice of el, . . . , .c6. For the 
square lattice such a choice is 

The ground state is then either the one with all arrows pointing up and to 
the right, or all pointing down and to the left. Either state is typical of 
an ordered ferroelectric. 

F Model 
Rys (1963) suggested that a model of anti-ferroelectrics could be obtained 
by choosing 

E, = ~2 = ~3 = ~4 > 0, ES = ~6 = 0 . (8.1.6) 

The ground state is then one in which only vertex arrangements 5 and 6 
occur. There are only two ways of doing this. One is shown in Fig. 8.3, 

Fig. 8.3. One of the two ground-state energy configurations of the anti-ferroelectric 
ice-type model. Only vertex configurations 5 and 6 occur. anti-ferroelectric phase 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we forced a net flux, such as =2, into the sys-
tem. Upon annealing, we then observed a net
charge in the bulk, in the form of a free mono-
pole of charge 2—in this case, the ground state
contained a monopole by Gauss’s law. Thus,
an isolated monopole charge was induced in
absence of a corresponding anticharge, by
forcing a net flux on the boundaries. Wemust
also pin the interior boundary spins produced
by any vacancies caused by inoperable qubits.
We also observed a quantum-activated ran-

dom walk of these monopoles. Thermal fluc-
tuations have been used to drive spin dynamics
in superparamagnetic nanoislands (27–29);
in this work, the spin dynamics are driven by
both quantum and thermal fluctuations (fig.
S5) (18). Modifying the previous protocol (with
J∥ ¼ J⊥ ¼ JMAX), we strobed fluctuations for
exposures of 1 ms, the minimum interval per-
mitted by the control circuitry.
For large G or long exposure, one expects

that the quantum fluctuations would erase
the systemmemory. However, for a carefully
chosen value of G = 0.34JMAX for 1 ms, the
quantum-activated system preservesmemory
of its previous classical state, and the qubit
kinetics, although activated primarily by quan-
tum fluctuations, reveals monopole motion,
monopole pair creation and annihilation, and
collective flipping of closed loops of spins.
These phenomena are shown in Fig. 3 in a

sequence of samples from a QA experiment.

In Fig. 3, we highlight the difference between
successiveQA states. These are suggestive of a
randomwalk of a monopole, although we can-
not rule out intermediate creation and anni-
hilation of additional monopole pairs. Most
samples contain only the isolated monopole
induced into the ground state by means of a
nonzero-flux boundary condition, but after
70 exposures to fluctuations, a surplus mono-
pole pair appears,making the ensuing sequence
particularly interesting to visualize. After 70 ex-
posures, there are threemonopoles for an over-
all net charge +2,whichmatches the boundary
flux. At time (t) = 71 ms, twomonopoles of oppo-
site charge have mutually annihilated, return-
ing the system to the ground state. At t = 72 ms,
the induced monopole has moved again, and
by t = 77 ms, several steps later, it has traversed
much of the available space. These time scales
are in sharp contrast to themultisecond relaxa-
tion observations in nanoisland and colloidal
implementations (9, 28, 30). Example state se-
quences are shown in movies S1 to S6 (18).
Unlike in fully dipolar spin ice (6), ourmono-

poles cannot interact directly because no ap-
preciable long-range dipolar interaction exists
between the qubits. Monopoles, however, can
be thought of as emergent quasiparticles in
an underlying spin structure and are therefore
correlated by the divergence-free spin vacuum.
This correlation can be described as a pairwise
interaction by which oppositely charged par-

ticles attract, but the attraction is merely a re-
sult of the degeneracy of spin configurations
that are compatible with the monopole posi-
tions: It is an entropic interaction, and its cou-
pling constant depends on temperature (31).
In this 2D system, it corresponds to the 2D
Coulomb law between charges q1 and q2 at dis-
tance x, which is logarithmic ~q1q2Tln(x), and
thus leads to a Bessel screening, or q xð Þh iº
K0 x=xð Þ, whereK0 is themodified Bessel func-
tion and x is a temperature-dependent corre-
lation length (31).
We can probe this purely entropic screening

betweenmonopoles by pinning amonopole at
the center of our geometry. The result of this
pinning is shown in Fig. 4, which compares it
to the boundary conditions described above.
With open boundaries or with zero net flux
(Fig. 4, A and B), monopoles are absent in the
ground state and therefore are only rarely ob-
served after annealing. With a net flux of 2 (as
in Fig. 3), by Gauss’s law a monopole is forced
into the system’s ground state. Simulating the
system repeatedly with random assignments
of the flipped boundary spin, we found that
the probability of finding a monopole is fairly
flat across the lattice (Fig. 4C). Thus, when flux
inside the system is fixed, the forcedmonopole
is delocalized in the bulk, as one would expect.
By contrast, when amonopole is pinned at the
center and boundaries enclose zero flux (Fig.
4D), we observed a second, free monopole in
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Fig. 2. Experimental results: fine-tuning the ice ensemble. The degenerate
cases (top) J⊥ ¼ J∥, (middle) J⊥ ¼ 1:02J∥, and (bottom) J⊥ ¼ 0:98J∥. (Left)
Frequencies of the different vertex types (Fig. 1A) versus the energy scale J/JMAX,
averaged over many measurements in a 14 by 14 ice system. (Middle left, middle,
and middle right) Structure factor S(q) (arbitrary intensity units) for varying
coupling energy scale in the three cases, in reciprocal lattice space. (Right) Cross

sections of S(q) at the pinch points. The degenerate case shows the pinch point
singularity associated with the Coulomb phase. (Inset) The FWHM is the
reciprocal correlation length, decaying as coupling energy increases (temper-
ature is constant) and saturating in the strong coupling limit owing to finite
system size. Tuning away from degeneracy results in the expected Bragg peaks
(middle row) and collinear correlations (bottom row).
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MAGNETISM

Qubit spin ice
Andrew D. King1*, Cristiano Nisoli2*, Edward D. Dahl1,3,
Gabriel Poulin-Lamarre1, Alejandro Lopez-Bezanilla2

Artificial spin ices are frustrated spin systems that can be engineered, in which fine tuning of geometry
and topology has allowed the design and characterization of exotic emergent phenomena at the
constituent level. Here, we report a realization of spin ice in a lattice of superconducting qubits.
Unlike conventional artificial spin ice, our system is disordered by both quantum and thermal
fluctuations. The ground state is classically described by the ice rule, and we achieved control over
a fragile degeneracy point, leading to a Coulomb phase. The ability to pin individual spins allows us to
demonstrate Gauss’s law for emergent effective monopoles in two dimensions. The demonstrated
qubit control lays the groundwork for potential future study of topologically protected artificial
quantum spin liquids.

A
rtificial spin ices are systems of interact-
ing components characterized by frus-
trated binary variables whose collective
behavior emerges from local constraints
based on the two-in-two-out “ice rule”

(Fig. 1A). They were initially introduced (1, 2)
as analogs of the frustrated rare earth pyro-
chlores (3, 4) but then evolved to generate,
through frustration and disorder, exotic emer-
gent phenomena not found in natural systems
(5). In simple ice-rule systems, the low-energy
collective states can be described in terms of
their excitations, which are emergent mag-
neticmonopole quasiparticles (6–9). Themost
common artificial spin ice realizations have
been based on lithographically patterned
nanomagnets (10, 11). The more general set of
ideas has been exported to other platforms,
including colloids and superconducting vorti-
ces confined to bistable traps, and even to
liquid crystals (12) and exotic mechanics of
soft modes (13).
We implementeda two-dimensional (2D) spin

ice of superconducting qubits—macroscopic
quantumobjects (14)—in a quantumannealing
(QA) system and drove it between low-energy
quasi-classical states by means of primarily
quantum rather than thermal fluctuations,
thus opening the door to future studies of
quantum phases in these systems (15, 16).
Our “qubit spin ice” does not require fixed pre-
fabrication; instead, its energetic coupling
terms can be fine tuned, and spins can be
pinned at will. We exploited this flexibility to
demonstrate how Gauss’s law emerges from
geometric constraints in two dimensions. By
fixing the total flux of magnetization into the
system’s boundary, we injected topological
charges into the ground state, demonstrating

induction ofmagneticmonopole quasiparticles
that, unlike in dipolar implementations, inter-
act purely entropically.
Square spin ice consists of a set of classical

dipole spins placed along the edges of a square
lattice (Fig. 1B). The spins impinging on verti-
ces realize 16 different vertex configurations
that are grouped by topology into Type I, …,
Type IV (Fig. 1A). The first two types obey the
so-called “ice rule” (two spins point in, two
point out) and are energetically favored in
spin ice materials. The other two violate the
ice rule, as signaled by their topological charge
(defined as the difference between spins point-
ing in and out) of ±2 and ±4, respectively, and
are monopole excitations. Vertex energies are
dictated by the antiferromagnetic couplings
J∥; J⊥ between spins impinging on the vertex
collinearly and perpendicularly, respectively,
and are eI ¼ "4J⊥ þ 2J∥, eII ¼ "2J∥, eIII ¼ 0,
andeIV ¼ 4J⊥ þ 2J∥. The resulting system is
geometrically frustrated.
Before discussing the phases of this ice sys-

tem, we describe the QA system with which
we realized square ice in its well-known Ising
form (15). The QA system comprises a set of
superconducting flux qubits that interact
through two-body couplers (17, 18), physically
realizing the transverse-field Ising model ge-
nerically described by the Hamiltonian

H ¼ J
X

ijh i
Jij ŝi

z ŝ
j
z þ

X

i

hi ŝi
z

0

@

1

A

" G
X

i

ŝ
i
x ð1Þ

where ŝi are Pauli matrices describing the
qubit degrees of freedom, the tensor Jij de-
scribes the action of the couplers, and hi is
a per-qubit longitudinal field. The terms Jij
and hi can be programmed at will; local fields
hi are always set to zero except when specified.
Unlike in the Hamiltonians proposed to de-

scribe quantum spin ice in pyrochlores (19),

we have no quantumentanglement in the two-
body coupling terms. Thus, in absence of the
transverse field G, the ground state of H is a
set of Fock states that can be mapped into
purely classical ones—namely, the Fock pro-
duct of eigenvectors of the Pauli matrices ŝz.
However, switching on the transverse field en-
tangles the binary quantum variables, subject-
ing them to quantum fluctuations.
At finite temperature, the QA system relaxes

toward the thermal equilibrium ofH. Rapidly
decreasing G and increasing J projects this
thermal distribution to the ŝz basis. This ap-
proach has recently been used for a variety of
quantum Ising systems at finite temperature
(20–22) and has provided the most direct ob-
servation of many-body quantum annealing
dynamics to date (23).
To realize square ice in the QA system, we

began with an Ising model (15): We consider
an alternatingA/B bipartition of vertices in the
square lattice, calling a spin S = 1 (Fig. 1B, red)
if it points toward an A vertex, or S = –1 (Fig.
1B, blue) if it points toward a B vertex. This
gives an antiferromagnetic Ising model on a
checkerboard lattice (Fig. 1C) whose quantum
extension is captured by the Hamiltonian in
Eq. 1. However, the geometry of qubit pairs
that can be directly coupled is described by a
“Chimera” graph (17, 18), which does not con-
tain the required checkerboard lattice as a
subgraph. We therefore represent each ice
spin with a chain of four qubits, forced to act
collectively with strong ferromagnetic cou-
plings. These chains are intercoupled in a
checkerboard geometry (Fig. 1D), whose tiling
across the QA chip gives a 14 by 14 grid of ice
vertices, with eight site vacancies resulting
from inoperable qubits.
We calibrated the system to degeneracy

(18) and used this point to define the nominal
ratio J∥=J⊥ ¼ 1. The overall energy scale J ¼
J∥ ¼ J⊥ is taken as the average total coupling
between coupled four-qubit chains. JMAX indi-
cates the maximum achievable value of this
Ising energy scale. The relationship between
J⊥ and J∥ determines the relative energies of
Type I and Type II vertices. Three cases are
possible.
When J⊥ ¼ J∥ ¼ J , the six ice rule–obeying

vertices (Type I and Type II) have the lowest
energy, and the ground state is a degenerate
manifold with residual entropy described by
the degenerate six-vertex model (24). Its ele-
mentary excitations are monopoles (Type III),
and the crossover temperature into the ice state
is Tice ≃ J , or half the energy of a monopole.
When J⊥ > J∥, the Type I vertices have the

lowest energy, and their tiling forms a long-
range ordered, classical ground state that is
typical of the early antiferromagnetic artificial
spin ice realizations (1, 25).
WhenJ⊥ < J∥, the Type II vertices have the

lowest energy, and their tiling forms a
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14×14 ice system 

Structure factor S(q) for varying couplings, 

in reciprocal lattice space. 

Quantum 6-vertex model
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we forced a net flux, such as =2, into the sys-
tem. Upon annealing, we then observed a net
charge in the bulk, in the form of a free mono-
pole of charge 2—in this case, the ground state
contained a monopole by Gauss’s law. Thus,
an isolated monopole charge was induced in
absence of a corresponding anticharge, by
forcing a net flux on the boundaries. Wemust
also pin the interior boundary spins produced
by any vacancies caused by inoperable qubits.
We also observed a quantum-activated ran-

dom walk of these monopoles. Thermal fluc-
tuations have been used to drive spin dynamics
in superparamagnetic nanoislands (27–29);
in this work, the spin dynamics are driven by
both quantum and thermal fluctuations (fig.
S5) (18). Modifying the previous protocol (with
J∥ ¼ J⊥ ¼ JMAX), we strobed fluctuations for
exposures of 1 ms, the minimum interval per-
mitted by the control circuitry.
For large G or long exposure, one expects

that the quantum fluctuations would erase
the systemmemory. However, for a carefully
chosen value of G = 0.34JMAX for 1 ms, the
quantum-activated system preservesmemory
of its previous classical state, and the qubit
kinetics, although activated primarily by quan-
tum fluctuations, reveals monopole motion,
monopole pair creation and annihilation, and
collective flipping of closed loops of spins.
These phenomena are shown in Fig. 3 in a

sequence of samples from a QA experiment.

In Fig. 3, we highlight the difference between
successiveQA states. These are suggestive of a
randomwalk of a monopole, although we can-
not rule out intermediate creation and anni-
hilation of additional monopole pairs. Most
samples contain only the isolated monopole
induced into the ground state by means of a
nonzero-flux boundary condition, but after
70 exposures to fluctuations, a surplus mono-
pole pair appears,making the ensuing sequence
particularly interesting to visualize. After 70 ex-
posures, there are threemonopoles for an over-
all net charge +2,whichmatches the boundary
flux. At time (t) = 71 ms, twomonopoles of oppo-
site charge have mutually annihilated, return-
ing the system to the ground state. At t = 72 ms,
the induced monopole has moved again, and
by t = 77 ms, several steps later, it has traversed
much of the available space. These time scales
are in sharp contrast to themultisecond relaxa-
tion observations in nanoisland and colloidal
implementations (9, 28, 30). Example state se-
quences are shown in movies S1 to S6 (18).
Unlike in fully dipolar spin ice (6), ourmono-

poles cannot interact directly because no ap-
preciable long-range dipolar interaction exists
between the qubits. Monopoles, however, can
be thought of as emergent quasiparticles in
an underlying spin structure and are therefore
correlated by the divergence-free spin vacuum.
This correlation can be described as a pairwise
interaction by which oppositely charged par-

ticles attract, but the attraction is merely a re-
sult of the degeneracy of spin configurations
that are compatible with the monopole posi-
tions: It is an entropic interaction, and its cou-
pling constant depends on temperature (31).
In this 2D system, it corresponds to the 2D
Coulomb law between charges q1 and q2 at dis-
tance x, which is logarithmic ~q1q2Tln(x), and
thus leads to a Bessel screening, or q xð Þh iº
K0 x=xð Þ, whereK0 is themodified Bessel func-
tion and x is a temperature-dependent corre-
lation length (31).
We can probe this purely entropic screening

betweenmonopoles by pinning amonopole at
the center of our geometry. The result of this
pinning is shown in Fig. 4, which compares it
to the boundary conditions described above.
With open boundaries or with zero net flux
(Fig. 4, A and B), monopoles are absent in the
ground state and therefore are only rarely ob-
served after annealing. With a net flux of 2 (as
in Fig. 3), by Gauss’s law a monopole is forced
into the system’s ground state. Simulating the
system repeatedly with random assignments
of the flipped boundary spin, we found that
the probability of finding a monopole is fairly
flat across the lattice (Fig. 4C). Thus, when flux
inside the system is fixed, the forcedmonopole
is delocalized in the bulk, as one would expect.
By contrast, when amonopole is pinned at the
center and boundaries enclose zero flux (Fig.
4D), we observed a second, free monopole in
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Fig. 2. Experimental results: fine-tuning the ice ensemble. The degenerate
cases (top) J⊥ ¼ J∥, (middle) J⊥ ¼ 1:02J∥, and (bottom) J⊥ ¼ 0:98J∥. (Left)
Frequencies of the different vertex types (Fig. 1A) versus the energy scale J/JMAX,
averaged over many measurements in a 14 by 14 ice system. (Middle left, middle,
and middle right) Structure factor S(q) (arbitrary intensity units) for varying
coupling energy scale in the three cases, in reciprocal lattice space. (Right) Cross

sections of S(q) at the pinch points. The degenerate case shows the pinch point
singularity associated with the Coulomb phase. (Inset) The FWHM is the
reciprocal correlation length, decaying as coupling energy increases (temper-
ature is constant) and saturating in the strong coupling limit owing to finite
system size. Tuning away from degeneracy results in the expected Bragg peaks
(middle row) and collinear correlations (bottom row).
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we forced a net flux, such as =2, into the sys-
tem. Upon annealing, we then observed a net
charge in the bulk, in the form of a free mono-
pole of charge 2—in this case, the ground state
contained a monopole by Gauss’s law. Thus,
an isolated monopole charge was induced in
absence of a corresponding anticharge, by
forcing a net flux on the boundaries. Wemust
also pin the interior boundary spins produced
by any vacancies caused by inoperable qubits.
We also observed a quantum-activated ran-

dom walk of these monopoles. Thermal fluc-
tuations have been used to drive spin dynamics
in superparamagnetic nanoislands (27–29);
in this work, the spin dynamics are driven by
both quantum and thermal fluctuations (fig.
S5) (18). Modifying the previous protocol (with
J∥ ¼ J⊥ ¼ JMAX), we strobed fluctuations for
exposures of 1 ms, the minimum interval per-
mitted by the control circuitry.
For large G or long exposure, one expects

that the quantum fluctuations would erase
the systemmemory. However, for a carefully
chosen value of G = 0.34JMAX for 1 ms, the
quantum-activated system preservesmemory
of its previous classical state, and the qubit
kinetics, although activated primarily by quan-
tum fluctuations, reveals monopole motion,
monopole pair creation and annihilation, and
collective flipping of closed loops of spins.
These phenomena are shown in Fig. 3 in a

sequence of samples from a QA experiment.

In Fig. 3, we highlight the difference between
successiveQA states. These are suggestive of a
randomwalk of a monopole, although we can-
not rule out intermediate creation and anni-
hilation of additional monopole pairs. Most
samples contain only the isolated monopole
induced into the ground state by means of a
nonzero-flux boundary condition, but after
70 exposures to fluctuations, a surplus mono-
pole pair appears,making the ensuing sequence
particularly interesting to visualize. After 70 ex-
posures, there are threemonopoles for an over-
all net charge +2,whichmatches the boundary
flux. At time (t) = 71 ms, twomonopoles of oppo-
site charge have mutually annihilated, return-
ing the system to the ground state. At t = 72 ms,
the induced monopole has moved again, and
by t = 77 ms, several steps later, it has traversed
much of the available space. These time scales
are in sharp contrast to themultisecond relaxa-
tion observations in nanoisland and colloidal
implementations (9, 28, 30). Example state se-
quences are shown in movies S1 to S6 (18).
Unlike in fully dipolar spin ice (6), ourmono-

poles cannot interact directly because no ap-
preciable long-range dipolar interaction exists
between the qubits. Monopoles, however, can
be thought of as emergent quasiparticles in
an underlying spin structure and are therefore
correlated by the divergence-free spin vacuum.
This correlation can be described as a pairwise
interaction by which oppositely charged par-

ticles attract, but the attraction is merely a re-
sult of the degeneracy of spin configurations
that are compatible with the monopole posi-
tions: It is an entropic interaction, and its cou-
pling constant depends on temperature (31).
In this 2D system, it corresponds to the 2D
Coulomb law between charges q1 and q2 at dis-
tance x, which is logarithmic ~q1q2Tln(x), and
thus leads to a Bessel screening, or q xð Þh iº
K0 x=xð Þ, whereK0 is themodified Bessel func-
tion and x is a temperature-dependent corre-
lation length (31).
We can probe this purely entropic screening

betweenmonopoles by pinning amonopole at
the center of our geometry. The result of this
pinning is shown in Fig. 4, which compares it
to the boundary conditions described above.
With open boundaries or with zero net flux
(Fig. 4, A and B), monopoles are absent in the
ground state and therefore are only rarely ob-
served after annealing. With a net flux of 2 (as
in Fig. 3), by Gauss’s law a monopole is forced
into the system’s ground state. Simulating the
system repeatedly with random assignments
of the flipped boundary spin, we found that
the probability of finding a monopole is fairly
flat across the lattice (Fig. 4C). Thus, when flux
inside the system is fixed, the forcedmonopole
is delocalized in the bulk, as one would expect.
By contrast, when amonopole is pinned at the
center and boundaries enclose zero flux (Fig.
4D), we observed a second, free monopole in
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Fig. 2. Experimental results: fine-tuning the ice ensemble. The degenerate
cases (top) J⊥ ¼ J∥, (middle) J⊥ ¼ 1:02J∥, and (bottom) J⊥ ¼ 0:98J∥. (Left)
Frequencies of the different vertex types (Fig. 1A) versus the energy scale J/JMAX,
averaged over many measurements in a 14 by 14 ice system. (Middle left, middle,
and middle right) Structure factor S(q) (arbitrary intensity units) for varying
coupling energy scale in the three cases, in reciprocal lattice space. (Right) Cross

sections of S(q) at the pinch points. The degenerate case shows the pinch point
singularity associated with the Coulomb phase. (Inset) The FWHM is the
reciprocal correlation length, decaying as coupling energy increases (temper-
ature is constant) and saturating in the strong coupling limit owing to finite
system size. Tuning away from degeneracy results in the expected Bragg peaks
(middle row) and collinear correlations (bottom row).
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we forced a net flux, such as =2, into the sys-
tem. Upon annealing, we then observed a net
charge in the bulk, in the form of a free mono-
pole of charge 2—in this case, the ground state
contained a monopole by Gauss’s law. Thus,
an isolated monopole charge was induced in
absence of a corresponding anticharge, by
forcing a net flux on the boundaries. Wemust
also pin the interior boundary spins produced
by any vacancies caused by inoperable qubits.
We also observed a quantum-activated ran-

dom walk of these monopoles. Thermal fluc-
tuations have been used to drive spin dynamics
in superparamagnetic nanoislands (27–29);
in this work, the spin dynamics are driven by
both quantum and thermal fluctuations (fig.
S5) (18). Modifying the previous protocol (with
J∥ ¼ J⊥ ¼ JMAX), we strobed fluctuations for
exposures of 1 ms, the minimum interval per-
mitted by the control circuitry.
For large G or long exposure, one expects

that the quantum fluctuations would erase
the systemmemory. However, for a carefully
chosen value of G = 0.34JMAX for 1 ms, the
quantum-activated system preservesmemory
of its previous classical state, and the qubit
kinetics, although activated primarily by quan-
tum fluctuations, reveals monopole motion,
monopole pair creation and annihilation, and
collective flipping of closed loops of spins.
These phenomena are shown in Fig. 3 in a

sequence of samples from a QA experiment.

In Fig. 3, we highlight the difference between
successiveQA states. These are suggestive of a
randomwalk of a monopole, although we can-
not rule out intermediate creation and anni-
hilation of additional monopole pairs. Most
samples contain only the isolated monopole
induced into the ground state by means of a
nonzero-flux boundary condition, but after
70 exposures to fluctuations, a surplus mono-
pole pair appears,making the ensuing sequence
particularly interesting to visualize. After 70 ex-
posures, there are threemonopoles for an over-
all net charge +2,whichmatches the boundary
flux. At time (t) = 71 ms, twomonopoles of oppo-
site charge have mutually annihilated, return-
ing the system to the ground state. At t = 72 ms,
the induced monopole has moved again, and
by t = 77 ms, several steps later, it has traversed
much of the available space. These time scales
are in sharp contrast to themultisecond relaxa-
tion observations in nanoisland and colloidal
implementations (9, 28, 30). Example state se-
quences are shown in movies S1 to S6 (18).
Unlike in fully dipolar spin ice (6), ourmono-

poles cannot interact directly because no ap-
preciable long-range dipolar interaction exists
between the qubits. Monopoles, however, can
be thought of as emergent quasiparticles in
an underlying spin structure and are therefore
correlated by the divergence-free spin vacuum.
This correlation can be described as a pairwise
interaction by which oppositely charged par-

ticles attract, but the attraction is merely a re-
sult of the degeneracy of spin configurations
that are compatible with the monopole posi-
tions: It is an entropic interaction, and its cou-
pling constant depends on temperature (31).
In this 2D system, it corresponds to the 2D
Coulomb law between charges q1 and q2 at dis-
tance x, which is logarithmic ~q1q2Tln(x), and
thus leads to a Bessel screening, or q xð Þh iº
K0 x=xð Þ, whereK0 is themodified Bessel func-
tion and x is a temperature-dependent corre-
lation length (31).
We can probe this purely entropic screening

betweenmonopoles by pinning amonopole at
the center of our geometry. The result of this
pinning is shown in Fig. 4, which compares it
to the boundary conditions described above.
With open boundaries or with zero net flux
(Fig. 4, A and B), monopoles are absent in the
ground state and therefore are only rarely ob-
served after annealing. With a net flux of 2 (as
in Fig. 3), by Gauss’s law a monopole is forced
into the system’s ground state. Simulating the
system repeatedly with random assignments
of the flipped boundary spin, we found that
the probability of finding a monopole is fairly
flat across the lattice (Fig. 4C). Thus, when flux
inside the system is fixed, the forcedmonopole
is delocalized in the bulk, as one would expect.
By contrast, when amonopole is pinned at the
center and boundaries enclose zero flux (Fig.
4D), we observed a second, free monopole in
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Fig. 2. Experimental results: fine-tuning the ice ensemble. The degenerate
cases (top) J⊥ ¼ J∥, (middle) J⊥ ¼ 1:02J∥, and (bottom) J⊥ ¼ 0:98J∥. (Left)
Frequencies of the different vertex types (Fig. 1A) versus the energy scale J/JMAX,
averaged over many measurements in a 14 by 14 ice system. (Middle left, middle,
and middle right) Structure factor S(q) (arbitrary intensity units) for varying
coupling energy scale in the three cases, in reciprocal lattice space. (Right) Cross

sections of S(q) at the pinch points. The degenerate case shows the pinch point
singularity associated with the Coulomb phase. (Inset) The FWHM is the
reciprocal correlation length, decaying as coupling energy increases (temper-
ature is constant) and saturating in the strong coupling limit owing to finite
system size. Tuning away from degeneracy results in the expected Bragg peaks
(middle row) and collinear correlations (bottom row).
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Comparison between Q6M and qubit spin ice

qubit spin ice:

quantum 6-vertex model:
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Conclusions

• New platforms appear (quantum simulators) 
that make your dreams come true.


• Exotic phases appear - devils staircase


• Is it time to revisit LiV2O4?


