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210 11. CURVE FITTING

11.4.1 Power Law Models
It is also possible fit power-law models using similar manipulations. The function

f (x) = axb ,

can be transformed to a linear, additive model by writing a function

lnf (x) = lna + b ln(x),

that is we take the natural logarithm of x and f (x) to get a linear function. Such power laws
appear in all kinds of natural data. One, perhaps unexpected, place a power law appears is
in the number of words used with a given frequency in language. In English it has been con-
jectured that the 100 most common words make up 50% of all writing. Another way to look
at this, is that there are a small number of words that are used very frequently (e.g., the, a,
and, etc.), and many words that are used very infrequently (e.g. consanguine or antideriva-
tive). Therefore, if we look at any work of literature we expect there to be thousands of words
used one or two times, and a few words used thousands of times. To demonstrate this we can
look at the word frequency distribution for that venerable work of literature Moby Dick. The
next figure is a histogram of word frequency in Moby Dick. For example, there are approxi-
mately 104 words that are only used once in the book out of the 17,227 unique words in the
book.

The word “the” was used over 10,000 times.
For this data, we want to fit a model as

Number of words with a given frequency = a(Word Frequency)b .

This will require us to make the righthand side of the least square equations equal to the
logarithm of the dependent variable, and place the logarithm of the independent variable in
the data matrix. The resulting model for Moby Dick is

Number of words with a given frequency = 7.52(Word Frequency)−0.94.

In case you want to hear more from me, I have several books 
available:

Uncertainty Quantification and Predictive Computational Science from 
Springer https://www.springer.com/gp/book/9783319995243

Computational Nuclear Engineering and Radiological Science Using 
Python from Academic Press   http://a.co/2HdisVb 

Radiation and You is a children’s book (ages 7-13) with lots of pictures 
about how radiation is all around us and how it is used.  It is available 
from Orion Scientific Publishing  http://a.co/92FpGeK

3.2 Copulas 63

In Figure 3.4 two uniform distributions are joined by a t-copula with r = 0.8 are
shown. Notice how there is a clear correlation between the two random variables
and, as a result, a clustering in the corners of the distributions. Also, there are more
samples farther off the diagonal than in the normal case. This is due to the fact
that the t-distribution with a small value of n has more kurtosis than a normal dis-
tribution. Therefore, it is more likely to get anti-correlated values as samples. The
fact that the t-copula has tail dependence can also be observed in this figure in the
concentration of points near the lower-left and upper-right corners.

The tail dependence can be seen even more clearly if we use a t-copula to couple
two normal random variables. In Figure 3.5 the t-copula and normal copulas are
compared. Here, we see that the tail dependence appears as the area that the samples
occupy narrowing as the upper right and lower left corners are approached in the t-
copula, but this not present in the normal copula. This discrepancy in the tails exists
even though both distributions have the same value for t and the same marginal
distributions for X and Y . The change in the underlying distribution as a function of
r and n is shown in Figure 3.6. In this figure two standard normals are joined by a
t-copula. As t increases the tail dependence between the distributions increases.
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Fig. 3.5 Samples from standard normal random variables X ⇠ N (0,1) and Y ⇠ N (0,1) joined
by a t-copula with r = 0.8 and n = 4 (left) and the normal copula with r = 0.8 (right) . From these
104 samples the empirical value of t and the predicted value from Eq. (3.19) are shown also. Note
the tail dependence in the t-copula that is lacking in the normal copula: when one variable is close
to ±4 the other variable is also likely to be close to ±4.

https://www.springer.com/gp/book/9783319995243
http://a.co/2HdisVb
http://a.co/92FpGeK
https://www.springer.com/gp/book/9783319995243
http://a.co/2HdisVb
http://a.co/92FpGeK
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New data analysis tools can improve how we design 
and understand ICF implosions

Optimize design 
with simulations

ICF Experiment

Are these 
consistent? 

Are there other 
explanations for 

the data?

How can we better 
explore vast 

design spaces for 
“optimal” 

implosions?

How do we use 
experimental 

data to update 
our models?

Re-optimize in light of experimental evidence



We are using machine learning to integrate simulations and 
experiments into a common, predictive framework

Train ML models to 
emulate ICF codes

Use models to infer 
unknown inputs

Inferred mix Experimental log10 Yield
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Generate simulation 
database

Calibrate simulation 
models to experiments

Synthetic Diagnostics



Integrating simulations and 
experiments:

• Augmenting post-shot analysis with deep neural networks
• Transfer learning to predict Omega ICF experiments



We need prediction uncertainty estimates for quantitative 
comparison between simulations and experiments

• Uncertainties estimates are needed 
for quantitative comparison between 
simulations and experiments

• Traditional Bayesian surrogate 
models have several drawbacks

240 MB to store model, 
~45 min training time

We need fast and scalable surrogates with 
uncertainties that accurately fit ICF data 

Bayesian additive 
regression trees for 
TOS1 data



Neural networks are notoriously challenging to train

• Model performance is highly dependent on 
many user-specified hyper-parameters

• No robust guidelines for how to choose hyper-
parameters -> hand tuned by experts for 
specific datasets

• State-of-the-art network design algorithms 
perform exhaustive searches for optimal 
settings

Output layer

Hidden  
layers

Input layer



Deep Jointly-Informed Neural Networks (DJINN) use 
decision trees to automatically design and initialize neural 
networks

Training data Decision Tree
Initialized 

Neural 
Network

DJINN combines the ease of use of decision 
trees with the accuracy and scalability of 

deep neural networks

“Deep Neural Network Initialization With Decision Trees”  
Kelli D. Humbird ; J. Luc Peterson ; Ryan G. McClarren, IEEE  TNNLS (2018). 
Accepted, early access:  10.1109/TNNLS.2018.2869694

https://doi.org/10.1109/TNNLS.2018.2869694
https://doi.org/10.1109/TNNLS.2018.2869694
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DJINN maps decision trees to initialized deep feed-
forward neural networks

DJINN mapping uses tree structure to set neural network architecture, and 
initializes weights to reflect decision paths through the tree
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DJINN often outperforms many other black-box machine 
learning algorithms and neural network design techniques

* “Neural Random Forests”, G. Biau et al, arXiv:1604.07143, 2016.
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*Error bars display variance in 5x cross-validation scores



DJINN often outperforms many other black-box machine 
learning algorithms and neural network design techniques

* “Neural Random Forests”, G. Biau et al, arXiv:1604.07143, 2016.

Optimized NN performs 
best on 1 dataset, but is 

100x more expensive 
than DJINNM
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DJINN with dropout produces models that provide 
uncertainties on predictions

BART has high error 
near ignition cliff

DJINN fits cliff, high yield 
region accurately

240 MB to store model, 
~45 min training time

900 KB to store model, 
 ~5 min training time

Gal and Ghahramani, “Dropout as a Bayesian Approximation”, 2016.



DJINN enables efficient parameter inference and model calibration 
tasks for merging simulation and experimental data 

• Inferring unknown simulation 
parameters using experimental 
measurements

• Often assumes simulator has low error, 
but inputs are not well known

•  Commonly used to understand the 
data after the experiment (post-shot 
analysis)

Parameter Inference Model Calibration

▪ Use experimental data to adjust 
simulation predictions  

▪ Often assumes simulation inputs are 
known, but simulator has error 

▪ Commonly used to predict outcome 
of future experiments 



DJINN enables efficient parameter inference and model 
calibration tasks for merging simulation and 
experimental data 

• Inferring unknown simulation 
parameters using experimental 
measurements

• Often assumes simulator has low error, 
but inputs are not well known

•  Commonly used to understand the 
data after the experiment (post-shot 
analysis)

Parameter Inference Model Calibration

▪ Use experimental data to adjust 
simulation predictions  

▪ Often assumes simulation inputs are 
known, but simulator has error 

▪ Commonly used to predict outcome 
of future experiments 



Traditional post-shot analyses do not find full distribution of 
simulations consistent with experimental observables

Post-shot: Manual adjustment of simulation 
inputs until outputs match experiment 

Inputs Outputs

Experiment

HYDRA

Standard Post-Shot



A data-driven approach could improve post-shot 
analysis for NIF experiments  

• Machine learning methods can augment NIF post-shot 
analysis 

– Inverse models infer distributions of inputs that are most 
consistent with experimental observables

– Auto-encoders enable us to match dozens of observables 
simultaneously to better constrain our simulations

Goal: Find the set of physics 
hypotheses that explain the 
experimental observations



An efficient alternative to manual searching is to train inverse models

Inverse modeling: Infer distribution of 
simulations that closest match experiment 

Inputs Outputs

Experiment

(Surrogate)-1

Inverse Modeling



Agreement between simulation and experiment can be quantified 
by comparing post-shot simulation outputs to the experiment

Quantify how well closest simulations match experiment

Inputs Outputs

Experiment

(Surrogate)-1

Surrogate

Simulation

Inverse + Forward 
Modeling



Matching only a few observables does not provide an accurate 
inverse model or constrain hypotheses

Outputs

For the models to be accurate and constrain our 
hypotheses, we need to match more observables

Inconsistent

Inaccurate & Unconstrained

Inferred inputs



Auto-encoders enable us to match dozens of 
observables simultaneously

Observables (Yield, Tion, X-ray Images, etc)

Compressed Data 
= “Latent Space”

Compress 

Decompress

Observables (Yield, Tion, X-ray Images, etc)

Encode Decode

“Latent space”



Can we find the best post-shot simulations by matching a large 
collection of diagnostics? 

Train models on database of 60k 2D HYDRA simulations that span an 8D space:
45 Outputs:  
• Yield   
• Bang time  
• Temperatures 
• Neutron spectra moments, DSR 

(4 lines of sight)  
• High energy x-ray yields 

8 Inputs:  
• Added heat to fuel (preheat) 
• C mix 
• Energy scale 
• Peak drive 
• Tent amplitude 
• Filltube width & amplitude 
• Dopant

Latent Space  
(45 auto-compressed 

observables) Simulation Inputs
Yield, Tion, 

bangtime, DSR Simulation Inputs

Does matching all 45 observables produce more accurate post-shots than 
matching our favorite 4?



Latent space inference produces a good fit to the experimental 
data

Predicted output distributions

Matching Yield, 
bangtime, Tion, DSR

Matching 
Latent Space 
(45 observables)

True value
“Bayesian analysis with deep jointly-informed 

neural networks” Humbird, Peterson, 
McClarren, Statistical Analysis and Data 

Mining, 2018 (in revisions). 



Matching Yield, 
BT, Tion, DSR

Matching latent 
space  

(45 obs.)

True value

Latent space inference better constrains our simulation inputs 

Inferred input distributions



Neural network post-shot analysis finds the set of 
hypotheses that explain experimental observations

• Auto-encoders and DJINN enable us easily find all of the 
simulations in our design space that are consistent with several 
dozen experimental diagnostics 

• Applying to NIF data is challenging -- hypotheses included in our 
database are not able to explain all of the experimental data

How can we create predictive models if we 
cannot find accurate post-shot simulations?



DJINN enables efficient parameter inference and model calibration 
tasks for merging simulation and experimental data 

• Inferring unknown simulation 
parameters using experimental 
measurements

• Often assumes simulator has low error, 
but inputs are unknown

•  Commonly used to understand the 
data after the experiment (post-shot 
analysis)

Parameter Inference Model Calibration

▪ Use experimental data to adjust 
simulation predictions  

▪ Often assumes simulation inputs are 
known, but simulator has error 

▪ Commonly used to predict outcome 
of future experiments 



DJINN enables efficient parameter inference and model calibration tasks for 
merging simulation and experimental data 

Model Calibration

▪ Use experimental data to adjust 
simulation predictions  

▪ Often assumes simulation inputs are 
known, but simulator has error 

▪ Commonly used to predict outcome 
of future experiments 

x x

x

x
x

xSimulation
Data

Calibrated Model

“Bayesian calibration of computer models” Kennedy & O’Hagan (2001)



“Transfer learning” is a popular technique in the machine 
learning community 

Can transfer learning be used to “transfer” between 
simulations and experiments?

Large image database

Image label

Small NIF optics database

Damage label

Thistle

Pansy

Scratch

Ocean

Car

Dog

Retrain to solve 
different, but 
related task



DJINN is used to make more predictive models of ICF experiments via 
“transfer learning”

Train DJINN on large database of cheap simulations

Freeze all but the last 
layers of the network, 

retrain on sparse, 
expensive data

Simulation Inputs

Simulation Outputs

Experiment Inputs

Experiment Outputs



Can DJINN+TL predict future Omega experiments with 
higher accuracy than simulations?
• The data* includes:

– 30k 1D LILAC simulations (no CBET, flux-limited thermal diffusion), 10 min runtime
• Spans a 9D input space with varying laser pulse & capsule dimensions

– 23 experiments 
• 1D High-fidelity simulations with the 19 scalar outputs (high fidelity with 

FP_EOS, CBET, non-local electron transport, etc), 8 hour runtime
• Experimental measurements of yield, bang time, Tion, rhoR, burnwidth

*Data provided by Varchas 
Gopalaswamy & Riccardo Betti

High fidelity 
DJINN

30k low-
fidelity sims

Low fidelity 
DJINN

Experiment 
DJINN

23 high 
fidelity sims

23 
experiments

Transfer 

learning Transfer 

learning



DJINN+TL: predict high-fidelity simulations with low 
computational cost

Low-Fi. DJINN
High-Fi. DJINN (train)
High-Fi. DJINN (test)
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High-fidelity BW High-fidelity BangTime High-fidelity RhoR High-fidelity Tion High-fidelity Yield

High-Fi. Train

High-Fi. Predict

Low-Fi. Predict



DJINN+TL: more predictive of future Omega experiments 
than simulations

Experiment DJINN models can predict future 
Omega experiments

D
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Experiment BW Experiment BangTime Experiment RhoR Experiment Tion Experiment Yield

Low-Fi. DJINN
High-Fi. DJINN
Exp DJINN 1-19 (train)
Exp DJINN 20-23 (test)

Train on old

Predict new



Each model suggests a different optimal* implosion

*Maximum Yield·(⍴R)2

DJINN: Optimal Laser Pulses

Low-fidelity 
DJINN 

High-fidelity 
DJINN

Experiment 
DJINN

Optimal Capsules



DJINN: Optimal Laser Pulses

Low-fidelity 
DJINN 

High-fidelity 
DJINN

Experiment 
DJINN

Optimal Capsules

Each model suggests a different optimal* implosion

Max 1D Yield

Fix LPI but 
maintain 
velocity

Control 
hydro. 

instabilities at 
higher ⍴R

*Maximum Yield·(⍴R)2



DJINN: Optimal Laser Pulses

Low-fidelity 
DJINN 

High-fidelity 
DJINN

Experiment 
DJINN

Optimal Capsules

DJINN optima are consistent with physics-guided 
iterations

Adjusting picket 
and foot  
improves ⍴R

Large OD 
maximizes yield

*Betti et al, 2018

*Maximum Yield·(⍴R)2



DJINN+TL is a powerful, novel method for model 
calibration

▪ Transfer learning is a powerful nonlinear 
calibration technique 

▪ Enables creation of high-fidelity surrogates 
with low computational cost  

▪ Produces models that are predictive of Omega 
experiments 
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Experiment Yield

Low-Fi. DJINN
High-Fi. DJINN
Exp DJINN 1-19 (train)
Exp DJINN 20-23 (test)

Transfer learning creates models that are 
more predictive than simulations alone



Designing Opacity 
Experiments with Machine 
Learning
McClarren RG, Tregillis IL, Urbatsch TJ, Dodd ES. High-energy density 
hohlraum design using forward and inverse deep neural networks. 
Physics Letters A. 2021 Feb 22:127243.



Opacities are key ingredients in high-temperature, 
participating media radiative transfer simulations
• The opacity of a material gives the strength of 

the coupling between thermal radiation and 
matter.

• It is a function of the element, temperature, 
density, and the frequency (energy) of the 
radiation.

• In this figure we are looking at the specific 
opacity of nickel at a given temperature.

• The absorption opacity (solid curve) has 
features corresponding to atomic 
transitions.

• The scattering is a much simpler function 
of the radiation energy.

• The opacity indicates how strongly a material 
will absorb radiation and how well it radiates in 
equilibrium.

Nickel Freq. Depend. Opacities

LANL T-4 Opacity Data Tables
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Recent Measurements indicate that our theoretical 
understand of opacities is inadequate
• The amount of iron in the sun is an important 

factor in astronomers’ estimate of how stars 
evolve.

• There is a discrepancy between the sun’s 
observed behavior and that predicted by 
standard models.

• Experiments on the Z-machine at Sandia 
National Labs indicated that the opacity for 
iron is 30-400% higher than atomic physics 
predicts.

• The Z-machine produces high energy density 
conditions by passing >20 MA through a wire 
array.

• One researcher put it to me this way: “Either 
we know nothing about the sun or nothing 
about atomic physics.”

Image credits:  https://www.sandia.gov/news/publications/labnews/articles/2019/09-13/solar_model.html  OSTI.gov

http://OSTI.gov
http://OSTI.gov


The NIF laser can be used to confirm these findings.

• Rather than using the Z machine, a sample 
of iron (gray rectangle) can be placed inside 
a hohlraum.

• The sample heats up due to radiative 
transfer and then it is probed with a 
backlighter (bottom right image) to measure 
the opacity.

• The hohlraum is a bit more complicated 
because the sample needs to be shielded 
from the laser hot spots.

• This then makes the evolution of the system 
complicated by the fact that the hohlraum 
cannot close before the measurement is 
taken.

Image credits:  Perry, T. S., et al. (2017). High Energy Density Physics, 23, 223–227. 
Dodd, E. S., et al. (2018). Physics of Plasmas, 25(6), 063301–11.

TaggedPexperiment on another platform. The National Ignition Facility (NIF)
appears to be the best alternative to the Sandia machine for per-
forming these experiments. An effort, therefore, has been launched
in an attempt to replicate the Sandia experiments on the NIF.

2. Experimental approach

TaggedPOpacity experiments on lasers have a long history [1]. The tech-
niques are described in detail elsewhere [4,9], but the basic ele-
ments are shown in Fig. 1. The opacity sample is heated inside a
laser-driven hohlraum. The purpose of the hohlraum is to heat the
sample uniformly so that the sample stays in local thermodynamic
equilibrium (LTE). Baffles are placed in the hohlraum so that the
sample does not observe the laser spots on the hohlraum walls
directly. This also helps keep the sample in LTE. The opacity sample
is tamped with a low-Z material so that the opacity sample
expands uniformly. Additional laser beams are used to produce a
source of x-rays that backlights the sample. Some of the backlighter
x-rays pass directly through the sample and others go around the
sample. Both sets of x-rays fall on the same spectrally resolving
detector. By dividing the attenuated spectrum by the unattenuated
spectrum the spectrally dependent transmission of the sample can
be obtained.

TaggedPThe transmission is related to the opacity by the relation:

T hnð Þ¼exp $rLk hnð Þ½ &

where hn is the photon energy, r is the plasma mass density, L is
the path length through the sample, and k(hn) is the opacity
(mass absorption coefficient of X-rays) as a function of photon
energy. From this relationship the opacity k can be extracted as
k=¡ ln(T) / rL.

TaggedPOpacity experiments are difficult because of the stringent
requirements. In order to make meaningful comparison with
theory the opacity must be measured to an accuracy of §10%. This
requires that the sample must be fully characterized with the tem-
perature determined to §5% and the density to §20%. Furthermore,
the sample density and temperature must be uniform and shown to
be in LTE.

TaggedPTo gain confidence in an opacity measurement there are addi-
tional steps that can be taken. The opacity can be measured at sev-
eral temperatures and densities to understand the dependence of
the opacity on plasma conditions and compare this with theoretical
predictions. Because the transmission of the sample is exponentially
dependent on the opacity, multiple samples with different areal
densities must be measured at the same experimental conditions.
Spectral regions where the opacity is high require a thin sample.
Spectral regions where the opacity is low require a thick sample.
Finally, to have complete confidence in the measurement, the exper-
iment should be replicated on a different facility.

3. The backlighter

TaggedPIn developing a platform on NIF to replicate the Z opacity experi-
ments, the first step was to develop an appropriate backlighter.

TaggedPAt temperatures approaching 200 eV the opacity sample itself
emits acopious number of x-rays. In order to do a transmission mea-
surement the backlighting source must be significantly brighter
than the sample. Prior laser experiments used a quasi-continuum
from a high-Z element directly irradiated by laser light focused to a
tight spot. This approach would be very difficult on the NIF because
of the time required to reconfigure a large number of beams to give
a small focal spot. The quasi-continuum backlighter source was also
less than ideal because unresolved spectral structure in the back-
lighting source could compromise the opacity measurement. To
avoid these problems a direct drive plastic capsule backlighter has
been developed for NIF.

TaggedPThe backlighting source for the NIF opacity experiments is based
on the capsule backlighters developed at the Omega laser [10-12].
For the NIF backlighter a plastic shell 2mm in diameter and »20mm
in shell thickness was directly driven by 64 of the NIF beams. The
beams were not symmetrically distributed around the capsule but
were preferentially directed to the poles of the capsule. This pro-
duced a pancake implosion with enhanced x-ray emission along the
polar axis. Despite the 2-D nature of the capsule implosion the back-
lighter design was developed using 1-D HYDRA simulations. While it
is to be expected that there would be differences between the 1-D
simulations and the measurements the simulations were useful in
finalizing the initial design.

TaggedPThe actual performance of the capsule surpassed the predictions
of the simulations [13]. Figs. 2 and 3 show the measured output
from the capsule compared with simulation. As seen in Fig. 2 the
simulation and experiment were in reasonable agreement with
the peak rate of power emitted by the backlighter, but the width of
the pulse was about twice what was predicted. Provided the sample
conditions vary slowly compared to 350 ps, the wider pulse width is
not a problem but helps to increase the number of x-rays going to
the detector. The spectral output of the backlighter was also better
than what was predicted. Fig. 3 shows the predicted output spec-
trum compared with what was measured by the Dante instrument.
The spectral range of interest for the opacity measurements lies
between 500 and 2000 eV Much more of the spectral output was in
the range of interest than was predicted. This not only helps by pro-
viding more photons to the detector, but since the spectrum falls off
faster at high photon energies there will be less backgrounds on the
detector due to second order reflections from the x-ray diffraction
crystal in the spectrometer.

Fig. 1. Schematic of the proposed NIF opacity experiments. The sample is heated in a
laser driven hohlraum. X-rays from a backlighter capsule pass through the sample
onto a spectrally resolving detector. Another detector views the sample from the side
to measure the sample expansion.

Fig. 2. Comparison of predicted and measured backlighter flux. The measured output
was higher and broader than was predicted.
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(b) hohlraum-heated sample, and (c) capsule backlighter. A
spectrometer has been developed,9 which is similar to the
ones used in the Z experiments, and appears at the top of
Fig. 1 aimed downward. At the bottom of this figure is a cap-
sule that serves as a point-source backlighter, which has
been shown to be bright enough for opacity measurements at
160 eV.10 It is compressed by the 23! and 30! cones of the
NIF, and sits 2 cm below the hohlraum. The third part is the
hohlraum (black outline) and iron sample (blue rectangle)
that appears in the center of Fig. 1. The fabrication of the
NIF hohlraum has been discussed elsewhere.11 The modeling
used for the development of the hohlraum is the subject of
this paper and, in particular, the modeling methodology used
in the Lasnex12 calculations.

Although hohlraum-heating of opacity samples goes
back to NOVA, multiple hohlraum types were considered
during the NIF initial experiments. One of the important

results from the older work on NOVA was that the sample
had to be isolated from the NLTE laser-driven hotspots in the
hohlraum.2 A notional diagram of a standard ICF hohlraum is
shown in Fig. 2(a), where any object (such as a capsule) at the
center would be directly illuminated by the hotspots. The
hohlraums depicted in Figs. 2(b) through 2(f) show different
methods to shield the iron sample: (b) NOVA-style with baf-
fles attached to the wall; (c) “lampshades” detached from the
main wall; (d) the McFee-Nova hohlraum where the laser hot-
spots are isolated in separate chambers; and (e) the McFee-
lampshade variant. The final hohlraum, seen in Fig. 2(f), is
called the Apollo hohlraum, and is similar to the McFee-Nova
hohlraum in the use of separate chambers to isolate the laser-
driven gold. It is this hohlraum that is being used to collect
the transmission spectra against which the opacity models
will be tested. While other papers have discussed the experi-
mental development work13 and initial data,14 this paper
focuses on the modeling of the hohlraums in Fig. 2 and an
assessment of our ability to predict the experimental condi-
tions based on comparisons with data from the DANTE
instrument.15

As Refs. 13 and 14 discuss, this project’s ultimate goal
is to obtain iron opacity data with 10% error bars, which will
require knowing the electron temperature to 5% and the elec-
tron density to 10%. These conditions will be measured:
spectra from magnesium doped into the iron are taken and
analyzed with the iron for temperature; and framing camera
images measure the sample’s expansion for density. These
data are beyond the scope of the current paper and will be
published in subsequent papers by the team.

The iron plasma conditions and low background in the
spectrometer have driven the need for the complex geometries
depicted in Figs. 2(b) through 2(f). Of the hohlraums, the
Apollo best meets the requirements. The separate chambers
isolate the sample from the hotspots using less surface area
than Figs. 2(b), 2(c), and 2(e), which leads to higher radiation
temperatures. The different diameter laser entrance holes
(LEH) and a slanted wall were added to block gold emission
from the spectrometer’s line-of-sight and reduce background
in the measured spectra. Lastly, thick plastic windows were

FIG. 1. Diagram of experimental setup. The opacity experiments consist of
three main parts that have required development: (a) the spectrometer; (b) a
hohlraum to heat the sample material to Te " 160 eV; and (c) a bright source
to get the transmission measurements. This paper discusses the details for
modeling of the hohlraum (b).

FIG. 2. Multiple hohlraums were considered and fielded for the Opacity-on-NIF experiments. Adding internal structure to a hohlraum mesh can exacerbate tan-
gling during a calculation [see red circles, (a) and (b)], which has driven much of the modeling work presented in this paper.

063301-2 Dodd et al. Phys. Plasmas 25, 063301 (2018)

M-band fraction. Laser energy is absorbed at discrete laser
hotspots, which then emit NLTE radiation that is reabsorbed
by the gold not illuminated by the laser. Any non-
conservation in the hotspot would affect the fraction emitted
in the M-band. However, as shown in Fig. 6(b), the calcu-
lated M-band is within the error bars for both rezoning meth-
ods, and the results are in closer agreement than the total flux
in Fig. 6(a). The ALE and untangling algorithms can be
applied selectively to different parts of the mesh. The same
Lagrangian result is achieved if these algorithms are
excluded from the laser hot spots (cyan line), or if applied to
them (red line).

A second test of the rezoning was performed using one
of the Nova-style hohlraum calculations as part of the prepa-
ration for the first Opacity-on-NIF shots in January 2016, and
running it with different methodologies. Initially, Lasnex was
run constantly rezoning to the initial mesh (pseudo-Eulerian),
but one calculation was re-run as a Lagrangian problem as
described previously. When a comparison is made using the
synthetic DANTE post-processing, as in Fig. 7, there is little
difference between the two curves for the DANTE 1 diagnos-
tic. For these particular targets, a hole was cut into the side of
the hohlraum so that the DANTE 2 instrument could view the

interior portion created by the baffles. There was a difference
when comparing the temperature curves for the synthetic
DANTE 2, but this only occurred at early time, and both
curves reach nearly the same peak radiation temperature.
Despite these similarities, there is an important difference
shown in Fig. 8. Plotted in this figure is the average Z for
each zone at t¼ 3.0 ns. Figure 8(a) shows the pseudo-
Eulerian case, and the Lagrangian is shown in Fig. 8(b). The
outer laser-driven sections of the hohlraum fill with ablated
gold, while the interior portion shows less gold filling but has
been filled by the expanding sample. Dashed white lines cross
both plots and are set at the minimum radius of the laser-
heated gold bubble in Fig. 8(a). However, in Fig. 8(b), the

FIG. 7. The use of either pseudo-Eulerian (thick black line) or Lagrangian
(thin black line) rezoning strategies on a Nova-style hohlraum [Fig. 2(b)]
leads to almost identical DANTE 1 temperatures, and only a small differ-
ence at early time for DANTE 2. The presence, or lack (violet dashed line),
of the sample inside of the hohlraum makes a larger difference than the
rezone strategy (highlighted with red arrows).

FIG. 8. The choice of rezone strategy does make some difference for the
gold blow-off into the hohlraum. These figures of average Z correspond to
the runs shown in Fig. 7: (a) to the thick black lines and (b) to the thin ones.
However, Lasnex does not match the time of stagnation: both figures corre-
spond to 3.0 ns; the stagnation flash was measured in the experiment at
t¼ 2.5 ns. In general, design calculations of hohlraum experiments do not
match the stagnation time.

FIG. 6. The use of pseudo-Eulerian versus Lagrangian rezoning strategies was tested against one of the NIF vacuum hohlraum shots from 2009, Refs. 17 and
18. (a) The pseudo-Eulerian case (green solid line) agrees with data to within error bars for total flux. Lagrangian calculations (red and cyan lines) more closely
match previous work from Ref. 18 (blue dashed line). (b) Both methodologies agree with the measured M-band fraction within error bars. N.B. Lines plotted
directly over another line appear dashed.
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Simulations to design these experiments are expensive.
• Because we are dealing with experiments where solids are rapidly turned into an expanding plasma 

Lagrangian methods for fluid flow are commonly used.
• These simulations have the mesh move with the material as much as possible.

• The problem is that instabilities in the evolution cause the mesh to tangle, leading to negative 
volumes and causing the simulation to crash.

• Therefore, in parts of the simulation the material is allowed to flow through the mesh leading to 
Arbitrary Lagrangian-Eulerian (ALE) methods.

• It takes skill and knowledge of how a simulation should evolve to set parameters for mesh relaxation.
• If the ALE strategy is not properly set, the simulation crashes and the mesh needs to be fixed by 

hand (possibly every time time). 
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Arbitrary Lagrangian-Eulerian (ALE) 
Hydrodynamics 

•  In simulating hydrodynamics, especially where multiple materials 
are present, the arbitrary Lagrangian-Eulerian (ALE) method is a 
widely used method. 

•  The method combines the two approaches 
⇒ Allows the mesh to move with the flow (Lagrangian) 

•  Preserves numerical interfaces 
⇒ Keep the mesh fixed (Eulerian) 

•  Numerical diffusion in solution 

•  Combine the two by evolving solution with a moving mesh and 
performing an Eulerian relaxation step 
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The Problem with ALE 

•  Ideally, one would evolve the simulation without any relaxation to 
preserve material interfaces.  

•  This can lead to “mesh tangling” that crashes the simulation. 

•  Therefore, the relaxation is used to prevent this sort of tangling.  

•  Over-relaxation can lead to numerical errors and loss of accuracy. 
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A Data Analytics Approach to Improving Simulation Workflow

Even when the mesh geometry is not distorted, simulations can fail when physical quantities become
distorted. A well-known example of this is anomalous hot spots, as illustrated in Figure 1(b), which
can unexpectedly occur when a physical quantity, such as energy density, spikes to unphysical levels
within a mesh zone and eventually causes the simulation to halt. Which failure afflicts a simulation code
depends on how the ALE method was implemented, i.e., more Lagrangian versus more Eulerian. For
KULL, a WCI code for modeling high energy density physics, it tends to perform Lagrangian as long as
possible, which results in more mesh zone tanglings. Whereas for ALE3D, a WCI code for modeling fluid
and elastic-plastic response of materials, it tends to relax the mesh to Eulerian when necessary, which
produces less mesh zone tanglings but can still suffer from anomalous hot spots.
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(b) Anomalous hot spots

Figure 1: Illustrations of simula-
tion failures in ALE workflows.

Once a simulation failure occurs, the manual tuning process that
we aim to semi-automate proceeds as follows. First, a user examines
the simulation state, which includes both mesh quality metrics (e.g.,
skew and aspect ratio) and computed physical quantities (e.g., pressure
and energy), to determine what caused the failure. Once the cause
of failure is identified, then a user relies on his/her knowledge and
experience to determine which parameters to adjust to avoid this failure.
In other words, that knowledge and experience provides a user with a
statistical model of how to avoid that failure given the conditions of the
simulation state. Hence, we propose to codify that user knowledge and
experience through machine learning to derive those statistical models.

Machine learning has been applied with success to failure prediction
in other problem domains. For example, supervised learning has been
used for predicting faults in motor vehicles [36], computer hardware [30],
and industrial chemical processes [6]. Machine learning has also been
applied to failure avoidance in domains such as robotized assembly
tasks [25] and high-performance computing [23].

Preliminary Work: Our ongoing preliminary work in developing LAGER [12, 29] for KULL shows
tremendous promise for applying machine learning algorithms to avoid mesh zone tanglings. The learning
algorithm employed by LAGER is a random forest [5], which constructs a multitude of decision trees,
where each tree is based on a random subset of features from the simulation state (Figure 2(a)). Random
forests are based on a highly accurate ensemble learning algorithm, and have numerous advantages,
including the ability to rank features based on importance. We decided to use a zone’s geometric features
(mesh quality metrics) to determine how close it is to tangling (Figure 2(b)). To create the training data,
we collected feature data on many zones at different numbers of simulation cycles before they tangle. In
order to predict tangling events, we constructed a regression function (linear, logistic, and piecewise-linear
cosine functions) based on assigning a value ' to each zone, which expresses how close that zone is to
tangling. During the Eulerian relaxation step, we calculate the desired motion of each node by using the
average of the ' values predicted by the random forest for each zone adjacent to the node.

We applied LAGER on three well-known test problems: helium bubble, shock tube (Figure 2(c)),
and simple hohlraum, and it successfully prevented certain zone tanglings at different mesh resolutions.
In simulations where tangling is not encountered, small zones may cause the simulation time step to
become small – essentially preventing the simulation from progressing. When trained to prevent this
from happening, LAGER was successful in maintaining a large simulation time step. To compare with
experimental results, we extracted the material boundary (red line) and overlaid on experimental photos
for a shock tube to qualitatively demonstrate the preserved physics (Figure 2(d)).

Research Activities: We will investigate supervised learning algorithms [11, 28] to develop classifiers
that can predict simulation failures by using the simulation state as learning features. Building upon
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in other problem domains. For example, supervised learning has been
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and industrial chemical processes [6]. Machine learning has also been
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Too much relaxation, however, leads to errors. 

• D

• When the mesh is too constrained, the interface between materials will not be 
adequately captured and the solution develops numerical errors. Texas A&M Nuclear Engineering
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The Problem with ALE 

•  Ideally, one would evolve the simulation without any relaxation to 
preserve material interfaces.  

•  This can lead to “mesh tangling” that crashes the simulation. 

•  Therefore, the relaxation is used to prevent this sort of tangling.  

•  Over-relaxation can lead to numerical errors and loss of accuracy. 
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Despite simulation challenges there are a variety of 
parameters we seek to optimize in our designs.
• To field an experiment to measure the iron opacity 

we want a hohlraum that can deliver
– A high temperature for the sample
– A flat temperature in time

• For the hohlraum there are four parameters we consider 
that adjust the nominal hohlraum (shown top right):

• A scale parameter that sets the overall size of the 
hohlraum by scaling the measurements.

• A sc_length (sample chamber length) parameter 
that varies Zbaf while keeping Rapt/Zbaf constant.

• An Rapt (aperature radius) parameter for scaling the 
size of the aperture between the sample and laser 
illumination chambers independent of Zbaf.

• Finally, the length of the laser pulse (pulse_length) 
scales the laser pulse length in time but keeps the 
energy delivered to be a constant 250 kJ.

McClarren RG, Tregillis IL, Urbatsch TJ, Dodd ES. High-energy density hohlraum design using forward and inverse deep neural networks. 
Physics Letters A. 2021 Feb 22:127243.

backlighter measurement and, most importantly,
it had to be in local thermodynamic equilibrium
(LTE). As development of the platform continues40

toward the higher temperatures, avoiding non-LTE
and target gradients becomes increasingly di�cult,
and it is clear that other considerations, such as
emission from the hohlraum contributing to spec-
trometer background, tamper behavior, and drive45

dependence, become important. An important goal
of the Opacity-on-NIF campaign, and others [4],
is to give another modality for measuring the iron
opacities obtained on the Z-pinch platform [5, 6].

Despite the Gadarene rush to apply machine50

learning to all manner of scientific problems [7],
the understanding of simulation outputs is a par-
ticularly fruitful application. There has been suc-
cess in the high-energy density physics community
in using machine learning to understand the rela-55

tionships between experiment and simulation. This
includes the post-shot analysis of NIF experiments
[8], transfer learning to obtain better predictions
of experimental outputs [9], and models to predict
ICF fusion yields [10]. The goal of our e↵ort is to60

use data from simulations to train machine learn-
ing models to predict the performance of a given
hohlraum design in an experiment. We accomplish
this using deep neural networks to learn a forward
model that predicts experimental diagnostics given65

a hohlraum geometry and laser pulse profile and an
inverse model that given the experimental outputs
attempts to infer the hohlraum geometry and laser
pulse. In this sense we hope that the models “learn”
the relationships between design parameters so that70

the design space can be rapidly searched for candi-
date designs, something that would be prohibitively
expensive using the simulation code. These can-
didate designs can then be fed into the simulation
code to confirm the prediction of the machine learn-75

ing model.
In opacity experiments on the NOVA laser, it was

found that internal ba✏es were required to shield
the sample from the laser spots [11]. Our work fo-
cuses on such NOVA-style hohlraums from the early80

development of Opacity-on-NIF hohlraums[12, 3].
The following section describes the set of training
simulations for the model. We then develop a ma-
chine learning model to predict the peak temper-
ature of the target and its time profile in Section85

3, and discuss the results and characteristics of the
models in Section 4. In Section 5, we scope out
how the hohlraum design e↵orts might be a↵ected
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Our simulation strategy followed the procedure
detailed in [3]. The simulations utilized two laser
sources, representing NIF beam cones oriented at
44.5� and 50� from the hohlraum axis. Both source95

descriptions incorporated NIF phase-plate data in
order to reproduce as closely as possible an empir-
ical beam intensity pattern in the plane of best fo-
cus (i.e., transverse to the beam propagation direc-
tion). The central elliptical high-intensity regions100

had semi-axes 635 ⇥ 367 µm and 593 ⇥ 343 µm,
while the beam pointings were such that the points
of best focus landed on the hohlraum axis 180 and
20 µm outside the laser entrance hole (LEH) for
the 44.5� and 50� beams, respectively. Each laser105

source delivered 125 kJ to the target.

2.1. Synthetic Dante Radiation Temperature Data

A Dante instrument comprises a multichannel X-
ray diode array for detecting and quantifying time-
dependent radiant fluxes over a wide range of en-110

ergies [13, 14, 15, 16, 17]. A critical diagnostic for
many laser hohlraum experiments, Dante is primar-
ily used to obtain a measure of the time-dependent
radiation temperature (Tr(t)). This Dante-derived
quantity is frequently the benchmark against which115

radiation-hydrodynamic hohlraum simulations are
calibrated [3, 18, 19]. We have adopted a similar
approach for the current study.

The NIF Dante instruments can field up to 18
channels [3, 18]. In aggregate, the channels span120

a domain covering approximately 20 eV - 20 keV
[14, 17]. The individual channel response functions
typically vary over several orders of magnitude in
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Figure 2: The nominal (pulse length = 1) laser drive in the
rad-hydro simulations delivered 250 kJ to the target, split
evenly between the 44.5� and 50� beams, over 3 ns.

nominal hohlraum corresponds to the set of values
{1.0, 1.0, 1.0, 1.0}.

The parameter combinations utilized for this225

study are shown in Figure 3. The simulations se-
lected for our ensemble simulations, or run set, were
at the corners of the 4-D hypercube of the parame-
ter space for all of the parameters except the sample
chamber length, and at the middle of each face of230

this cube. In total, there were 46 simulations that
ran to completion. Arbitrary Lagrangian-Eulerian
(ALE) laser hohlraum simulations require care-
ful attention to the mesh evolution, necessitating
the development of time- and location-dependent235

strategies for mitigating potential problems (e.g.,
“tangling” that results in a negative zone volume).
These strategies must strike a balance that maxi-
mizes computational robustness without sacrificing
physics fidelity [3]. Consequently, in order to obtain240

the best results, these strategies tend to be hand-
tuned to specific simulations. In practice this is
extremely human-resource intensive and therefore
infeasible for our suite of many dozens of separate
simulations. We opted to develop a single robust245

strategy based on the nominal hohlraum setup and
then apply it throughout the suite, acknowledging
a priori that some fraction of the parameter varia-
tions would inevitably fail as mesh issues arose at
times or locations beyond the scope of this strategy.250

The simulations that failed are denoted by an “X”
marker in Figure 3.

When defining the set of parameter values for
the suite, our requirements were fourfold. First, we
sought to sample a wide space that could unambigu-255

ously identify trends, ideally beyond a simple linear

Figure 3: Values of the 4 design parameters in the simulation
ensemble. Circles indicate simulations that completed, X’s
denote runs that failed.

extrapolation nearby the nominal calculation. Sec-
ond, within that range, we sought a striding that
was simultaneously amenable to sensitivity stud-
ies (e.g., parameter values of 1.0 and 1.05) with-260

out wasting resources on e↵ectively indistinguish-
able simulations. (We took a conservative approach
to the latter point, as quantitative code verification
studies relevant to these particular simulations are
quite limited.) Third, the parameter space had to265

avoid, to the largest feasible extent, large-scale fail-
ure of simulations owing to the ALE strategy issues
described previously. Fourth, the simulation suite
had to be compatible with the available computa-
tional and human resources.270

3. Forward and Inverse Deep Neural Net-
works

From each simulation in the ensem-
ble the output we receive is the Dante
measurement of the radiation tempera-275

ture as a function of time, TD(t; ✓), where
✓ = (scale, sc length, Rapt, pulse length).
The times output by the simulation are not at
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• Here we show all of the 2-D projections of the 4-D 
space

• O is a run that completed
• X is a run that failed
• The red triangle was a test point (stay tuned)
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Our output of interest is the time profile of the radiation 
temperature of the hohlraum.
• Dante is a diagnostic device at NIF that 

measures the radiative field of an experiment.
• The radiative filed strength is related to the 

radiation of a blackbody at equilibrium via the 
“radiation temperature.” 

• Our simulation code can also predict the 
response of this diagnostic.

• In a typical simulation there is a rise in the 
temperature associated with the increasing laser 
energy.

• This is followed by a slowly varying plateau and a 
cooling phase occurring after the laser turns off.

• It is during the plateau that the opacity 
measurement would be taken.

• From the simulations we observe that a smaller 
hohlraum leads to a higher temperature.
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The sample chamber length can flatten the profile and 
shorter laser pulses increase the temperature.
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• The Rapt parameter had negligible impact on the Dante temperature profile



To optimize our designs without more simulations, we 
built a neural network to predict the Dante output.
• We recorded the Dante temperature at 50 different time points for each 

simulation.
• We then trained a feed forward neural network to learn the mapping from the 4 

parameters to the temperatures at the 50 times.
• That is, we input 4 numbers and get out 50 numbers.

• The network has 4 hidden layers: 
• A dense layer with 8 hidden units
• A dense layer with 100 hidden units
• A dense layer with 50 hidden units
• A convolution layer with a kernel size of 3

• This architecture was chosen (after some exploration) with the following 
principles in mind:

• Make a preliminary computation on the inputs,
• Expand the result to a large number of units and then,
• Map that result smoothly to the output using a convolution.

• We also used dropout to avoid overfitting. This randomly turns off connections 
during training the model.

Simulation Inputs (4-D)

Simulation Outputs  
(50 time points)

backlighter measurement and, most importantly,
it had to be in local thermodynamic equilibrium
(LTE). As development of the platform continues40

toward the higher temperatures, avoiding non-LTE
and target gradients becomes increasingly di�cult,
and it is clear that other considerations, such as
emission from the hohlraum contributing to spec-
trometer background, tamper behavior, and drive45

dependence, become important. An important goal
of the Opacity-on-NIF campaign, and others [4],
is to give another modality for measuring the iron
opacities obtained on the Z-pinch platform [5, 6].

Despite the Gadarene rush to apply machine50

learning to all manner of scientific problems [7],
the understanding of simulation outputs is a par-
ticularly fruitful application. There has been suc-
cess in the high-energy density physics community
in using machine learning to understand the rela-55

tionships between experiment and simulation. This
includes the post-shot analysis of NIF experiments
[8], transfer learning to obtain better predictions
of experimental outputs [9], and models to predict
ICF fusion yields [10]. The goal of our e↵ort is to60

use data from simulations to train machine learn-
ing models to predict the performance of a given
hohlraum design in an experiment. We accomplish
this using deep neural networks to learn a forward
model that predicts experimental diagnostics given65

a hohlraum geometry and laser pulse profile and an
inverse model that given the experimental outputs
attempts to infer the hohlraum geometry and laser
pulse. In this sense we hope that the models “learn”
the relationships between design parameters so that70

the design space can be rapidly searched for candi-
date designs, something that would be prohibitively
expensive using the simulation code. These can-
didate designs can then be fed into the simulation
code to confirm the prediction of the machine learn-75

ing model.
In opacity experiments on the NOVA laser, it was

found that internal ba✏es were required to shield
the sample from the laser spots [11]. Our work fo-
cuses on such NOVA-style hohlraums from the early80

development of Opacity-on-NIF hohlraums[12, 3].
The following section describes the set of training
simulations for the model. We then develop a ma-
chine learning model to predict the peak temper-
ature of the target and its time profile in Section85

3, and discuss the results and characteristics of the
models in Section 4. In Section 5, we scope out
how the hohlraum design e↵orts might be a↵ected
by including the theoretical sample opacities and

sensitivities in the model.90
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Figure 1: The nominal hohlraum design used in this study.
In the terminology of this report this hohlraum has scale =
sc length= Rapt = 1. A sample is shown centered at Z = 0,
and the laser beams are shown as red lines for illustrative
purposes.

Our simulation strategy followed the procedure
detailed in [3]. The simulations utilized two laser
sources, representing NIF beam cones oriented at
44.5� and 50� from the hohlraum axis. Both source95

descriptions incorporated NIF phase-plate data in
order to reproduce as closely as possible an empir-
ical beam intensity pattern in the plane of best fo-
cus (i.e., transverse to the beam propagation direc-
tion). The central elliptical high-intensity regions100

had semi-axes 635 ⇥ 367 µm and 593 ⇥ 343 µm,
while the beam pointings were such that the points
of best focus landed on the hohlraum axis 180 and
20 µm outside the laser entrance hole (LEH) for
the 44.5� and 50� beams, respectively. Each laser105

source delivered 125 kJ to the target.

2.1. Synthetic Dante Radiation Temperature Data

A Dante instrument comprises a multichannel X-
ray diode array for detecting and quantifying time-
dependent radiant fluxes over a wide range of en-110

ergies [13, 14, 15, 16, 17]. A critical diagnostic for
many laser hohlraum experiments, Dante is primar-
ily used to obtain a measure of the time-dependent
radiation temperature (Tr(t)). This Dante-derived
quantity is frequently the benchmark against which115

radiation-hydrodynamic hohlraum simulations are
calibrated [3, 18, 19]. We have adopted a similar
approach for the current study.

The NIF Dante instruments can field up to 18
channels [3, 18]. In aggregate, the channels span120

a domain covering approximately 20 eV - 20 keV
[14, 17]. The individual channel response functions
typically vary over several orders of magnitude in
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We used Leave-One-Out (LOO) Cross-Validation to test 
this “forward” model.
• Given the small dataset that we had to work with, 

we tested our model using Leave-one-out cross-
validation

• Train the NN using 45/46 simulations, and 
predict the response for the 46th.

• The figure shows the result from applying this 
across the data set

• The predicted value from the NN model is the 
x-position.

• The true value is the y-position.
• A perfect model would have all of the points 

fall on the x=y line.
• We estimate a mean-absolute error from the 

prediction to be 0.003 keV.
• We call this model a forward model because it 

maps parameters to experimental measurements.
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We can use the forward model to predict what the result 
of a crashed simulation or new simulations would be.

• We took the settings for one of the simulations that 
crashed due to mesh tangling and used the model to 
predict the behavior.

• This data was not used to train the model, but we can 
see that it is accurately predicting the behavior of the 
solution time that did complete.

• It predicts that the peak temperature occurs before 2 ns.
• We also used the model on a novel set of parameters 

designed to make the flattest, longest possible plateau 
at 0.275 keV.

• This was the red triangle on the parameter plot 
before.

• We can compare the model to the results of a simulation 
for this case.

• A slightly higher temperature is observed in the 
model.

• What about this “inverse” model?
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The inverse model attempts to map a Dante profile to the 
input parameters that produced it.

• A designer would like to work in the opposite direction:
• Specify a desired temperature profile and have the model 

indicate what parameters would produce it.
• This could be done via optimization with the forward model: set an 

object and explore the design space.
• With neural networks (especially with dropout) we can try to directly 

learn this inverse map.
• One problem is that the map will not be unique: two sets of inputs 

can give the same (or nearly the same) output. 
• Dropout can be used in the prediction to add noise (uncertainty) to 

the inverse models prediction.
• Every evaluation takes a slightly different path through the 

network.
• The inverse network is “free” to evaluate, so we take 1000 

evaluations and look at the distribution.
• The network has roughly the opposite structure to the forward 

network.
Simulation Inputs (4-D)

Simulation Outputs  
(50 time points)
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ICF fusion yields [10]. The goal of our e↵ort is to60

use data from simulations to train machine learn-
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inverse model that given the experimental outputs
attempts to infer the hohlraum geometry and laser
pulse. In this sense we hope that the models “learn”
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purposes.

Our simulation strategy followed the procedure
detailed in [3]. The simulations utilized two laser
sources, representing NIF beam cones oriented at
44.5� and 50� from the hohlraum axis. Both source95

descriptions incorporated NIF phase-plate data in
order to reproduce as closely as possible an empir-
ical beam intensity pattern in the plane of best fo-
cus (i.e., transverse to the beam propagation direc-
tion). The central elliptical high-intensity regions100

had semi-axes 635 ⇥ 367 µm and 593 ⇥ 343 µm,
while the beam pointings were such that the points
of best focus landed on the hohlraum axis 180 and
20 µm outside the laser entrance hole (LEH) for
the 44.5� and 50� beams, respectively. Each laser105

source delivered 125 kJ to the target.

2.1. Synthetic Dante Radiation Temperature Data

A Dante instrument comprises a multichannel X-
ray diode array for detecting and quantifying time-
dependent radiant fluxes over a wide range of en-110

ergies [13, 14, 15, 16, 17]. A critical diagnostic for
many laser hohlraum experiments, Dante is primar-
ily used to obtain a measure of the time-dependent
radiation temperature (Tr(t)). This Dante-derived
quantity is frequently the benchmark against which115

radiation-hydrodynamic hohlraum simulations are
calibrated [3, 18, 19]. We have adopted a similar
approach for the current study.

The NIF Dante instruments can field up to 18
channels [3, 18]. In aggregate, the channels span120

a domain covering approximately 20 eV - 20 keV
[14, 17]. The individual channel response functions
typically vary over several orders of magnitude in
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We test the inverse model with the output of a forward simulation.

• Using the forward model we used standard 
optimization to find a set of inputs that should give a 
flat profile at 0.275 keV.

• We then ran a new simulation using this hohlraum 
and gave the outputs to the inverse model.

• The inverse model results are shown in the figure. 
• The error bars are the 95% confidence intervals of 

the 1000 evaluations.
• The stars are the actual parameter values used 

in the simulation.
• The dots are the medians of the inverse model 

evaluations.
• The Rapt parameter has a large uncertainty because 

it doesn’t really matter.
• The other parameters are close to their true values.
• The inverse model gives a good starting point for a 

design study. 
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Using these models allows the optimization of the most 
important quantity, the uncertainty in the iron opacity.

• Given the theoretical behavior of the iron opacity (left), one can use different design 
parameters to minimize the uncertainty in the opacity measurement (Δσ).

Table 1: (Energy, Opacity) sets of the two local opacity min-
ima for a range of material temperatures. All temperatures,
T , and energies, E, are in eV; opacities, �, are in cm2/g.

T E1 �1 E2 �2

250 853 48.7 1183 39.8
270 882 40.7 1185 24.9
275 889 38.7 1186 21.2
280 906 38.3 1207 21.0
300 972 36.5 1290 20.0
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Figure 8: Iron opacity at three di↵erent temperatures and a
density of 0.04 g/cm3.

diation transport methods typically use the Rosse-
land opacity average, which gives more weight to480

the lower opacities. Extracting the two sets of min-
ima of the three opacity curves, and interpolating
to find corresponding minima at our model temper-
atures of 270 and 280 eV, we obtain the two sets of
opacity minima as shown in Table 1.485

Using Table 1, we construct Table 2 showing vari-
ations in the minimum opacity and its location on
the energy spectrum.

Without opacities in the parameterization of the
statistical model, the sc length=1.25 hohlraum490

clearly is the better choice with its sample tem-
perature varying only 10 eV. However, exploring a
few corresponding spectral opacities demonstrates
more complexity. The sc length=1.25 hohlraum
has smaller opacity variation too (see �� columns495

in Table 2), which is good, but its energy blur
around 800 eV is almost as large as that of the
sc length=0.8 hohlraum, and, around 1200 eV,
the energy blur is much worse than that of the
sc length=0.8 hohlraum.500

Therefore, if future hohlraum models incorporate
some degree of the theoretical opacities, the design-

ers may be able to optimize hohlraum design to
minimize sensitivity in the opacity measurements
at the spectral ranges of interest. This approach505

assumes that the theoretical opacities bear some
resemblance to the experimentally observed opaci-
ties, and of course the reason for doing the opacity
experiments in the first place is to validate the the-
oretical opacity data.510

6. Conclusion

We have demonstrated the training and use of
forward and inverse deep neural network models to
predict hohlraum behavior and to design hohlraums
for HEDP and ICF experiments. We also analyzed515

iron opacity data for the modeled conditions and
motivated a future inclusion of theoretical opacity
data as priors in the models.

With an inexpensive neural network model for
the Dante response, a panoply of tools become520

available to an experiment designer that would
be prohibitively costly using traditional simula-
tion tools. These include Bayesian optimiza-
tion/calibration [33, 34] of desired temperature
profiles based and introducing robustness metrics525

based on large numbers of perturbations [35]. We
believe that exploring the application of these
methodologies will be fertile ground for future re-
search.

Acknowledgement530

The authors would like to thank the anonymous
reviewer for the insightful comments that led to a
much improved final version. This work was sup-
ported by the US Department of Energy through
the Los Alamos National Laboratory. LANL is op-535

erated by Triad National Security, LLC, for the Na-
tional Nuclear Security Administration of the US
DOE (Contract No. 89233218CNA000001), LA-
UR-20-26126.

References540

[1] R. P. Drake. High-Energy-Density Physics: Founda-

tion of Inertial Fusion and Experimental Astrophysics.
Graduate Texts in Physics. Springer International Pub-
lishing, 2018.

[2] M. E. Martin et al. An automated design process for545

short pulse laser driven opacity experiments. High En-

ergy Density Physics, 26:26–37, March 2018.
[3] E. S. Dodd et al. Hohlraum modeling for opacity ex-

periments on the national ignition facility. Physics of

Plasmas, 25(6):063301, 2018.550

8

Table 2: Variation in opacity and energy near the local opacity minima at 800 and 1200 eV for two di↵erent hohlraum
configurations.

hohlraum
�� (cm2/g) �E (eV)

near 800 eV near 1200 eV near 800 eV near 1200 eV
sc length= 0.8 8 15 29 2
sc length= 1.25 2.4 3.9 24 22

[4] D. Hoarty et al. A proposal to measure iron opacity at
conditions close to the solar convective zone-radiative
zone boundary. High Energy Density Physics, 32:70–
76, 2019.

[5] J. E. Bailey et al. A higher-than-predicted measurement555

of iron opacity at solar interior temperatures. Nature,
517(7532):56–59, 2015.

[6] T. Nagayama et al. Systematic study of l-shell opac-
ity at stellar interior temperatures. Phys. Rev. Lett.,
122:235001, Jun 2019.560

[7] D. D. Vento and A. Fanfarillo. Traps, pitfalls and mis-
conceptions of machine learning applied to scientific dis-
ciplines. In Proceedings of the Practice and Experience

in Advanced Research Computing on Rise of the Ma-

chines (learning), pp. 1–8. 2019.565

[8] K. D. Humbird et al. Parameter inference with deep
jointly informed neural networks. Statistical Analysis

and Data Mining: The ASA Data Science Journal,
12(6):496–504, 2019.

[9] K. D. Humbird et al. Transfer learning to model inertial570

confinement fusion experiments. IEEE Transactions on

Plasma Science, 2019.
[10] P. Hatfield et al. Using Sparse Gaussian Processes for

Predicting Robust Inertial Confinement Fusion Implo-
sion Yields. IEEE Transactions on Plasma Science,575

48(1):14–21, January 2020.
[11] T. S. Perry et al. Absorption experiments on x-ray-

heated mid-Z constrained samples. Physical Review E,
54(5):5617–5631, November 1996.

[12] T. S. Perry et al. Replicating the Z iron opacity ex-580

periments on the NIF. High Energy Density Physics,
23:223–227, June 2017.

[13] H. N. Kornblum et al. Measurement of 0.1–3-kev x rays
from laser plasmas. Review of Scientific Instruments,
57(8):2179–2181, 1986.585

[14] E. L. Dewald et al. Dante soft x-ray power diagnos-
tic for national ignition facility. Review of Scientific

Instruments, 75(10):3759–3761, 2004.
[15] K. M. Campbell et al. Omega dante soft x-ray power

diagnostic component calibration at the national syn-590

chrotron light source. Review of Scientific Instruments,
75(10):3768–3771, 2004.

[16] C. Sorce et al. Soft x-ray power diagnostic improve-
ments at the Omega laser facility. Review of Scientific

Instruments, 77(10):10E518, 2006.595

[17] J. L. Kline et al. The first measurements of soft x-ray
flux from ignition scale hohlraums at the national igni-
tion facility using dante (invited). Review of Scientific

Instruments, 81(10):10E321, 2010.
[18] T. M. Guymer et al. Quantifying equation-of-state and600

opacity errors using integrated supersonic di↵usive radi-
ation flow experiments on the national ignition facility.
Physics of Plasmas, 22(4):043303, 2015.

[19] C. Fryer et al. Uncertainties in radiation flow experi-
ments. High Energy Density Physics, 18:45 – 54, 2016.605

[20] M. J. May et al. Uncertainty analysis technique for
Omega dante measurements. Review of Scientific In-

struments, 81(10):10E505, 2010.
[21] M. J. May et al. Source geometric considerations for

Omega dante measurements. Review of Scientific In-610

struments, 83(10):10E117, 2012.
[22] A. Seifter and G. A. Kyrala. Di↵erent methods

of reconstructing spectra from filtered x-ray diode
measurements. Review of Scientific Instruments,
79(10):10F323, 2008.615

[23] R. E. Olson et al. X-ray conversion e�ciency in vacuum
hohlraum experiments at the national ignition facility.
Physics of Plasmas, 19(5):053301, 2012.

[24] D. H. Munro. Yorick: An interpreted language. Techni-
cal Report UCRL-CODE-155996, Lawrence Livermore620

National Laboratory, Livermore, CA, USA, 2005.
[25] I. L. Tregillis. Averaging techniques for simulated dante

temperatures. Technical Report LA-UR-14-26986, Los
Alamos National Laboratory, Los Alamos, NM, USA,
2014.625

[26] M. Abadi et al. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. Software available
from tensorflow.org.

[27] R. G. McClarren. Uncertainty Quantification and

Predictive Computational Science: A Foundation for630

Physical Scientists and Engineers. Springer Interna-
tional Publishing, 2018.

[28] K. Humbird et al. Using deep neural networks to aug-
ment NIF post-shot analysis. Bulletin of the American

Physical Society, 62, 2017.635

[29] K. D. Humbird et al. Deep neural network initializa-
tion with decision trees. IEEE transactions on neural

networks and learning systems, 30(5):1286–1295, 2018.
[30] Y. Gal and Z. Ghahramani. Dropout as a bayesian ap-

proximation: Representing model uncertainty in deep640

learning. In international conference on machine learn-

ing, pp. 1050–1059, 2016.
[31] T. Perry et al. Replicating the Z iron opacity experi-

ments on the nif. High Energy Density Physics, 23:223–
227, 2017.645

[32] T. Perry et al. Progress toward NIF opacity measure-
ments. High Energy Density Physics, 35:100728, 2020.

[33] B. P. Carlin and T. A. Louis. Bayesian methods for

data analysis. CRC Press, 2008.
[34] H. Stripling et al. A calibration and data assimilation650

method using the bayesian mars emulator. Annals of

Nuclear Energy, 52:103–112, 2013.
[35] J. L. Peterson et al. Zonal flow generation in iner-

tial confinement fusion implosions. Physics of Plasmas,
24(3):032702, 2017.655

9



There are many exciting challenges in HED Science.
• Many uncertainties that need to be dealt with.
• These problems require sophisticated computational science to solve.
• There are opportunities to apply machine learning to solve real problems.
• Data-driven and data-informed engineering are welcome to address some of these 

challenges.
• I also think that the techniques we have developed to solve these problems can be 

used in a variety of applications not just at these extreme conditions.

Thank you for your attention!


