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In case you want to hear more from me, | have several books
available:

Uncertainty Quantification and Predictive Computational Science from
Springer https://www.springer.com/gp/book/9783319995243

Computational Nuclear Engineering and Radiological Science Using

Python from Academic Press hiip:/a.co/2HdisVb

Radiation andYou is a children’s book (ages 7-13) with lots of pictures
about how radiation is all around us and how it is used. It is available
from Orion Scientific Publishing http://a.co/92FpGeK
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11.4.1 Power Law Models
Itis also possible fit power-law models using similar manipulations. The function
f=ax
can be transformed to a linear, additive model by writing a function
In f(x) = Ina+bln(x).

that is we take the natural logarithm of x and f(x) to get a linear function. Such power laws
appear in all kinds of natural data. One, perhaps unexpected, place a power law appears is
in the number of words used with a given frequency in language. In English it has been con-
jectured that the 100 most common words make up 50% of all writing, Another way to look
at this, is that there are a small number of words that are used very frequently (e.g, the, a,
and, etc), and many words that are used very infrequently (e.g consanguine or antideriva-
tive). Therefore, if we look at any work of literature we expect there to be thousands of words
used one or two times, and a few words used thousands of times, To demonstrate this we can
look at the word frequency distribution for that venerable work of literature Moby Dick. The
next figure is a histogram of word frequency in Moby Dick. For example, there are approxi-
mately 10° words that are only used once in the book out of the 17,227 unique words in the
book.

Number of Words nFrequency Bin
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‘The word “the” was used over 10,000 times,
For this data, we want to fit a model as

Number of words with a given frequency = a(Word Frequency)”
This will require us to make the righthand side of the least square equations equal to the

logarithm of the dependent variable, and place the logarithm of the independent variable in
the data matrix. The resulting model for Moby Dick is

Number of words with a given frequency =7.52(Word Frequency)~**"

fcClamren

achine

Learning for
Engineers

Usirag D253 to Scdue Fronlems for
Phya ¢

(o)

Radiation and You

bk v v u e cn dreucd wa dl

bt G M e, h)
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Thuce nuclar-power
Nuclear power can also be used to power ships and other types  ships, USS Enterprise (bot-
of transportation. In the navy, nuclear reactors power sub- tom), b
marines and other ships, such as arcraft carriers. The use of i

nuclear reactors in ships diterranean Sea. Sailors
needing more fuel. Some nuclear submarines do not need to be
refuc]
Also, because nuclear reactors do not need oxygen to produce
energy, these submarines ca
x energy is aso used to power spacecraft. Many of the
spacecraft sen out from Earth have radioactive atoms. When
these atoms decay, heat s produced, and this heat is used to pro-
duce electricity, like a nuclear battery: A common radioactive
atom in these nuclear batteries is plutonium-238, which is pro-
duced in nuclear reactors. Nuclear batterics can give power
decades. The Voyager probes have been working for

allows them to go a long time without

g o form Einsteins
d for 25 years—the fiel lasts longer than the ship itself famous equation: £ = me?

stay undervater for a long time.
Nucle

b
enifttrveled from Eareh to

years on nuclear batteries and still send messages to Earth Pluto in just ove nine years.
The spacecraft was powered
by a pluconium-238 bate
“The misson to Pluto was
EA
- This s a picture ofthe
USS Michi clear

i
powered submarine, while
3 dock. This subrmarine
d sty atsea for 90 days.

“This lutoniom-238 was
created for a nuclar btery:
Teis glowing because the
radicion it prodces mkes
ithor.
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32 Copulas 6

In Figure 3.4 two uniform distributions are joined by a r-copula with = 0.8 are
shown. Notice how there is a clear correlation between the two random variables
and, as a result, a clustering in the comers of the distributions. Also, there are more
samples farther off the diagonal than in the normal case. This is due to the fact
that the r-distribution with a small value of v has more kurtosis than a normal dis-
tribution. Therefore, it is more likely to get anti-correlated values as samples. The
fact that the r-copula has tail dependence can also be observed in this figure in the
concentration of points near the lower-left and upper-right comners.

‘The tail dependence can be seen even more clearly if we use a r-copula to couple
two normal random variables. In Figure 3.5 the 1-copula and normal copulas are
compared. Here, we see that the tail dependence appears as the area that the samples
occupy narrowing as the upper right and lower left comers are approached in the 1~
copula, but this not present in the normal copula. This discrepancy in the tails exists
even though both distributions have the same value for 7 and the same marginal
distributions for X and ¥. The change in the underlying distribution as a function of
rand v is shown in Figure 3.6. In this figure two standard normals are joined by a
t-copula. As T increases the tail dependence between the distributions increases.
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Fig. 3.5 Samples from standard normal randorm variables X ~ .4'(0,1) and ¥ ~ #(0, 1) joined
by a t-copula with 7 = 0.8 and v = 4 (left) and the normal copula with p = 0.8 (right) . From these
10* samples the empirical value of 7 and the predicted value from Eq, (3.19) are shown also. Note:
the tail dependence in the t-copula that s lacking in the normal copula: when one variable is close
t0 4 the other variable is also likely to be close to +4,
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New data analysis tools can improve how we design
and understand ICF implosions

Optimize design

o . ICF Experiment
with simulations

0

Re-optimize in light of experimental evidence




New data analysis tools can improve how we design
and understand ICF implosions

Optimize design

o . ICF Experiment
with simulations

How can we better Are these
. How do we use
explore vast consistent? .
desi for experimental
e5|§n space’:c, ° data to update
optimal Are there other
: . : our models?
implosions? explanations for
the data?

Re-optimize in light of experimental evidence



We are using machine learning to integrate simulations and
experiments into a common, predictive framework

Generate simulation Train ML models to Use models to infer Calibrate simulation
database emulate ICF codes unknown inputs models to experiments
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Integrating simulations and
experiments:

- Augmenting post-shot analysis with deep neural networks
- Transfer learning to predict Omega ICF experiments




We need prediction uncertainty estimates for quantitative
comparison between simulations and experiments

2

Bayésian additive
regression trees for
TOS1 data

« Uncertainties estimates are needed
for quantitative comparison between
simulations and experiments

SART Prediction
et

 Traditional Bayesian surrogate
models have several drawbacks

-] 0 1 2

We need fast and scalable surrogates with R
uncertainties that accurately fit ICF data 240 MB to store model,

~45 min training time



Neural networks are notoriously challenging to train

* Model performance is highly dependent on et [
many user-specified hyper-parameters

* No robust guidelines for how to choose hyper-
parameters -> hand tuned by experts for
specific datasets

Hidden |

 State-of-the-art network design algorithms layers
perform exhaustive searches for optimal
settings

VAUAVUAVWAWANR

Input layer




Deep Jointly-Informed Neural Networks (DJINN) use
decision trees to automatically design and initialize neural
networks

4 ™ ~ ™ 4 ™
. o Initialized
Training data | | Decision Tree [ Neural
g ) . y Network

DJINN combines the ease of use of decision
trees with the accuracy and scalability of
deep neural networks

“Deep Neural Network Initialization With Decision Trees”
Kelli D. Humbird ; J. Luc Peterson ; Ryan G. McClarren, IEEE TNNLS (2018).
Accepted, early access: 10.1109/TNNLS.2018.2869694



https://doi.org/10.1109/TNNLS.2018.2869694
https://doi.org/10.1109/TNNLS.2018.2869694

DJINN maps decision trees to initialized deep feed-
forward neural networks

Decision tree Initialized neural network
=1 A X,<t,
=2 X, <ty

DJINN mapping uses tree structure to set neural network architecture, and
initializes weights to reflect decision paths through the tree




DJINN often outperforms many other black-box machine
learning algorithms and neural network design techniques

*Error bars display variance in 5x cross-validation scores
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* “Neural Random Forests”, G. Biau et al, arXiv:1604.07143, 2016.



DJINN often outperforms many other black-box machine
learning algorithms and neural network design techniques

*Error bars display variance in 5x cross-validation scores
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DJINN with dropout produces models that provide
uncertainties on predictions
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240 MB to store model, 900 KB to store model,
~45 min training time ~5 min training time

Gal and Ghahramani, “Dropout as a Bayesian Approximation”, 2016.




DJINN enables efficient parameter inference and model calibration
tasks for merging simulation and experimental data

Parameter Inference Model Calibration
= Use experimental data to adjust
* Inferring unknc?wn simulgtion simulation predictions
parameters using experimental
measurements = Often assumes simulation inputs are
- Often assumes simulator has low error, known, but simulator has error

but inputs are not well known .
= Commonly used to predict outcome

 Commonly used to understand the .
of future experiments

data after the experiment (post-shot
analysis)




Parameter Inference ‘

Inferring unknown simulation
parameters using experimental
measurements

Often assumes simulator has low error,
but inputs are not well known

 Commonly used to understand the
data after the experiment (post-shot
analysis)

DJINN enables efficient parameter inference and model
calibration tasks for merging simulation and

‘ Model Calibration ‘

= Use experimental data to adjust
simulation predictions

= Often assumes simulation inputs are
known, but simulator has error

= Commonly used to predict outcome
of future experiments



Traditional post-shot analyses do not find full distribution of
simulations consistent with experimental observables

Standard Post-Shot
Inputs HYDRA ) Outputs

A A

I | *l_
V_> v/

1’4 Experiment

Post-shot: Manual adjustment of simulation
inputs until outputs match experiment




A data-driven approach could improve post-shot
analysis for NIF experiments

* Machine learning methods can augment NIF post-shot

analysis
— Inverse models infer distributions of inputs that are most

consistent with experimental observables
— Auto-encoders enable us to match dozens of observables

simultaneously to better constrain our simulations

Goal: Find the set of physics
hypotheses that explain the
experimental observations




An efficient alternative to manual searching is to train inverse models

Inverse Modeling

|
Inputs < (Surrogate)-L A Outputs

- -
e .y
( -

< \“; Experiment

> >

Inverse modeling: Infer distribution of
simulations that closest match experiment




Agreement between simulation and experiment can be quantified
by comparing post-shot simulation outputs to the experiment

Inverse + Forward

Modeljng Inputs < (Surrogate)-: | Outputs

Simulation

\ “Experiment
\ v

» Surrogate

Quantify how well closest simulations match experiment




Matching only a few observables does not provide an accurate
iInverse model or constrain hypotheses

Outputs Inferred inputs

B True Distribution 3 physics Vars
4 Bnysics Vars

Inaccurate & Unconstrained
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Auto-encoders enable us to match dozens of
observables simultaneously

Observables (Yield, Tion, X-ray Images, etc)

Encode Decode

“Latent space”
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Observables (Yield, Tion, X-ray Images, etc)



collection of diagnostics?

Can we find the best post-shot simulations by matching a large

Train models on database of 60k 2D HYDRA simulations that span an 8D space:
8 Inputs: 45 Outputs:

o Added heat to fuel (preheat)
e Cmix

o« Energy scale

o Peakdrive

o Tent amplitude *
o Filltube width & amplitude

e« Dopant .

Latent Space —
(45 auto-compressed

observables) Simulation Inputs

Yield

Bang time

Temperatures

Neutron spectra moments, DSR
(4 lines of sight)

High energy x-ray yields

>
Yield, Tion,

bangtime, DSR ¢ Simulation Inputs

Does matching all 45 observables produce more accurate post-shots than
matching our favorite 47



Latent space inference produces a good fit to the experimental
data

Predicted output distributions

Larant vars.
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Matching “Bayesian analysis with deep jointly-informed

L atent Space neural networks” Humbird, Peterson,
McClarren, Statistical Analysis and Data

Mining, 2018 (in revisions).

‘True value ‘

(45 observables)



Matching latent
space
(45 obs.)
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Neural network post-shot analysis finds the set of
hypotheses that explain experimental observations

« Auto-encoders and DJINN enable us easily find all of the
simulations in our design space that are consistent with several
dozen experimental diagnostics

* Applying to NIF data is challenging -- hypotheses included in our
database are not able to explain all of the experimental data

How can we create predictive models if we
cannot find accurate post-shot simulations?



DJINN enables efficient parameter inference and model calibration
tasks for merging simulation and experimental data

Parameter Inference Model Calibration
= Use experimental data to adjust
* Inferring unknc?wn simulgtion simulation predictions
parameters using experimental
measurements = Often assumes simulation inputs are
- Often assumes simulator has low error, known, but simulator has error

but inputs are unknown

= Commonly used to predict outcome
of future experiments

 Commonly used to understand the
data after the experiment (post-shot
analysis)




DJINN enables efficient parameter inference and model calibration tasks for
merging simulation and experimental data

Model Calibration

= Use experimental data to adjust
simulation predictions

« Data
\ = Often assumes simulation inputs are
known, but simulator has error

Simulation

= Commonly used to predict outcome
of future experiments

X/ Calibrated Model

“Bayesian calibration of computer models” Kennedy & O’Hagan (2001)




“Transfer learning” is a popular technique in the machine
learning community

Large image database Small NIF optics database

Thistle

—)

Retrain to solve
different, but
related task

O

: »~¥7;ffi5cratch
Image label Damage label iy

Can transfer learning be used to “transfer” between
simulations and experiments?



DJINN is used to make more predictive models of ICF experiments via
“transfer learning”

Train DJINN on large database of cheap simulations .
Simulation Inputs Experiment Inputs

Freeze all but the last
layers of the network,
retrain on sparse,
expensive data 7

Simulation Outputs Experiment Outputs




Can DJINN+TL predict future Omega experiments with
higher accuracy than simulations?

* The data* includes:
— 30k 1D LILAC simulations (no CBET, flux-limited thermal diffusion), 10 min runtime
* Spans a 9D input space with varying laser pulse & capsule dimensions
— 23 experiments
* 1D High-fidelity simulations with the 19 scalar outputs (high fidelity with
FP_EOS, CBET, non-local electron transport, etc), 8 hour runtime
* Experimental measurements of yield, bang time, Tion, rhoR, burnwidth

30k low- Low fidelity | [ High fidelity Experiment
fidelity sims DJINN DJINN DJINN
X

{ 23 high

*Data provided by Varchas

flde“ty SIMS Gopalaswamy & Riccardo Betti




DJINN+TL: predict high-fidelity simulations with low
computational cost

@ Low-Fi. DJINN . , jeid
® :igﬂ':ﬁi- DJINN (train) | High-Fi. Predict 6.0 -
igh-Fi. DJINN (test

() 309 ° (test) 2300 - 6

o 5.5 - ;
C 751 o
2 2200 1 140 5.0 .
2 70
@ o® 130 - 4.5 - 3
o 5% 2100
Z 120 4.0- .
Z 50 \ - 2
= 2000 - e Low-Fi. Predict
0O 55 110 28

High-Fi. Train
50 &0 70 80 2000 2200 100 120 140 160 3 4 5 6 2 4 6
High fid. BW High fid. BangTime High fid. RheR High fid. Tion High fid. Yield 1cl4

High-fidelity BW  High-fidelity BangTime  High-fidelity RhoR  High-fidelity Tion High-fidelity Yield



DJINN+TL: more predictive of future Omega experiments
than simulations

@ Low-Fi. DJINN
@ High-Fi. DJINN
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Each model suggests a different optimal® implosion

DJINN: Optimal Laser Pulses ~ Optimal Capsules
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DJINN: Optimal Laser Pulses

Max 1D Yield
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Each model suggests a different optimal® implosion

Optimal Capsules

O
O

Low-fidelity
DJINN

High-fidelity
DJINN

*Maximum Yield-(pR)2



DJINN optima are consistent with physics-guided
iterations

Extend pulse M
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DJINN+TL is a powerful, novel method for model
calibration

o , lel4
= Transfer learning is a powerful nonlinear ® Loni DN
calibration technique @ o DT
o]
= Enables creation of high-fidelity surrogates 5 - .
. . (- >
with low computational cost 9 e 0. o
O 4 o s *
S » o °
= Produces models that are predictive of Omega £ ; .
. 37 »
experiments Z
:) 8]
A 27 e
o Q
1 e ° 0
. e
Transfer learning creates models that are

more predictive than simulations alone 050 075 100 1.25
Experiment Yield 1lel4




Designing Opacity
Experiments with Machine
Learning

McClarren RG, Tregillis IL, Urbatsch TJ, Dodd ES. High-energy density
hohlraum design using forward and inverse deep neural networks.

Physics Letters A. 2021 Feb 22:127243.




Opacities are key ingredients in high-temperature,
participating media radiative transfer simulations

The opacity of a material gives the strength of
the coupling between thermal radiation and
matter.

It is a function of the element, temperature,
density, and the frequency (energy) of the
radiation.

In this figure we are looking at the specific
opacity of nickel at a given temperature.

« The absorption opacity (solid curve) has
features corresponding to atomic
transitions.

» The scattering is a much simpler function
of the radiation energy.

The opacity indicates how strongly a material
will absorb radiation and how well it radiates in
equilibrium.

Both Absorp. & Scatt. (cm2/gm)

Nickel Freq. Depend. Opacities
LANL T-4 Opacity Data Tables

106 I I IIIIII| I I IIIIII|
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10
102 107" 10°
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Recent Measurements indicate that our theoretical
understand of opacities is inadequate

« The amount of iron in the sun is an important b SRS T T
factor in astronomers’ estimate of how stars fz e f ] ); ‘ W
evolve. g of \‘ C“'“""iui_ipufzﬂ,-- ..‘_..-_,4\"]%[1(1_ ¢ ; N‘i ) \}d::

« There is a discrepancy between the sun’s i : Eollasscosa) WP X Ny R ﬂﬁ lﬂ\ '\;"""“'th ¢
observed behavior and that predicted by 0 Eeua 2 = N - "

Standard mOdels' Zcala 22 2.3 milion Celsinz Pockon Weveisngte (100

« Experiments on the Z-machine at Sandia
National Labs indicated that the opacity for
iron is 30-400% higher than atomic physics
predicts.

« The Z-machine produces high energy density
conditions by passing >20 MA through a wire
array.

« One researcher put it to me this way: “Either
we know nothing about the sun or nothing
about atomic physics.”

Image credits: https://www.sandia.gov/news/publications/labnews/articles/2019/09-13/solar_model.html


http://OSTI.gov
http://OSTI.gov

The NIF laser can be used to confirm these findings.

* Rather than using the Z machine, a sample
of iron (gray rectangle) can be placed inside
a hohlraum.

* The sample heats up due to radiative
transfer and then it is probed with a
backlighter (bottom right image) to measure
the opacity.

* The hohlraum is a bit more complicated
because the sample needs to be shielded
from the laser hot spots.

* This then makes the evolution of the system
complicated by the fact that the hohlraum
cannot close before the measurement is Ve ~N
taken. ' ‘

Image credits: Perry, T. S., et al. (2017). High Energy Density Physics, 23, 223—-227.
Dodd, E. S., et al. (2018). Physics of Plasmas, 25(6), 063301—-11.




Simulations to design these experiments are expensive.

* Because we are dealing with experiments where solids are rapidly turned into an expanding plasma
Lagrangian methods for fluid flow are commonly used.

* These simulations have the mesh move with the material as much as possible.

* The problem is that instabilities in the evolution cause the mesh to tangle, leading to negative
volumes and causing the simulation to crash.

D C

A j A I
B c B D

* Therefore, in parts of the simulation the material is allowed to flow through the mesh leading to
Arbitrary Lagrangian-Eulerian (ALE) methods.

It takes skill and knowledge of how a simulation should evolve to set parameters for mesh relaxation.

If the ALE strategy is not properly set, the simulation crashes and the mesh needs to be fixed by
hand (possibly every time time).

»

Figures from LLNL-PRES-660220



Too much relaxation, however, leads to errors.

 When the mesh is too constrained, the interface between materials will not be
adequately captured and the solution develops numerical errors.




Despite simulation challenges there are a variety of
parameters we seek to optimize in our designs.

Zhoh=05 cm

* To field an experiment to measure the iron opacity
we want a hohlraum that can deliver

— A high temperature for the sample
— Aflat temperature in time

* For the hohlraum there are four parameters we consider
that adjust the nominal hohlraum (shown top right): Ry, =0-28875 cm

* A scale parameter that sets the overall size of the
hohlraum by scaling the measurements.

 Asc length (sample chamber length) parameter
that varies Znar while keeping Rapt/Zvat cOnstant.

* An Rapt (aperature radius) parameter for scaling the
size of the aperture between the sample and laser
illumination chambers independent of Zpat.

* Finally, the length of the laser pulse (pulse length)
scales the laser pulse length in time but keeps the
energy delivered to be a constant 250 kJ.

7z —0o Tapt= Rypn=
- 0.1155 cm 0.155 cm

120

100

laser power (TW)
(2] 0]
o o

N
o

N
o

o

-05 0.0 05 10 15 20 25
t (ns)

Laser Pulse Shape

McClarren RG, Tregillis IL, Urbatsch TJ, Dodd ES. High-energy density hohlraum design using forward and inverse deep neural networks.
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We then run a set of simulations to try & cover our 4-D
design space.

A o 2] @ O (@)
1.2 1 1.240
* Considering the range of each parameter from 0.8 510 -
to 1.2 we tried to run as many simulations as we 50fa o o Ziofo o
could. " 094 0.9
* We had an input file for the nominal case (1,1,1,1) eme _eo o8 0slR___88 ¢
with relaxation settings that allowed it to complete. scale sc_length
@ O @ O oe@ 2] O O @
* Then we tried to run all of the “corners” of the 4-D 1210 ° 1270
hypercube and the centers of the faces to see how T N
varying the parameters affected the performance < 1078 ° o Zlope °
of the hohlraum. 091 091
- Several simulations crashed due to mesh tangling B T S
and we had 46 simulations complete. o e oo
« Here we show all of the 2-D projections of the 4-D =P Y °
1.1 1 I.1 1
space 2 o o 2 ¢ o)
P _ 2 1.04= o o R 1.04x o o
* O s arun that completed 05 ] 05 ]
« Xis arun that failed 0oslez 8o os o818 ax 0@
0.8 1.0 1.2 0.8 1.0 1.2
* The red triangle was a test point (stay tuned) scale R

Figure 3: Values of the 4 design parameters in the simulation
ensemble. Circles indicate simulations that completed, X’s
denote runs that failed.




Our output of interest is the time profile of the radiation

temperature of the hohlraum.

Dante is a diagnostic device at NIF that
measures the radiative field of an experiment.

0.300

« The radiative filed strength is related to the 075 -
radiation of a blackbody at equilibrium via the s
“radiation temperature.” ::/ 0.250

« Our simulation code can also predict the & 0225
response of this diagnostic. g 0.200

* In a typical simulation there is a rise in the % 0.175 1
temperature associated with the increasing laser © o0.150
energy. 0.125 ]

 This is followed by a slowly varying plateau anda 100 L.

cooling phase occurring after the laser turns off.

« It is during the plateau that the opacity
measurement would be taken.

From the simulations we observe that a smaller
hohlraum leads to a higher temperature.
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The sample chamber length can flatten the profile and
shorter laser pulses increase the temperature.

Dante Rad. Temp. (keV)
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* The Rapt parameter had negligible impact on the Dante temperature profile



To optimize our designs without more simulations, we
built a neural network to predict the Dante output.

We recorded the Dante temperature at 50 different time points for each
simulation.

We then trained a feed forward neural network to learn the mapping from the 4
parameters to the temperatures at the 50 times.

* That is, we input 4 numbers and get out 50 numbers.
The network has 4 hidden layers:

* Adense layer with 8 hidden units

* A dense layer with 100 hidden units

* Adense layer with 50 hidden units

* A convolution layer with a kernel size of 3

This architecture was chosen (after some exploration) with the following
principles in mind:

* Make a preliminary computation on the inputs,
* Expand the result to a large number of units and then,
* Map that result smoothly to the output using a convolution.

We also used dropout to avoid overfitting. This randomly turns off connections
during training the model.

RLEH=

Zhon=0.5 cm
PS
Zpaf
u 0.2 cm
R 0.28875 cm R, 5
5 cm

Simulation Inputs (4-D)

Simulation Outputs
(50 time points)



We used Leave-One-Out (LOO) Cross-Validation to test
this “forward” model.

* Given the small dataset that we had to work with,
we tested our model using Leave-one-out cross-
validation

« Train the NN using 45/46 simulations, and
predict the response for the 46,

o
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» The figure shows the result from applying this
across the data set
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» The predicted value from the NN model is the
X-position.

©

=

o
1

True Dante Rad. T (keV)

o

o

ol
1

» The true value is the y-position.

» A perfect model would have all of the points

_ 0.05 0.10 0.15 0.20 0.25 0.30
fall on the x=y line. Predicted Dante Rad. T (keV)

 We estimate a mean-absolute error from the
prediction to be 0.003 keV.

» We call this model a forward model because it
maps parameters to experimental measurements.




We can use the forward model to predict what the result
of a crashed simulation or new simulations would be.

We took the settings for one of the simulations that
crashed due to mesh tangling and used the model to
predict the behavior.

This data was not used to train the model, but we can
see that it is accurately predicting the behavior of the
solution time that did complete.

It predicts that the peak temperature occurs before 2 ns.

We also used the model on a novel set of parameters
designed to make the flattest, longest possible plateau
at 0.275 keV.

* This was the red triangle on the parameter plot
before.

We can compare the model to the results of a simulation
for this case.

* A sslightly higher temperature is observed in the
model.

What about this “inverse” model?
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The inverse model attempts to map a Dante profile to the
input parameters that produced it.

Simulation Outputs
- A designer would like to work in the opposite direction: (50 time points)

« Specify a desired temperature profile and have the model
indicate what parameters would produce it.

« This could be done via optimization with the forward model: set an
object and explore the design space.

« With neural networks (especially with dropout) we can try to directly
learn this inverse map.

* One problem is that the map will not be unique: two sets of inputs
can give the same (or nearly the same) output.

« Dropout can be used in the prediction to add noise (uncertainty) to
the inverse models prediction.

« Every evaluation takes a slightly different path through the
network.

 The inverse network is “free” to evaluate, so we take 1000
evaluations and look at the distribution.

» The network has roughly the opposite structure to the forward Simulation Inputs (4-D)
network.




We test the inverse model with the output of a forward simulation.

« Using the forward model we used standard
optimization to find a set of inputs that should give a

flat profile at 0.275 keV. 13-
T
« We then ran a new simulation using this hohlraum 2 Y
and gave the outputs to the inverse model. 121 | — l

 The inverse model results are shown in the figure. 1

« The error bars are the 95% confidence intervals of
the 1000 evaluations. 1.0

- The stars are the actual parameter values used ol & °
in the simulation. 1
« The dots are the medians of the inverse model 0.8 -
evaluations. . . . .
scale sc_length Rapt Pulse Length

« The Rapt parameter has a large uncertainty because
it doesn’t really matter.

« The other parameters are close to their true values.

« The inverse model gives a good starting point for a
design study.




Using these models allows the optimization of the most
Important quantity, the uncertainty in the iron opacity.

* Given the theoretical behavior of the iron opacity (left), one can use different design
parameters to minimize the uncertainty in the opacity measurement (Ao).

Opacity cm?/g

Ao (cm?/g) AE (eV)
gl near 800 €V near 1200 eV near 800 €V  near 1200 eV
sc_length= 0.8 8 15 29 2
sc_length=1.25 24 3.9 24 22

Photon Energy (keV)

Figure 8: Iron opacity at three different temperatures and a
density of 0.04 g/cm3.




There are many exciting challenges in HED Science.

* Many uncertainties that need to be dealt with.
* These problems require sophisticated computational science to solve.
* There are opportunities to apply machine learning to solve real problems.

» Data-driven and data-informed engineering are welcome to address some of these
challenges.

* | also think that the techniques we have developed to solve these problems can be
used in a variety of applications not just at these extreme conditions.

Thank you for your attention!



