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2014 – PhD in Physics, University of Padova, Italy
2015 – Data Scientist, UniCredit, Milan, Italy
2016 – Postdoctoral Associate, MIT PSFC, Cambridge USA
2019 – Research Scientist, MIT PSFC, Cambridge USA

Research focus on disruption physics 
and disruption warning algorithms for 

fusion plasmas adopting state-of-the-art 
Machine Learning techniques.
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Fusion research is tackling transformational technologies 
to provide alternative, carbon-free electricity generation

Lab research conducted via:

● Heating and confinement of a 
plasma of hydrogen isotopes via 
magnetic fields → magnetic 
confinement

● Heating and compressing 
via lasers a fuel target of 
hydrogen isotopes → inertial 
confinement 

MFE

IFE

Fusion primer

Let’s take a closer look at MFE plasmas.

Mordijck’s Tuesday lecture

McClarren’s Tuesday lecture
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Fusion Plasmas: nonlinear phenomena really hot or really fast, 
hard to diagnose, lots theory & exp data, not so easy to bridge 

6 Fusion primer
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Fusion Plasmas: nonlinear phenomena really hot or really fast, 
hard to diagnose, lots theory & exp data, not so easy to bridge 

Fusion plasma dynamics 
spanning wide range of 
spatial and temporal scales.

Not so easy to develop first 
principle solutions!

← K. Montes, PhD Thesis, 2021 

and

↓ L. Chacon 2022 ICTP School

7 Fusion primer
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Many operating experimental devices for magnetically confined 
fusion research, more planned!

IAEA Fusion Device Information System
https://www.iter.org/of-interest/944

Huge amount of experimental 
and simulation data available 
enabling Machine Learning 
applications:

❏ optimization of 
experimental design 

❏ real-time monitoring of 
proximity to instability

❏ trajectory planning 
optimization

❏ fast surrogates to 
accelerate simulations

❏ …
Fusion primer
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a series of useful 
concepts for ML 

practitioners
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Virtual assistant, 
service robots

Transportation, 
Communication

Finance, 
Banking, 

Insurance Healthcare

Social Media, 
eCommerce

Machine 
Learning

safety monitoring, air 
traffic control, 
unmanned aerial 
vehicles, self-driving 
cars, GPS, imagery,...

high frequency  
trading, portfolio 
management, fraud 
detection, …robotics surgery, 

therapy assessment, 
disease diagnosis and 
predictive healthcare, 
drug discovery, …

customer support, 
product 
recommendation, 
advertising, 
sentiment analysis, 
spam filtering 

Pervasive use of Machine Learning in everyday life, 
widely adopted tool in Fusion too!
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Sometimes there’s confusion about terminology, too many 
buzzwords!

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning

To mimic human 
behavior and functions 
such as learning and 
problem solving.

AI subset using statistical 
methods to enable 
learn-from-experience 
paradigm.

ML subset with 
broader generalization 
capabilities – 
neural networks.

Intro and fundamentals Adapted from medium.com/@StepUpAnalytics
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inputs

weights

output

one 
neuron 
layer

weighted sum:
f(x) = wT x 

activation 

m

… m

Intro and fundamentals

From biological to artificial neurons: the computational graph

yf(x)

dendrites
axon

axon 
terminalssoma           

Credits: M. Kuchera 💖
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inputs

weights

output

one 
neuron 
layer

weighted sum:
f(x) = wT x 

activation 

m

… m

Intro and fundamentals

Artificial neurons can represent any function with arbitrary 
accuracy

yf(x)

axon 
terminals

dendrites
axon

soma           

Credits: M. Kuchera 💖
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The Universality Theorem: for any arbitrary f(x), there is always a 
network that can approximate it

Deep neural network example, adapted from B. Spears et al PoP 2018

≈ Caveats:

● Increasing the depth can 
improve the approximation.

● Activation must be continuous.

Neural networks provide nonlinear 
mapping from inputs to outputs, or a 
way to represent your data through 
function approximation and 
estimation.

|y - f(x)|<  ɛ

Intro and fundamentals
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Statistical inference to learn representations from available data

new scientific 
knowledge

build statistical 
model

collect 
data

generate 
hypothesis

The process of 
Statistical 
Inference

Intro and fundamentals

Existing challenges in 
evaluating the 
mapping adherence 
to ground truth for ML 
models
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Statistical inference to learn representations from available data

new scientific 
knowledge

build statistical 
model

collect 
data

generate 
hypothesis

The process of 
Statistical 
Inference

Intro and fundamentals

https://xkcd.com/1838/ 

https://xkcd.com/1838/
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Introducing the black box: 
the issue with high-stakes decision making …

Intro and fundamentals

inputs outputs

≈

Black box as either
● function too complicated for 

human to comprehend or
● function that is proprietary

Implications: 
● lack of transparency and 

accountability,
● troubleshooting challenges.

C. Rudin, Nat Mach Intell 1, 206–215 (2019)

High-stakes decision making:
● healthcare,
● criminal justice,
● child welfare screening,
● self-driving cars,
● …
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High-stakes decision making and the parallelism with 
the fusion context

Intro and fundamentals

Fusion energy systems:
Any ML-based decision needs to be trusted and 
justified, or licensed → high-stake decisions!

D. Humphreys et al, 2020 Advancing 
Fusion with Machine Learning 
Research Needs Workshop Report, 
J. Fusion Energy 39 123–55

Science discovery → 
Reconciliation with physical 
understanding, key ingredient 
to advance fusion research.

explainable 
predictions

interpretable 
models

vs
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Outline

https://xkcd.com/2541/

https://xkcd.com/2541
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Model Interpretability

M
od

el
 A

cc
ur

ac
y deep 

learning
random 
forests SVM

decision 
trees

Common perception of accuracy vs interpretability trade-off
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More interpretable and simpler models can be as accurate as
black boxes

Explainability vs interpretability 

fictional trade-off

Model Interpretability

M
od

el
 A

cc
ur

ac
y deep 

learning
random 
forests SVM

decision 
trees
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More interpretable and simpler models can be as accurate as
black boxes

Explainability vs interpretability 

fictional trade-off

No unique “interpretability” definition:

● It’s algorithm dependent – e.g., possibility to 
inspect reasons.

● It’s domain dependent – e.g. sparsity not 
good for natural image classification.

Model Interpretability

M
od

el
 A

cc
ur

ac
y deep 

learning
random 
forests SVM

decision 
trees
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More interpretable and simpler models can be as accurate as
black boxes

Explainability vs interpretability 

fictional trade-off

No unique “interpretability” definition:

● It’s algorithm dependent – e.g., possibility to 
inspect reasons.

● It’s domain dependent – e.g. sparsity not 
good for natural image classification.

What about accuracy definition?

● Typically well-defined – 
e.g., counting statistics 
of misclassifications, 
root mean squared error, 
…

Model Interpretability

M
od

el
 A

cc
ur

ac
y deep 

learning
random 
forests SVM

decision 
trees
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ML systems’ prediction accuracy measured on new test data …

25

Adapted from A. Pau et al, 
Nuclear Fusion, 59(10):106017, 2019

Simplified supervised ML classification workflow: 
2D example (blue vs red)

Learned mapping, or 
boundary between classes

𝓍1

𝓍2

𝓍1

𝓍2
Explainability vs interpretability

features
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… by counting how many times the trained classifier is right or 
wrong!

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
co

un
t

0 1

1

better classifiers

True Negative  
                        Misclassifications:
          False Negatives and False Positives

True Positive 

random guess True Positive Rate: 
# correct positive classifications

total # of positive samples

False Positive Rate: 
# wrong positive classifications

total # negative samples
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ML models of varying complexity can have comparable 
performances

Explainability vs interpretability 

Adapted from J. Kates-Harbeck et al., Nature 568, 526–531 (2019)

● Rashomon Effect: 
a multitude of models with approximately 
the minimum error rate exists, for many 
problems1  (also in Fusion!).

As long as a large Rashomon set exists, it is 
likely that some are interpretable2,3, 
maybe hard to develop.

1L. Breiman et al, 2001 Statistical Science 16 199–231
2C. Rudin et al.,  2022  Stat. Surv. 16 1–85
3Semenova et al, 2022 ACM Conference on Fairness, 
Accountability, and Transparency (FAccT'22) arXiv:1908.01755

Fusion

Deep Learning 0D

Deep Learning 1D
Classic ML 0D
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ML models of varying complexity with comparable performances

Explainability vs interpretability 

https://en.wikipedia.org/wiki/Rashomon

● Rashomon Effect: 
a multitude of models with approximately 
the minimum error rate exists, for many 
problems1  (also in Fusion!).

As long as a large Rashomon set exists, it is 
likely that some are interpretable2,3, 
maybe hard to develop.

1L. Breiman et al, 2001 Statistical Science 16 199–231
2C. Rudin et al.,  2022  Stat. Surv. 16 1–85
3Semenova et al, 2022 ACM Conference on Fairness, 
Accountability, and Transparency (FAccT'22) arXiv:1908.01755

Fusion

Fun fact: 
Rashomon term 
inspired by 1950 
Kurosawa’s movie!
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A simple, interpretable, and accurate model *should* exist, 
maybe (computationally) hard to develop

Adapted from A. Pau et al, 
Nuclear Fusion, 59(10):106017, 2019

Supervised and interpretable ML classification workflow:

Explainability vs interpretability 
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A simple, interpretable, and accurate model *should* exist, 
maybe (computationally) hard to develop

Adapted from A. Pau et al, 
Nuclear Fusion, 59(10):106017, 2019

Supervised and interpretable ML classification workflow:

Interpretability constraints added in 
model development include sparsity, 
monotonicity, generative constraints 
(e.g. laws of physics!), ...

Iterative process involving 
subject matter experts to 

achieve high interpretability 
and performance accuracy

Explainability vs interpretability 
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Models interpretable by design vs black boxes that can be 
“explained”

Interpretable 
by design

- Ensemble methods,
- Convolutional Neural Networks,
- Recurrent Neural Networks, 
- Autoencoders,
- …

vs

→   post-hoc explainability

Black boxes

why did we get 
the output we got?

simplification feature 
relevance

additional 
models …

explanation by

saliency mapslinear surrogates
Explainability vs interpretability

existing dichotomy
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Image classification explanation through saliency maps

Explainability vs interpretability 

● Here’s a dog  🐶



C. Rea | ICTP-IAEA School | 5/24/2333

Image classification explanation through saliency maps

Explainability vs interpretability 

● Actually a Siberian husky!
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Similar saliency maps to explain different image labels!

Explainability vs interpretability 

● Or maybe a transverse flute?
○ Same image features relevant for different classes.

C. Rudin, 2019 Nat. Mach. Intell. 1 206–15
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Similar saliency maps to explain different image labels!

Explainability vs interpretability 

● Explanation for why the image contains Siberian husky
is the same for why it might contain a transverse flute…

○ Ambiguity!

Saliency shows where the network is looking, and might not 
convey why the black box predicted what it did

C. Rudin, 2019 Nat. Mach. Intell. 1 206–15
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How to take care of disruptions:
● Accept the damage and live with it.
● Mitigate the damage by injecting massive gas 

or shattered pellets.
● Avoid altogether by detecting precursors & steer 

plasma away from disruptive boundary.

Visible camera view of RE beam 
hitting Alcator C-Mod first wall

JET runaway electrons damage.
https://www.iter.org/newsline/-/2
234

Major disruption → final loss of 
control evolving on timescales of 
milliseconds:

● Fast drop Ip leads to loss of 
confining poloidal field.

● Fast Ip transient causes large 
induced voltages, currents, 
forces.

● Rapid thermal  losses cause 
surface damage.

Tokamak disruptions challenge path to burning plasma

mailto:crea@mit.edu
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ITER Physics Expert Group on Disruptions, Plasma
Control, and MHD (1999) Nucl. Fusion 39 2251

DPAM strategy mandatory when scaling to reactors.

Predictive algorithms need to be employed 
(continuously) throughout the discharge.

Mitigation, as emergency response, is triggered as 
last resource to mitigate disruption consequences.

Avoidance needs timely identification of precursors’ 
growth: not an easy task.

Lehnen M. et al 2016 “Plasma disruption management in 
ITER”, 2016 IAEA Fusion Energy Conf. EX/P6-39

Disruption Prediction, Avoidance, and Mitigation (DPAM)

mailto:crea@mit.edu
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possible disruptive chains of events

38 De Vries et al. NF 51 (2011) 053018 “Survey of disruption causes at JET”

Statistics of the sequence of events for ~10yrs of unintentional disruptions at JET: 
width of the connecting arrows is the frequency of event occurrence.

● Similar statistical studies not 
always available across 
different tokamaks.

● Need timely identification of 
precursors to allow the plasma 
control system (PCS) to take 
proper action.

Wealth of experimental data from 
different tokamaks enables 

Machine Learning applications.

Statistical studies show complex chains of events:

mailto:crea@mit.edu
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C. Rea et al, Nucl. Fusion 59 (2019) 096016
C. Rea et al,  2021 IAEA EX/P1–25,
J. Barr et al, Nucl. Fusion 61 (2021) 126019

caution: 
accuracy of 
local 
explainability 
metrics

● Identification of stability boundaries in real-time.

● Local explainability metrics leveraged inside PID controllers to modify plasma trajectory in real-time.

Explainable ML predictions for real-time proximity to instability 

mailto:crea@mit.edu
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● ML simulations evaluated by sampling from 2D operational regime variations:

M. D. Boyer, C. Rea, M. Clement, Nucl. Fusion 62 (2022) 026005

40

Identification of safe operating region through fast ML
enables trajectory planning

caution: 
sufficiently 
detangled input 
space, robustness 
of sim predictor

time

● Goal: leverage ML-driven optimization to identify trajectory across operational 
space and in real-time control systems.

high danger

safe region

mailto:crea@mit.edu
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End of Part I


