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Models interpretable by design vs black boxes that can be

“explained”

—— existing dichotomy ——

|nterpreif:ble Vs Black boxes
by design

- Ensemble methods,
Convolutional Neural Networks,
Recurrent Neural Networks,
Autoencoders,

why did we get — post-hoc explainability
the output we got?

explanation by

| | |

simplification feature additional
P relevance models ...
} }
linear surrogates saliency maps
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Examples of explainable models interpretable by design

d  Dimensionality
} Reduction

[ Interpretable

by design d  Physics Informed

Neural Networks
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Dimensionality reduction (DR) enables inspection of dataset

structure

m Dataset of handwritten digits represented
EE through different embeddings in latent space.

HEGR 0

PCA t-SNE UMAP PaCMAP

Classes

-t ; )

e

e

C. Rudin et al., 2022 Stat. Surv. 16 1-85

O O NV B WNMO

e Latent space (no physical units) allows 2D visualization of similar data points in
high-dimensional feature space. Coloring done a-posteriori!
o All DR methods allow some form of data inspection and understanding.
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Clustering algorithms enable discovery of data patterns

i A e T.-SNE clustering of C-Mod disruptive vs non-disruptive
- 2 time sequences.

PCA clustering of two different performance regimes for
three different tokamaks.
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Examples of explainable models interpretable by design

[ Interpretable }
by design d  Physics Informed
Neural Networks
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Physics-informed machine learning seamlessly integrates data

and governing physical laws

e NN and AutoDiff allow to design models with partially missing physics (or datal)
o No need of domain adaptation or transfer learning.
o Strong generalization, by enforcing/embedding physics constraints.
o Can tackle high-dimensional problem:s.
o Can address uncertainty due to physics, data, and learning models.

Small data Some data Big data

Data

Physics

Lots of physics Some physics No physics
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Physics Infformed Neural Networks (PINNs) preserve

interpretability through physics constraints

e PINN learns partial differential equations (PDEs) given initial and boundary conditions (1&BC):

heat equation example.

PDE (v)
9
ot
9 ou _, o’u
ox* ot ox?

u(x, 0) - fix) initial and boundary
conditions data
-

physics
‘— informed «——

loss

9 Explainability vs interpretability

e PINN fraining minimizes the
PDEs residuals + 1&BC, through
combined loss function and
auvtomatic differentiation.

e No need of labeled data,
only generative constraints!

Adapted from:
C. Rudin et al., 2022 Stat. Surv. 16 1-85
G.E. Karniadakis et al., 2021 Nat Rev Phys 3, 422-440
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PINN solves heat equation and computes heat flux on the top

surface of W7-X divertor tiles

Gaussian top boundary condition .
constant in time (t € [0,0.1] S) E. Aymerich et al., PSI-25 Poster

Temperature at the surface | T T T T T e T

2000 . The PINN solves the equation and then computes the |
S 1500 . derivative on the top surface of the profile and estimate |
§ 1000 . the normal heat flux thanks to automatic differentiation: |
s q=-Vyu |
T . ..

0
0.00 0.20 0.40 0.56
PINN Physics simulation Error
Lo les 0o [s] Lo leB 00 [s] _ o [s]
— 0.8 1 & 08 g 038
b= £ z
§ 0.6 - E 06 5 061
::<) 04 5 04 S<) 04
T = 2
9} =
§ 0.2 4 :(I]:-) 0.2 8 0.2
I
0.0 T T T T T 0.0 u T T T T 0.0 T u T T T
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osition along the profile [m] position along the profile [m]
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PINNs can accurately learn turbulent field dynamics consistent

with theory, and from partial observations

Partial observations of Te, ne

from one test discharge -ﬂ
Reference target solutions
4 \ ~

Ll E, (Vm) v>\
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A. Mathews, et al, Phys. Rev. E 104, 025205 (2021) PINN reconstructions
Il Explainability vs interpretability
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Physics-informed machine learning: current limitations

e Multiscale and multiphysics problems require further developments.
o High-frequency functions difficult to learn — F-principle or spectral bias.

e Pl ML involves highly non-convex optimization problems for complex loss functions.
o Need more robust algorithms and computational frameworks.
o Meta-learning techniques to automate the design of best architectures?

e Missing benchmarks on openly available datasets from physics, chemistry, ...

e More research needed on the theoretical foundations of NN.
G.E. Karniadakis et al., 2021 Nat Rev Phys 3, 422-440 and references therein
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Explainable deep learning vs design of interpretable learning -
recap slide

1. ML often used as black box, but high-stakes decisions

imply need for inspections. y

inputs

2. Fictional dichotomy between accuracy and interpretability. x . o

outputs

._.

y = fix)

3. Given areasonably well described problem, multiple models of
comparable accuracy may exist, some likely more interpretable than others.

4. Post-hoc explanation to black boxes viable approach, but use caution! @

(o)

5. Design of interpretable models may be computationally hard
— huge potential and should be preferred.

\

6. Fusion examples already out there!
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Outline

Brief Fusion primer
The Universality theorem and brief ML taxonomy

Explainable deep learning vs design of interpretable models

Domain adaptation and transfer learning ]

TO COMPLETE YOUR REGISTRATION, PLEASE. TELL US
WJHETHER OR NOT THIS IMAGE. CONTAINS A STOP SIGN:

ANSWER GUICKLY—OUR SELF-DRIVING
(AR 1S ALMOST AT THE INTERSECTION.

S0 MUCH OF “Al" 15 JUST FIGURING OUT WAYS
TO OFFLOAD WORK ONTO RANDOM STRANGERS.
https://xkcd.com/1897/
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ML mapping from inputs to outputs, or learning to perform a task

Simplified supervised ML classification workflow: Adapted from A. Pau et al,
Nuclear Fusion, 59(10):106017, 2019

outputs

y = flx)
\\ HUMAN / PERFORMANCE
\| aseUNG ,' EVALUATION
S Ve
Nl Learned mapping, or
domain = data + labels boundary between classes

or learning a task

e Mapping from inputs to outputs through ML systems means to learn to perform a task.
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Learning a task heavily depends on dataset composition

e Whatif the collected data is not an accurate reflection of the population?e
Too limited, not accurately labeled, ...
o Learning a general data representation — e.g., how can | predict *any* digits’ labelse
By finding common embeddings of source/target datal

Source data —

Real target data |

o
2\ " 2 |

P. Russo et al, "From source to target and back: Symmetric Bi-Directional Adaptive GAN”
(d) MNIST to SVHN https://andiv.org/pdf/1705.08824.pdf

u Domain adaptation and transfer learning

designed to overcome biased dataset and/or
generdlize knowledge across different tasks.

Generated data —
on target domain

-40

-40 -30 -20 -10 0 10 20 30 40
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Adaptive strategies designed to optimize predictions across

different fusion devices

predictors to different operational 1 Task: predict Dill-D HP
regimes across devices (DIII-D/EAST). FPR =01

e Implications for next-gen, yet-to-be-built
devices! 0.7

e Adapt current state-of-the-art ML

e Adaptive strategies:
o ad-hoc design of training sets to I:>

Training sets:

True positive rate
o
(3]

. 0.4 '
match target domain by fully snr-p  — pui-pLp
exploiting existing data', 03 bm-p q}@ — DIII-D LP + EAST HP
o retrain predictors after 0.2 . o
) Other combinations
performance degradation®. -y

002 0.04 006 008 01 0.12 0.14 0.16 0.18 0.2
Adapted from 'J.X. Zhu et al, NF (2021) 114005 False positive rate
2J. Vega et al., Nat. Phys. 18, 741-750 (2022)

[ Domain adaptation ]
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Source domain (simulations) allows to learn how to reconstruct

target data (experiments)

task: map from sim back to sim

e AN N,

":"‘M' .

NN inputs:
simulation outputs

N

AAK)
PR
afshe

WA

ey

compress data,
learn mapping

‘ 5 i»‘\«

_____ | g 44

’
a8

g

v
T

reconstruction of

.._______________ original inputs

task: retrain with experimental observations

18 Transfer and adaptation

Large datasets built through inexpensive
but possibly inaccurate simulations.

Networks (autoencoders) trained to learn
mapping between sim-to-sim inputs to
outputs.

Mapping then transferred to new task —
learning corrective transformation
mapping sim-to-exp — transfer learning!

Adapted from Humbird et al., PoP 28, 042709 2021

[Transfer learning ]

C.Rea | ICTP-IAEA School | 5/24/23




Domain adaptation and transfer learning - recap slide

1.  Domain adaptation and transfer learning allow black box systems to overcome biased
dataset and generalize knowledge across different tasks.

2. Domain adaptation: learn the same task under differently distributed source
and target domains.

3. Transfer learning: learn to perform new task on limited target domain,
given knowledge gained on source domain.

4. Fusion examples already out there! Knowledge C

transfer

Source
domain

|9 Transfer and adaptation (recap) C.Rea | ICTP-IAEA School | 5/24/23



Outline

Brief Fusion primer
The Universality theorem and brief ML taxonomy
Explainable deep learning vs design of interpretable models

Domain adaptation and transfer learning

Current challenges and opportunities for future research ]

20

Conclusions

THE DATA CLEARLY PROVES THAT—

ARE YOU INDIANA Jbll\lES?

BECAUSE. YOUVE GOT A
LOT OF ARTIFACTS THERE,
AND I™M PRETTY SURE.YOU
DIDNT HANDLE THEM RIGHT.

https://xkcd.com/1781/
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Data drives fusion experiments’ design, simulation, analysis, and
optimization ...

e

Data Analysis

Experiment Numerical
 Numerical Models

Experiment Data-driven
Models

Hypotheses

D. Humphreys et al. “Advancing Fusion With
Machine Learning” DOE Workshop (2020)

e ML enabling science
discovery bridging gaps in
theoretical understanding
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...and it will be an essential design and control tool for next-gen

devices!

Inner poloidal field coils.
(Primary transformer circuit)

Poloidal magneticfild | Outerpoloidal field coils

PRO 4.a: RT Data
Analysis with ML

RT Sensor

Actuators (NBI,
(Magnetics, ECEI,...)

ECH, Coils,...)

Resulting helical magnetic field Toroidal field coils.

Plasma elect

tric current Toroidal magnetic field
(secondary transformer circuit)

Plasma Real-Time
Control System

PRO 4.c: Trajectory and
Control Design with -
ML

- 1

ML Labeled Events
from Diagnostics

Request by the
Physicist:

Data-based Models

- Physics-based Models

Performance and
Stability to
Optimize

PRO 4.b: Development

of Control Models
with ML

Adapted from D. Humphreys et al. *Advancing
Fusion With Machine Learning” DOE Workshop (2020)
22

Need:
e Robust model
interpretability/explainability.
e Well-defined validity and extrapolability
boundaries — Uncertainty Quantification.

Let’'s review some more examples...
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Predict “time-to-disruption” risk using classification probability

1140226013

I,
MA [V J Alcator

r o 1 C-Mod
/ Pl).\'\_,\_NA"—/.\]‘; )/M

S(t+At|t)

h(t+At[t) [1/s]

t (s)

23

Any classification probability (P,) cast between [0,1]
can be used to:

e Predict the future probability of
plasma surV|vaI S(t+Ar|r) [1]

or P
e Model the instantaneous hazard [2,3] h=d InS/d¢

B tobe used as probablllty generator.

. Hazard function modellng connects dynamical systems and
risk-aware control design by probability generation.

/Q«'I\?I/éd data used as proof of concept to combine DPRF (or
“~ any classifier) disruptivity with survival analysis.

[1] RA Tinguely et al 2019 PPCF 61
[2] KEJ Olofsson et al 2018 PPCF 60
[3] KEJ Olofsson et al 2018 FED 146
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ML requires large datasets with target events labeled

SN U U

Typical Workflow:

REINFORCEMENT

—_

LEARNING
DATA PREPARATION MACHINE LEARNING MODE
3 4
~ 10° — 10* shots DATA UNSUPERVISED LEARNING
PROCESSING

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

T r—

FEATURE

CLUSTERING

DATA-REDUCTION

EXTRACTION
&

ENGINEERING

!

SUPERVISED LEARNING

CLASSIFICATION

REGRESSION

PROB. ESTIMATION

PERFORMANCE

= -

MODEL
VAUDATION || TN paramerer
DA TUNING

A. Pau et al, Nuclear Fusion, 59(10):106017, 2019
24

EVALUATION
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Labeling events often requires manual inspection of multiple signals

* Mode locking (ML) event

o Rotating and non-rotating
mode signals

H-L back transition (HL) event

o n, and T, profile pedestals
o Pressure/stored energy
o ELMs

45t

3.0

1.5

0.0

rot

ML HL DIII-D #166453

— n.[2-101° m3] —

Bn
lprog [MA]

| — 1o [MA] - -

LB L L
1.50 1.75 2.00 2.25

LM

1.50 1.75

2.00 2.25
I - T n T T
— T. peaking o
— n. peaking B
Dq (a.u) :
y—\__.v\__,\/\/\_,\_/\/_\_/\,. M\‘\‘\m’\_\/ i
[
1 | 1 !
1.50 1.75 2.00 2.25

Time [s]



Semi-supervised ML used to accelerate event labeling

Partially Labeled Event Data

Human Expert

e * Common signals from many shots
e » Afraction (at least 1 shot) has labeled
Some shots analyzed I e event occurrence

Use dlagnostlc S|gnals to
identify events

Diagnostic Data

*  From MDSplus, etc.
*  Many (~ 103) shots

*+  Record times at which event Semi-Supervised Learner
occurs g
* Validate ‘learned’ event e Use unlabeled data

distribution to find
other events

*  Output times when
event likely occurred

detections



Problem setup requires user-specified time scales and shots with example events

* Sample time sequences from each shot
(endpoints are shown) with...

o Duration > event timescale

o # of steps > event resolution

0.0 1 1 1 1 1 1 1 1 1 1 1 1 I L
1.50 1.75 2.00 2.25

* Choose N signals for event detection
o Time sequences x; € RN'(# of steps)

* Class assigned to each observed
sequence

o Positive (overlaps with event time)

I

. . — Te ki
o Negative (otherwise) a5(| — npeaking| |
I

D¢ (a.u)

30

Semi-supervised learning: L5
|
Infer classes of unobserved sequences 0.0 =

Time [s]



Applied label spreading algorithm to automate detection of physics events®

e Graph-based algorithm

O

O

©)

Nodes are time sequences
Edges are weighted by proximity

Classifications made by ‘spreading’

information from labeled to
unlabeled nodes

wi; = f (%, %)) X

N

Xi——»

input signals

Prediction

0.0
- 129

Peaking Factors

H-L Back Transition (HL)

HL
10 T [ &
0.8+ DIII-D #162816 detection interval !
o6fF L _____
0.4 ) I
0.2} threshold for detection sequence endpoints |
8 16 2.4 3.2 4.0 4.8
T T T T I
10.0 | — TeolkeV] '
75H neo[1019m—3]
50
a5l V\{mhdllozk”
00 8 116 2'4 312 4'0I 4.8
4.8; : : : e :
32H— Te |
24— T
1.6 “\MMMWW
08 1 1 1 i |
6.(9'8 1;6 2;4 3]2 4.|0 4.8
45H — Pinput[MW]
3.0 Ll — Prad/Pinput
15+
0.0 1 1 1
0.8 1.6 2.4 3.2 4.0 4.8
Time [s]
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Applied label spreading algorithm to automate detection of physics events

1

Prediction
cooor
NDRO®O

o
o

r=1 Gl

LM (B

Rotating mode locks (rotML)

rotML

T R S —

2.4

3.2
Time [s]

4.0

Prad/Pinput

Praq CVA Peaking

TeolkeV]

1.0
0.8
0.6
0.4
0.2
0.0

Core radiative collapse (coreRC)

coreRC

[

.-..‘.‘".'.. s

|
|
|
|
|
|

Time [s]
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Can be applied to accelerate the construction of events databases

* |teratively choose initially labeled shot from set of marginal detections
* Prediction quality on unlabeled shots improves consistently
* Detected eventsin ~ 85% of hundreds of shots after manually analyzing just ~ 1%

1% iteration 2" iteration 3" jteration
‘ ‘ ‘ rotML 10 ‘ ‘ roFML 1.0F : : - mm'."

1.0 ; ) g
Cosl i cosl inal . § %% | TPR=85% Vo
§°°[| TPR=50% . §° margina | S el =85% L.
S 061 5 06} . s —
8 i FPR = 0% : L. missed >, £, FPR = 2% !
o ! o 7 : !
5 o2t ! £ o2l detection : 2t !
0.0k ! £
1. 1.
_ 125 ;
9 100 ol
2 75| sl
€
< sof :
2 25 I
= 2
0.0 :
1.6 2.0 2.4 2.8 32 36 1. 7 g ; 7 6 16 2.0 24 28 3.2 36
16 : : : . 3.20 - _ 16 — 3.20
—_— O B
2 1af | {315 S sl | 3.15 2 12| | 3.15
< - 1 3 . S : 3.10
Tog des (right scale) ! 310 o T des (right scale) ! 310 o T gl Qes (right scale) ! 2
= i 1305 @ = . 3.05 © =) | 305 @
s 4 ; 13.00 s 4 ) 3.00 s 4 J 13.00
- 9 ‘ s ‘ L 2.95 - 9 i ; L 2.95 ~ 0 - ‘ ‘ L 2.95
1.6 2.0 2.4 2.8 32 3.6 16 2.0 24 28 3.2 3.6 1.6 2.0 24 28 32 36
Time [s] Time [s] Time [s]
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Data augmentation to learn disruptive dynamics

Training __|

data

0.5

—0.51
0.5 1

—0.51
0.5

X 0.01
—0.51
0.51
0.0 1
—0.51
0.5
0.0
—0.5'

495

}
gé |
n/ng |

n/ng

31

State space
Student-t
surrogate model

Y

Preprocessing

Z

Training data

\

X 0.01

rasscso= o

J
qo5

225 2.50 2.75 3.00 3.25 3.50 3.75
t[s]

2.25 2.50 2.75 3.00 3.25 3.50 3.75
t[s]

» Post-processing ——> Analysis

DL models are data-greedy:
need comprehensive
training database to
achieve satisfying and
reliable results.

Robust augmentation of the
training database using
state space Student-T
surrogate models.

K. Rath,..., C Rea et al, “Data augmentation for

disruption prediction via robust surrogate models”
J. Plasma Phys. (2022), vol. 88, 895880502
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Hybrid Deep Learning predictor - if we have time

If not: J.X.Zhu, C. Rea et al, 2023 Nucl. Fusion 63 046009
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More (non-disruptive) examples:
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Temporal Convolutional Neural Network predicts confinement

probability Tms in the future

O o
BnTarget = 6 g
— Py L v
m- 4 €
Br ) -
f(P(Mode = H)) Min. . = 2 -
- = =
el PJ&L% |:> 0
L 2
K, li, Bn
_ dr-sep, W, 4 E‘
P(Mode = H) a el =
,/ ~Ip, Ig, Pecy, Pop, AP, N, Diagnostics & 5
‘ T~ z
DIII-D Plasrha Control System Tl B feedback: e
" on vs off 2 4 6 2 4 6
/,' T Time [s] Time [s]
Heslimaled
Max Prob. =1 0 A 0
< e caution: limited
] B expert-labeled
258 ‘ ‘ .
853 ; T dataset constraints
== 1 ime model applicability
P(Mode = L) = 1- P(Mode = H)
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Neural networks accelerate equilibria reconstructions and

profile evolution for shot planning and real-time control

caution: extrapolation
to never seen
equilibria or to other

a2¢ 1 a¢ a2¢ ) dp 1 dF? machines
_—— - = r

or?

N\ _ 204855:50ms

B-probes, flux loops, |:>
current measurements

15} F EQNET| ..
14 4 1+
Equilibrium

1/)(7“, Z) }I::> 05+ 1 05+

35

e NN learns free-boundary Grad-Shafranov solutions
and reconstructs tokamak equilibria. =

R[m]

204961: 790ms

Adapted from J. Wai, M. Boyer, E. Kolemen, Nucl. Fusion 62 (2022) 086042 C.Rea | ICTP-IAEA School | 5/24/23



Gaussian Processes (GP) enable nonlinear simulations for

performance prediction and gyrokinetic validation

i pu=045 Standard BO workflow to find

i pn=055

=065 steady-state profile solutions
. =075
. 5::035
Optimization
imulati [NO
Converge}nce '
Evaluation
lYES

P IS TR S [N TN SN TN SN [N SO W'

= Few (10-20) simulations required to reach
convergence, thanks to Bayesian Optimization
(BO) workflow + GP surrogate modeling.

Surrogate

START - '
—> —

= Enabling profile predictions of unprecedented
accuracy for:

v Prediction of burning plasma performance
(e.g. SPARC)

v Validation of gyrokinetic codes (e.g. DIII-D)

P. Rodriguez-Fernandez et al, Nucl. Fusion 62 (2022) 076036

Open question:
detangle local

Residual

minima from
unique physical
solutions

36

7 — orignal fit
= CGYRO prediction

T (keV)

T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
"

T T T T T

5

T
10

T T 1T

15

Iterations (calls/radius)
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Raw ECE time series input data to Reservoir Computing Network

to compute Alfvén Eigenmode score

1.5 Example DIII-D Discharge

Separatrix
1.0

0.5

40 raw ECE signals

Z (m)

0.0

-0.5

-1.0}

ECE Channels |

=15}

1.0 15 2.0 2.5
R (m)

Jalalvand et al 2022 Nucl. Fusion 62 026007

Dili-D

NATIONAL FUSION FACILITY

37

Label
C
=<

Shot #178636
ECE #17

Time (s)

0 05 !'1 1.5 2
Time (s)

True Positive Rate: %91
False Positive Rate: %7

caution: how sensor
failures affect ML
workflow accuracy
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Existing current challenges @ but also (!)

opportunities for future research & :

e trustin performance metrics — missing benchmarks

e frustin predictive output and learning — model interpretation and explanation accuracy
e prediction of out of distribution samples — domain shifts, data shifts

e integration with legacy architectures — real-time vs offline implementations

e lack of labeled data or of reliable (and automated) metadata extraction

e uncertainty quantification Y unesco]

e open and FAIR (!) access to data and models

M. Wilkinson, et al. The
FAIR Guiding
Principles for scientific
data management
and stewardship. Sci
Data 3, 160018 (2016)
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DOE and International Agencies sirongly support ML

research to accelerate Fusion progress

Workshop on Advancing Fusion with Machine Learning

e DOE-sponsored workshop in 2019
critical PROs identified

PRO 4: Control Augmentation with ML
e DOE Public Reusable Research Data A T e ek

(PURE) initiative PRO 5: Extreme data algorithms

https://science.osti.gov/Initiatives/PuRe-Data Extreme-scale Processing,
In-situ Data Analysis

o |AEA qurdmaied Re§eafch Project 2022 e e
addressing cross-cutting issues Prediction of Disruption Events and Effects,
Plasma Phenomena and State Prediction

D. Humphreys et al. *Advancing Fusion With
Machine Learning” DOE Workshop (2020)

|::> Priority Research Opportunities (PROs)

Accelerating Science Enabling Fusion Energy

Al for Fuéioh
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https://science.osti.gov/Initiatives/PuRe-Data

Summary and conclusions |I|"'

Plasma Science and Fusion Center

PSFC

1. Fusion science and tfechnology advancements also accelerated by ML

2.  Neural networks as universal approximators
o and accuracy does not prevent interpretability!

3. Interpretable by design models are really powerful
4.  Adaptive learning addresses changing domains and learning tasks

5. Fusion examples already out there employing
a. Interpretable algorithms
b. Explainable predictions
c. Transfer learning and statistical optimization
d. Surrogate modeling for fast reconstructions

Long list of open questions and cross-cutting challenges, K H

but also opportunities for future research, enabling change in the field!
Credits: S. Mordijck @

n
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