Machine Learning for Magnetic Fusion Science Part II

Cristina Rea

crea@mit.edu

MIT Plasma Science and Fusion Center, Cambridge, MA, USA

Joint ICTP-IAEA School on AI for Nuclear, Plasma and Fusion Science, Trieste, May 24th- 25th, 2023

Outline

- 1. Brief Fusion primer
- 2. The Universality theorem and brief ML taxonomy
- Explainable deep learning vs design of interpretable models
 o disruptions!
- 4. Domain adaptation and transfer learning
 - disruptions!
- 5. Current challenges and opportunities for future research
 - disruptions!
- 6. Conclusions

Models interpretable by design vs black boxes that can be "explained"

Examples of explainable models interpretable by design

Dimensionality reduction (DR) enables inspection of dataset structure

C. Rudin et al., 2022 Stat. Surv. 16 1–85

- Latent space (no physical units) allows 2D visualization of **similar data points** in high-dimensional feature space. Coloring done a-posteriori!
 - All DR methods allow some form of data inspection and understanding.
- 5 Explainability vs interpretability

C. Rea | ICTP-IAEA School | 5/24/23

Clustering algorithms enable discovery of data patterns

Examples of explainable models interpretable by design

Physics-informed machine learning seamlessly integrates data and governing physical laws

- NN and AutoDiff allow to design models with partially missing physics (or data!)
 - No need of domain adaptation or transfer learning.
 - Strong generalization, by enforcing/embedding physics constraints.
 - Can tackle high-dimensional problems.
 - Can address uncertainty due to physics, data, and learning models.

Physics Informed Neural Networks (PINNs) preserve interpretability through physics constraints

• PINN learns partial differential equations (PDEs) given initial and boundary conditions (I&BC): heat equation example.

- PINN training minimizes the PDEs residuals + I&BC, through combined loss function and automatic differentiation.
- No need of labeled data, only generative constraints!

Adapted from: C. Rudin et al., 2022 Stat. Surv. 16 1–85 G.E. Karniadakis et al., 2021 Nat Rev Phys 3, 422–440

C. Rea | ICTP-IAEA School | 5/24/23

PINN solves heat equation and computes heat flux on the top surface of W7-X divertor tiles

PINNs can accurately learn turbulent field dynamics consistent with theory, and from partial observations

A. Mathews, et al, Phys. Rev. E 104, 025205 (2021)

PINN reconstructions

II Explainability vs interpretability

C. Rea | ICTP-IAEA School | 5/24/23

Physics-informed machine learning: current limitations

- Multiscale and multiphysics problems require further developments.
 - High-frequency functions difficult to learn \rightarrow F-principle or spectral bias.
- PI ML involves highly non-convex optimization problems for complex loss functions.
 - Need more robust algorithms and computational frameworks.
 - Meta-learning techniques to automate the design of best architectures?
- Missing benchmarks on openly available datasets from physics, chemistry, ...
- More research needed on the theoretical foundations of NN.

G.E. Karniadakis et al., 2021 Nat Rev Phys 3, 422–440 and references therein

Explainable deep learning vs design of interpretable learning – recap slide

- 1. ML often used as black box, but high-stakes decisions imply need for inspections.
- 2. Fictional dichotomy between accuracy and interpretability.
- 3. Given a reasonably well described problem, multiple models of comparable accuracy may exist, some likely more interpretable than others.
- 4. Post-hoc explanation to black boxes viable approach, but use caution!
- 5. Design of interpretable models may be computationally hard \rightarrow huge potential and should be preferred.
- 6. Fusion examples already out there!

Outline

- 1. Brief Fusion primer
- 2. The Universality theorem and brief ML taxonomy
- 3. Explainable deep learning vs design of interpretable models
- 4. Domain adaptation and transfer learning
- 5. Current challenges and opportunities for future research
- 6. Conclusions

TO COMPLETE YOUR REGISTRATION, PLEASE TELL US

50 MUCH OF "AI" IS JUST FIGURING OUT WAYS TO OFFLOAD WORK ONTO RANDOM STRANGERS.

<u>https://xkcd.com/1897/</u>

ML mapping from inputs to outputs, or learning to perform a task

Simplified supervised ML classification workflow:

Adapted from A. Pau et al, Nuclear Fusion, 59(10):106017, 2019

• Mapping from inputs to outputs through ML systems means to learn to perform a task.

Learning a task heavily depends on dataset composition

- What if the collected data is **not an accurate reflection of the population**? Too limited, not accurately labeled, ...
 - Learning a general data representation → e.g., how can I predict *any* digits' labels? By finding common embeddings of source/target data!

Adaptive strategies designed to optimize predictions across different fusion devices

- Adapt current state-of-the-art ML predictors to different operational regimes across devices (DIII-D/EAST).
- Implications for next-gen, yet-to-be-built devices!
- Adaptive strategies:
 - ad-hoc design of training sets to match target domain by fully exploiting existing data¹,
 - **retrain predictors** after performance degradation².

Adapted from ¹J.X. Zhu et al, NF (2021) 114005 ²J. Vega et al., *Nat. Phys.* 18, 741–750 (2022)

Task: predict DIII-D HP FPR = 0.10.9 0.8 Training sets: DIII-D LP 0.3 DILL-D DIII-D LP + EAST HP 0.2 Other combinations 0.1 0

False positive rate

0.08

0.12

0.14

Domain adaptation

0

0.02

0.04

0.06

C. Rea | ICTP-IAEA School | 5/24/23

0.16

0.18

0.2

Fusion

Source domain (simulations) allows to learn how to reconstruct target data (experiments)

Fusion

- Large datasets built through inexpensive but possibly inaccurate simulations.
- Networks (autoencoders) trained to learn mapping between sim-to-sim inputs to outputs.
- Mapping then transferred to new task → learning corrective transformation mapping sim-to-exp → transfer learning!

Adapted from Humbird et al., PoP 28, 042709 2021

Transfer learning

Domain adaptation and transfer learning – recap slide

- 1. Domain adaptation and transfer learning allow black box systems to overcome biased dataset and generalize knowledge across different tasks.
- 2. Domain adaptation: learn the same task under differently distributed source and target domains.
- 3. Transfer learning: learn to perform new task on limited target domain, given knowledge gained on source domain.
- 4. Fusion examples already out there!

Outline

- 1. Brief Fusion primer
- 2. The Universality theorem and brief ML taxonomy
- 3. Explainable deep learning vs design of interpretable models
- 4. Domain adaptation and transfer learning
- 5. Current challenges and opportunities for future research
- 6. Conclusions

https://xkcd.com/1781/

Data drives fusion experiments' design, simulation, analysis, and optimization ...

D. Humphreys et al. "Advancing Fusion With Machine Learning" DOE Workshop (2020)

• ML enabling science discovery bridging gaps in theoretical understanding

...and it will be an essential design and control tool for next-gen devices!

Adapted from D. Humphreys et al. "Advancing Fusion With Machine Learning" DOE Workshop (2020)

Predict "time-to-disruption" risk using classification probability

Any classification probability (P_D) cast between [0,1] can be used to:

- Predict the future probability of plasma survival S(t+Δt|t) [1] or
- Model the **instantaneous hazard** [2,3] *h*=d ln*S*/d*t* to be used as probability generator.

Hazard function modeling connects dynamical systems and risk-aware control design by probability generation.

C-Mod data used as proof of concept to combine DPRF (or <u>any classifier</u>) disruptivity with survival analysis.

[1] RA Tinguely et al 2019 PPCF 61
[2] KEJ Olofsson et al 2018 PPCF 60
[3] KEJ Olofsson et al 2018 FED 146

ML requires large datasets with target events labeled

Labeling events often requires manual inspection of multiple signals

- Mode locking (ML) event
 - Rotating and non-rotating mode signals
- H-L back transition (HL) event
 - \circ n_e and T_e profile pedestals
 - Pressure/stored energy
 - \circ ELMs

Semi-supervised ML used to accelerate event labeling

Problem setup requires user-specified time scales and shots with example events

- Sample time sequences from each shot (endpoints are shown) with...
 - o <u>Duration</u> > event timescale
 - o <u># of steps</u> > event resolution
- Choose <u>N signals</u> for event detection \circ Time sequences $\vec{x}_i \in \mathbb{R}^{N \cdot (\# \text{ of steps})}$
- Class assigned to each observed sequence
 - Positive (overlaps with event time)
 - Negative (otherwise)

Semi-supervised learning:

Infer classes of unobserved sequences

Applied label spreading algorithm to automate detection of physics events¹

- Graph-based algorithm
 - Nodes are time sequences
 - Edges are weighted by proximity
 - Classifications made by 'spreading' information from labeled to unlabeled nodes

¹ Montes, Rea et al 2021 Nuclear Fusion **61** 026022

Applied label spreading algorithm to automate detection of physics events¹

¹ Montes et al 2021 Nuclear Fusion **61** 026022

Can be applied to accelerate the construction of events databases

- Iteratively choose initially labeled shot from set of marginal detections
- Prediction quality on unlabeled shots improves consistently
 - Detected events in $\sim 85\%$ of hundreds of shots after manually analyzing just $\sim 1\%$

Data augmentation to learn disruptive dynamics

- DL models are data-greedy: need comprehensive training database to achieve satisfying and reliable results.
- Robust augmentation of the training database using state space Student-T surrogate models.

K. Rath,..., C Rea et al, "Data augmentation for disruption prediction via robust surrogate models" J. Plasma Phys. (2022), vol. 88, 895880502

Hybrid Deep Learning predictor – if we have time

If not: J.X. Zhu, C. Rea et al, 2023 Nucl. Fusion 63 046009

More (non-disruptive) examples:

Temporal Convolutional Neural Network predicts confinement probability 1ms in the future

Neural networks accelerate equilibria reconstructions and profile evolution for shot planning and real-time control

Gaussian Processes (GP) enable nonlinear simulations for performance prediction and gyrokinetic validation

- Few (10-20) simulations required to reach convergence, thanks to Bayesian Optimization (BO) workflow + GP surrogate modeling.
- Enabling profile predictions of unprecedented accuracy for:
 - Prediction of burning plasma performance (e.g. SPARC)
 - ✓ Validation of gyrokinetic codes (e.g. DIII-D)

Solution

P. Rodriguez-Fernandez et al, Nucl. Fusion 62 (2022) 076036

Raw ECE time series input data to Reservoir Computing Network to compute Alfvén Eigenmode score

Jalalvand et al 2022 Nucl. Fusion 62 026007

True Positive Rate: **%91** False Positive Rate: **%7**

> caution: how sensor failures affect ML workflow accuracy

> > C. Rea | ICTP-IAEA School | 5/24/23

Existing current challenges 😟 but also (!) opportunities for future research 💇 :

- trust in performance metrics → missing benchmarks
- trust in predictive output and learning → model interpretation and explanation accuracy
- prediction of out of distribution samples \rightarrow **domain shifts**, **data shifts**
- integration with legacy architectures \rightarrow real-time vs offline implementations
- lack of labeled data or of reliable (and automated) metadata extraction
- uncertainty quantification

38 Open questions

• open and FAIR (!) access to data and models

M. Wilkinson, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data **3**, 160018 (2016)

UNESCO Recommendation on Open Science

TP-IAEA School | 5/24/23

DOE and International Agencies strongly support ML research to accelerate Fusion progress

- **DOE-sponsored workshop in 2019** critical PROs identified
- DOE Public Reusable Research Data (PuRE) initiative

https://science.osti.gov/Initiatives/PuRe-Data

• IAEA Coordinated Research Project 2022 addressing cross-cutting issues Workshop on Advancing Fusion with Machine Learning Priority Research Opportunities (PROs)

Accelerating Science	Enabling Fusion Energy
PRO 1: Science Discovery with ML	PRO 4: Control Augmentation with ML
Hypothesis Generation and	Diagnostics to Data, Dynamic Models for Control,
Experimental Guidance	Fusion Trajectory Design
PRO 2: ML Boosted Diagnostics	PRO 5: Extreme data algorithms
ML Boosted Diagnostics,	Extreme-scale Processing,
Physics Enhanced Data	In-situ Data Analysis
PRO 3: Model Extraction and Reduction	PRO 6: Data-enhanced Prediction
Data-driven Models,	Prediction of Disruption Events and Effects,
Reduction of Complex Code Algorithms	Plasma Phenomena and State Prediction

PRO 7: Fusion Data ML Platform

D. Humphreys et al. "Advancing Fusion With Machine Learning" DOE Workshop (2020)

https://nucleus.iaea.org/sites/ai4atoms/ai4fusion/

Summary and conclusions

- 1. Fusion science and technology advancements also accelerated by ML
- Neural networks as universal approximators
 o and accuracy does not prevent interpretability!
- 3. Interpretable by design models are really powerful
- 4. Adaptive learning addresses changing domains and learning tasks
- 5. Fusion examples already out there employing
 - a. Interpretable algorithms
 - b. Explainable predictions
 - c. Transfer learning and statistical optimization
 - d. Surrogate modeling for fast reconstructions

Long list of **open questions and cross-cutting challenges**, but also **opportunities for future research, enabling change in the field!**

PSI

Plasma Science and Fusion Center

