Implicit Regularization and Benign Overfitting for Neural Networks in High Dimensions

 $\label{eq:Spencer} \begin{array}{l} \mbox{Youth in High Dimensions, Trieste, June 2023} \\ \mbox{Spencer Frei (UC Berkeley, Simons Institute} \rightarrow \mbox{UC Davis, Department of Statistics}) \end{array}$

Implicit regularization

- A.K.A. "Implicit bias", "algorithmic regularization", "inductive bias", ...
- Optimization algorithms can minimize 'complexity', with no *explicit* regularization.
 - Gradient flow in least squares $\leftrightarrow \min \ell^2$:

$$\frac{\mathrm{d}}{\mathrm{d}t}w(t) = -\nabla\left(\frac{1}{n}\sum_{i=1}^{n}(y_i - \langle w(t), x_i \rangle)^2\right) \quad \longleftrightarrow \quad w(t) \to \min_{w} \|w\|_2^2 : \langle w, x_i \rangle = y_i \,\forall i.$$

• Gradient flow/descent on exponential loss ↔ maximum margin:

$$\frac{\mathrm{d}}{\mathrm{d}t}w(t) = -\nabla\left(\frac{1}{n}\sum_{i=1}^{n}\exp\left(-y_{i}\langle w(t), x_{i}\rangle\right)\right) \quad \longleftrightarrow \quad w(t) \to \min_{w}\|w\|_{2}^{2}: y_{i}\langle w, x_{i}\rangle \ge 1 \,\forall i.$$

See: [Telgarsky'13; Soudry+'18; Ji-Telgarsky'20; Lyu-Li'20; ...]

Implicit regularization

- A.K.A. "Implicit bias", "algorithmic regularization", "inductive bias", ...
- Optimization algorithms can minimize 'complexity', with no *explicit* regularization.
 - Gradient flow in least squares $\leftrightarrow \min \ell^2$:

$$\frac{\mathrm{d}}{\mathrm{d}t}w(t) = -\nabla\left(\frac{1}{n}\sum_{i=1}^{n}(y_i - \langle w(t), x_i \rangle)^2\right) \quad \longleftrightarrow \quad w(t) \to \min_{w} \|w\|_2^2 : \langle w, x_i \rangle = y_i \,\forall i.$$

• Gradient flow/descent on exponential loss ↔ maximum margin:

$$\frac{\mathrm{d}}{\mathrm{d}t}w(t) = -\nabla\left(\frac{1}{n}\sum_{i=1}^{n}\exp\left(-y_i\langle w(t), x_i\rangle\right)\right) \quad \longleftrightarrow \quad w(t) \to \min_w \|w\|_2^2 : y_i\langle w, x_i\rangle \ge 1 \,\forall i.$$

• For gradient flow/descent on neural nets, story is much more complicated, but conjectured to contribute to success of deep learning

See: [Telgarsky'13; Soudry+'18; Ji-Telgarsky'20; Lyu-Li'20; ...]

Benign overfitting

• Benign overfitting refers to settings where there is *noise*, the estimator achieves zero training error (overfits), yet still generalizes well (even optimally).

Benign overfitting

- Benign overfitting refers to settings where there is <u>noise</u>, the estimator achieves zero training error (overfits), yet still generalizes well (even optimally).
- Hard to reconcile uniform convergence with interpolation of noisy data:

$$c \leq \sup_{f \in \mathcal{F}} L(f) \equiv \sup_{f \in \mathcal{F}} L(f) - \widehat{L}_n(f) \overset{(?)}{\lesssim} \sqrt{\operatorname{Complexity}(\mathcal{F})/_n}.$$

• Good understanding of mechanisms of benign overfitting in linear regression [Bartlett+'20; Hastie+'22; ...], but little in neural networks

We examine behavior of neural nets when trained on "high-dimensional data" ($d \gg n$, to be made precise shortly).

- Implicit regularization: Gradient flow-trained two-layer networks have low rank and a very simple/tractable structure.
- Benign overfitting from implicit regularization: in particular distributional settings, this simple structure implies benign overfitting.

Implicit bias in homogeneous neural networks

$$\widehat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell\left(\underbrace{y_i N(x_i; \theta)}_{\theta}\right), \quad \ell(q) = \log(1 + \exp(-q)), \quad \frac{\mathrm{d}}{\mathrm{d}t} \theta(t) = -\nabla \widehat{L}(\theta(t)),$$

$$\min_{\theta} \|\theta\|^2 \quad \text{s.t.} \quad y_i N(x_i; \theta) \ge 1, \text{ for all } i \in [n]. \tag{1}$$

Theorem [Lyu-Li'19; Ji-Telgarsky'20]

Consider gradient flow -trained net. If $N(x;\theta)$ is *L*-homogeneous $(N(x;\alpha\theta) = \alpha^L N(x;\theta))$ and there exists time t_0 s.t. $\widehat{L}(\theta(t_0)) < 1/n$. Then gradient flow converges in direction to a first-order stationary point (KKT point) of max-margin problem (1), and $\widehat{L}(\theta(t)) \rightarrow 0$.

Implicit bias in homogeneous neural networks

$$\widehat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell\left(\underbrace{y_i N(x_i; \theta)}_{\theta}\right), \quad \ell(q) = \log(1 + \exp(-q)), \quad \frac{\mathrm{d}}{\mathrm{d}t} \theta(t) = -\nabla \widehat{L}(\theta(t)),$$

$$\min_{\theta} \|\theta\|^2 \quad \text{s.t.} \quad y_i N(x_i; \theta) \ge 1, \text{ for all } i \in [n]. \tag{1}$$

Theorem [Lyu-Li'19; Ji-Telgarsky'20]

Consider gradient flow -trained net. If $N(x;\theta)$ is *L*-homogeneous $(N(x;\alpha\theta) = \alpha^L N(x;\theta))$ and there exists time t_0 s.t. $\widehat{L}(\theta(t_0)) < 1/n$. Then gradient flow converges in direction to a first-order stationary point (KKT point) of max-margin problem (1), and $\widehat{L}(\theta(t)) \rightarrow 0$.

- There exists θ^* satisfying <u>K</u>arush-<u>K</u>uhn-<u>T</u>ucker conditions of (1) s.t. $\frac{\theta(t)}{\|\theta(t)\|} \rightarrow \frac{\theta^*}{\|\theta^*\|}$.
- Satisfying KKT conditions does not imply global optimality in general [Vardi-Shamir-Srebro'22].
- Theorem does *not* depend on initialization $\theta(0)$.

• By [Lyu-Li'19; Ji-Telgarsky'20], KKT conditions of max-margin problem (1) capture limiting behavior of (homogeneous) neural network training.

$$\min_{\theta} \|\theta\|^2 \quad \text{s.t.} \quad y_i N(x_i; \theta) \ge 1, \text{ for all } i \in [n].$$

- We'll show that in some settings, satisfaction of KKT conditions for Problem (1) implies good generalization (and benign overfitting).
 - Any algorithm that produces max-margin neural nets would have same behavior.

The setting: two-layer leaky ReLU networks

• Two-layer nets with leaky ReLU activations ($\phi(z) = \max(z, \gamma z)$ for all z) trained by GD on the logistic loss:

The setting: two-layer leaky ReLU networks

• Two-layer nets with leaky ReLU activations ($\phi(z) = \max(z, \gamma z)$ for all z) trained by GD on the logistic loss:

$$\begin{split} f(x;W) &= \sum_{j=1}^{m} a_j \phi(\langle w_j, x \rangle), \quad a_j \in \{\pm 1/\sqrt{m}\}, \\ \frac{\mathrm{d}}{\mathrm{d}t} W(t) &= -\nabla \widehat{L}(W(t)), \quad W(0): \text{ arbitrary,} \\ \widehat{L}(W) &= \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i f(x_i;W))\right). \end{split}$$

The setting: two-layer leaky ReLU networks

• Two-layer nets with leaky ReLU activations ($\phi(z) = \max(z, \gamma z)$ for all z) trained by GD on the logistic loss:

$$\begin{split} f(x;W) &= \sum_{j=1}^{m} a_j \phi(\langle w_j, x \rangle), \quad a_j \in \{\pm 1/\sqrt{m}\}, \\ \frac{\mathrm{d}}{\mathrm{d}t} W(t) &= -\nabla \widehat{L}(W(t)), \quad W(0): \text{ arbitrary,} \\ \widehat{L}(W) &= 1/n \sum_{i=1}^{n} \log\left(1 + \exp(-y_i f(x_i;W))\right) \end{split}$$

 —> KKT conditions for margin maximization characterize limiting behavior of trained neural nets.

$$\min \|W\|_F^2 \quad \text{s.t.} \quad y_i f(x_i; W) \ge 1 \text{ for all } i \in [n].$$

The setting: "High-dimensional data"

• We assume data $\{(x_i,y_i)\}_{i=1}^n \subset \mathbb{R}^d imes \{\pm 1\}$ satisfy,

$$||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|, \quad \max_{i,k} \frac{||x_i||}{||x_k||} = O(1).$$

• Purely geometric condition on features: no assumptions on labels $\{y_i\}_{i=1}^n$, no probabilistic/distributional assumptions made.

The setting: "High-dimensional data"

• We assume data $\{(x_i,y_i)\}_{i=1}^n \subset \mathbb{R}^d imes \{\pm 1\}$ satisfy,

$$||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|, \quad \max_{i,k} \frac{||x_i||}{||x_k||} = O(1).$$

- Purely geometric condition on features: no assumptions on labels $\{y_i\}_{i=1}^n$, no probabilistic/distributional assumptions made.
- Satisfied in many settings w.h.p. when $(x_i, y_i) \stackrel{\text{i.i.d.}}{\sim} \mathsf{P}$ and d is large relative to n:
 - Isotropic Gaussians $x_i \overset{\text{i.i.d.}}{\sim} \mathsf{N}(0, I_d)$ when $d = \tilde{\Omega}(n^2)$.
 - x has independent sub-Gaussian components with $\mathbb{E}[x] = 0$ and $\mathbb{E}[xx^{\top}] = \Sigma$ where $\frac{\operatorname{trace}(\Sigma)}{\sqrt{\operatorname{trace}(\Sigma^2)}} = \tilde{\Omega}(n)$.

The setting: "High-dimensional data"

• We assume data $\{(x_i,y_i)\}_{i=1}^n \subset \mathbb{R}^d imes \{\pm 1\}$ satisfy,

$$||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|, \quad \max_{i,k} \frac{||x_i||}{||x_k||} = O(1).$$

- Purely geometric condition on features: no assumptions on labels $\{y_i\}_{i=1}^n$, no probabilistic/distributional assumptions made.
- Satisfied in many settings w.h.p. when $(x_i, y_i) \stackrel{\text{i.i.d.}}{\sim} \mathsf{P}$ and d is large relative to n:
 - Isotropic Gaussians $x_i \overset{\text{i.i.d.}}{\sim} \mathsf{N}(0, I_d)$ when $d = \tilde{\Omega}(n^2)$.
 - x has independent sub-Gaussian components with $\mathbb{E}[x] = 0$ and $\mathbb{E}[xx^{\top}] = \Sigma$ where $\frac{\operatorname{trace}(\Sigma)}{\sqrt{\operatorname{trace}(\Sigma^2)}} = \tilde{\Omega}(n).$
- Not satisfied in some high-dimensional settings.
 - $x_i \stackrel{\text{i.i.d.}}{\sim} \mathsf{N}(0, \operatorname{diag}(\lambda))$ where $\lambda = \operatorname{diag}(\mu, 1, \dots, 1)$ and $\mu \to \infty$.

Let f(x; W) be two-layer leaky ReLU network, and consider max-margin problem,

$$\min_{W} \|W\|_F^2 \quad \text{s.t.} \quad y_i f(x_i; W) \ge 1, \text{ for all } i \in [n].$$

Theorem [**F**.*-Vardi*-Bartlett-Srebro-Hu ICLR'23] Suppose $||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|$ and $\max_{i,k} \frac{||x_i||}{||x_k||} = O(1)$. Let V be a KKT point of Problem (1). Then the following holds:

Let f(x; W) be two-layer leaky ReLU network, and consider max-margin problem,

$$\min_{W} \|W\|_F^2 \quad \text{s.t.} \quad y_i f(x_i; W) \ge 1, \text{ for all } i \in [n].$$

Theorem [**F**.*-Vardi*-Bartlett-Srebro-Hu ICLR'23]
Suppose
$$||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|$$
 and $\max_{i,k} \frac{||x_i||}{||x_k||} = O(1)$. Let V be a KKT point of
Problem (1). Then the following holds:
1. $\operatorname{rank}(V) \leq 2$.

Let f(x; W) be two-layer leaky ReLU network, and consider max-margin problem,

$$\min_{W} \|W\|_F^2 \quad \text{s.t.} \quad y_i f(x_i; W) \ge 1, \text{ for all } i \in [n].$$

Theorem [F.*-Vardi*-Bartlett-Srebro-Hu ICLR'23] Suppose $||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|$ and $\max_{i,k} \frac{||x_i||}{||x_k||} = O(1)$. Let V be a KKT point of Problem (1). Then the following holds: 1. $\operatorname{rank}(V) \leq 2$.

2. There exists $z \in \mathbb{R}^d$ such that for all $x \in \mathbb{R}^d$, $\operatorname{sgn}(\langle z, x \rangle) = \operatorname{sgn}(f(x; V))$.

Let f(x; W) be two-layer leaky ReLU network, and consider max-margin problem,

$$\min_{W} \|W\|_F^2 \quad \text{s.t.} \quad y_i f(x_i; W) \ge 1, \text{ for all } i \in [n].$$

Theorem [F.*-Vardi*-Bartlett-Srebro-Hu ICLR'23] Suppose $||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|$ and $\max_{i,k} \frac{||x_i||}{||x_k||} = O(1)$. Let V be a KKT point of Problem (1). Then the following holds: 1. $\operatorname{rank}(V) \leq 2$. 2. There exists $z \in \mathbb{R}^d$ such that for all $x \in \mathbb{R}^d$, $\operatorname{sgn}(\langle z, x \rangle) = \operatorname{sgn}(f(x; V))$. 3. This z satisfies $z \propto \sum_{i=1}^{n} s_i y_i x_i$ for some $s_i > 0$ where $\max_{i,j} s_i / s_j = O(1)$.

Let f(x; W) be two-layer leaky ReLU network, and consider max-margin problem,

$$\min_{W} \|W\|_F^2 \quad \text{s.t.} \quad y_i f(x_i; W) \ge 1, \text{ for all } i \in [n].$$

Theorem [F.*-Vardi*-Bartlett-Srebro-Hu ICLR'23] Suppose $||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|$ and $\max_{i,k} \frac{||x_i||}{||x_k||} = O(1)$. Let V be a KKT point of Problem (1). Then the following holds: 1. $\operatorname{rank}(V) \leq 2$. 2. There exists $z \in \mathbb{R}^d$ such that for all $x \in \mathbb{R}^d$, $\operatorname{sgn}(\langle z, x \rangle) = \operatorname{sgn}(f(x; V))$. 3. This z satisfies $z \propto \sum_{i=1}^{n} s_i y_i x_i$ for some $s_i > 0$ where $\max_{i,j} s_i / s_j = O(1)$. And for any initialization W(0), gradient flow converges in direction to a net satisfying above.

Theorem [<u>F</u>.*-Vardi*-Bartlett-Srebro-Hu ICLR'23]

Suppose $||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|$ and $\max_{i,k} \frac{||x_i||}{||x_k||} = O(1)$. Let V be a KKT point of Problem (1). Then the following holds:

1. $\operatorname{rank}(V) \leq 2$.

There exists z ∈ ℝ^d such that for all x ∈ ℝ^d, sgn(⟨z,x⟩) = sgn(f(x;V)).
 This z satisfies z ∝ ∑_{i=1}ⁿ s_iy_ix_i for some s_i > 0 where max_{i,j} s_i/s_j = O(1).
 And for any initialization W(0), gradient flow converges in direction to a net satisfying above.

Theorem [<u>F</u>.*-Vardi*-Bartlett-Srebro-Hu ICLR'23]

Suppose $||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|$ and $\max_{i,k} \frac{||x_i||}{||x_k||} = O(1)$. Let V be a KKT point of Problem (1). Then the following holds:

1. $\operatorname{rank}(V) \leq 2$.

There exists z ∈ ℝ^d such that for all x ∈ ℝ^d, sgn(⟨z,x⟩) = sgn(f(x;V)).
 This z satisfies z ∝ ∑_{i=1}ⁿ s_iy_ix_i for some s_i > 0 where max_{i,j} s_i/s_j = O(1).
 And for any initialization W(0), gradient flow converges in direction to a net satisfying above.

• For $w_j \stackrel{\text{i.i.d.}}{\sim} \mathsf{N}(0, \sigma^2 I)$, $\operatorname{rank}(W(0)) \ge m \land d \implies rank \ reducing \ implicit \ regularization.$

Theorem [<u>F</u>.*-Vardi*-Bartlett-Srebro-Hu ICLR'23]

Suppose $||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|$ and $\max_{i,k} \frac{||x_i||}{||x_k||} = O(1)$. Let V be a KKT point of Problem (1). Then the following holds:

1. $\operatorname{rank}(V) \leq 2$.

There exists z ∈ ℝ^d such that for all x ∈ ℝ^d, sgn(⟨z,x⟩) = sgn(f(x;V)).
 This z satisfies z ∝ ∑_{i=1}ⁿ s_iy_ix_i for some s_i > 0 where max_{i,j} s_i/s_j = O(1).
 And for any initialization W(0), gradient flow converges in direction to a net satisfying above.

- For $w_j \stackrel{\text{i.i.d.}}{\sim} \mathsf{N}(0, \sigma^2 I)$, $\operatorname{rank}(W(0)) \ge m \land d \implies rank \ reducing \ implicit \ regularization.$
- Decision boundary is *linear*, despite nonlinear hypothesis class, and takes simple form.

Proof idea

• Proof is based on analysis of KKT conditions for margin-maximization,

$$f(x;W) = \sum_{j=1}^{m} a_j \phi(\langle w_j, x \rangle), \quad \min_{\theta} \|W\|_F^2 \quad \text{s.t.} \quad y_i f(x_i;W) \ge 1, \text{ for all } i \in [n],$$

• First step: there exist Lagrange multipliers $\lambda_1, \ldots, \lambda_n \ge 0$ s.t. for every $j \in [m]$,

$$w_j = \sum_{i=1}^n \lambda_i \nabla_{w_j} (y_i f(x_i; W)) = \sum_{i=1}^n \lambda_i y_i a_j \phi'_{i,j} x_i.$$

$$\tag{1}$$

- $\phi'_{i,j} \geq \gamma > 0$ is sub-gradient of ϕ at $\langle w_j, x_i \rangle$, and for all $i \in [n]$, $\lambda_i = 0$ if $y_i f(x_i; W) > 1$.
- Analysis proceeds by showing all λ_i are strictly positive, "not too small" and "not too large", then using (1) to analyze f(x; W).

Summary: Implicit regularization of gradient flow

• Provided data is sufficiently high-dimensional ($||x_i||^2 \gg n \max_{k \neq j} |\langle x_j, x_k \rangle|$), gradient flow

is biased towards low-rank networks.

• Moreover, decision boundary is linear, and satisfies

$$\operatorname{sgn}(\langle z, x \rangle) = \operatorname{sgn}(f(x; W)), \quad z \propto \sum_{i=1}^{n} s_i y_i x_i, \quad \max_{i,j} s_i / s_j = O(1)$$

• Next: use these results to say something about generalization and *benign overfitting*.

• Benign overfitting refers to settings where there is *noise*, the estimator achieves zero training error (overfits), yet still generalizes well (even optimally).

Benign overfitting

• Minimum-norm least squares interpolation is most well-understood predictor in benign overfitting, aided by the explicit formula for the predictor:

$$\operatorname{argmin}\{\|w\|^2 : y_i = \langle w, x_i \rangle\} = X^\top (XX^\top)^+ y.$$

• Even in linear classification, no explicit formula for max-margin predictor (in general). Ditto NNs trained by GD/GF.

Benign overfitting

• Minimum-norm least squares interpolation is most well-understood predictor in benign overfitting, aided by the explicit formula for the predictor:

$$\operatorname{argmin}\{\|w\|^2 : y_i = \langle w, x_i \rangle\} = X^\top (XX^\top)^+ y.$$

- Even in linear classification, no explicit formula for max-margin predictor (in general). Ditto NNs trained by GD/GF.
- If data is "high-dimensional", then our implicit bias results show that NN trained by GF converges to network satisfying:

$$\operatorname{sgn}(\langle z, x \rangle) = \operatorname{sgn}(f(x; W)), \quad z \propto \sum_{i=1}^{n} s_i y_i x_i, \quad \max_{i,j} s_i / s_j = O(1).$$

• \implies NN trained by gradient flow exhibits benign overfitting if $x \mapsto \operatorname{sgn}(\langle z, x \rangle)$ does.

• Opposing clusters: for $\mu \in \mathbb{R}^d$ and $z \sim \mathsf{P}$ isotropic, independent sub-Gaussian components, $\tilde{y} \sim \mathsf{Unif}(\{\pm 1\}), \quad x|\tilde{y} = \tilde{y}\mu + z, \quad y = \begin{cases} \tilde{y}, & \text{w.p. } 1 - p, \\ -\tilde{y}, & \text{w.p. } p. \end{cases}$

• Analysis can be extended to additional settings, but key ideas can be seen with opposing clusters, so will focus here

Benign overfitting for $\tau\text{-uniform classifiers}$

Say
$$u \in \mathbb{R}^d$$
 is au -uniform w.r.t. $S = \{(x_i, y_i)\}_{i=1}^n$ if $u = \sum_{i=1}^n s_i y_i x_i$ with $\max_{i,j} s_i / s_j \leq au$.

Benign overfitting for $\tau\text{-uniform classifiers}$

Say $u \in \mathbb{R}^d$ is τ -uniform w.r.t. $S = \{(x_i, y_i)\}_{i=1}^n$ if $u = \sum_{i=1}^n s_i y_i x_i$ with $\max_{i,j} s_i/s_j \leq \tau$. Assumptions: for large C > 1,

(A1) Number of samples $n \ge C$.

(A2) Mean separation $\|\mu\| = \Theta(d^{\beta}), \beta \in (0, 1/2).$ (A3) Dimension $d \ge Cn^{2 \vee \frac{1}{1-2\beta}} \log(n).$ (A2) + (A3) imply $\|x_k\|^2 \gg n \max_{i \ne j} |\langle x_i, x_j \rangle|.$

• $x|\tilde{y} = \tilde{y}\mu + z$, labels flipped w.p. p.

Benign overfitting for τ -uniform classifiers

Say $u \in \mathbb{R}^d$ is τ -uniform w.r.t. $S = \{(x_i, y_i)\}_{i=1}^n$ if $u = \sum_{i=1}^n s_i y_i x_i$ with $\max_{i,j} s_i / s_j \leq \tau$. Assumptions: for large C > 1,

(A1) Number of samples n > C. (A2) Mean separation $\|\mu\| = \Theta(d^{\beta}), \beta \in (0, 1/2).$ (A3) Dimension $d \ge Cn^{2 \vee \frac{1}{1-2\beta}} \log(n)$. (A2) + (A3) imply $||x_k||^2 \gg n \max_{i \neq j} |\langle x_i, x_j \rangle|$.

• $x|\tilde{y} = \tilde{y}\mu + z$, labels flipped w.p. p.

Theorem [F.*-Vardi-Bartlett-Srebro, COLT'23]

For $\tau \geq 1$, assume noise rate $p < \frac{1}{1+\tau}$. For some absolute C, C' > 1, under (A1)-(A3) w.p. at least 99% over Pⁿ, if u is τ -uniform w.r.t. S then: for all $k \in [n]$, $y_k = \operatorname{sgn}(\langle u, x_k \rangle)$, and

$$p \leq \mathbb{P}_{(x,y) \sim \mathsf{P}} \left(y \neq \operatorname{sgn}(\langle u, x \rangle) \right) \leq p + \exp\left(-n \|\mu\|^4 / C' d \right).$$

overfitting if $\|\mu\| = \Theta(d^{\beta})$ for $\beta \in (1/4, 1/2)$. Benign

Benign overfitting for $\tau\text{-uniform classifiers}$

Say
$$u \in \mathbb{R}^d$$
 is τ -uniform w.r.t. $S = \{(x_i, y_i)\}_{i=1}^n$ if $u = \sum_{i=1}^n s_i y_i x_i$ with $\max_{i,j} s_i/s_j \leq \tau$.
Theorem [F.*-Vardi*-Bartlett-Srebro, COLT'23]
For $\tau \geq 1$, assume noise rate $p < \frac{1}{1+\tau}$. For some absolute $C, C' > 1$, under (A1)-(A3) w.p.
at least 99% over Pⁿ, if u is τ -uniform w.r.t. S then: for all k , $y_k = \operatorname{sgn}(\langle u, x_k \rangle)$, and
 $p \leq \mathbb{P}_{(x,y)\sim \mathsf{P}}(y \neq \operatorname{sgn}(\langle u, x \rangle)) \leq p + \exp(-n\|\mu\|^4/C'd)$.

• Benign overfitting if
$$\|\mu\| = \Theta(d^{\beta})$$
 for $\beta \in (1/4, 1/2)$.

Benign overfitting for $\tau\text{-uniform classifiers}$

Say
$$u \in \mathbb{R}^d$$
 is τ -uniform w.r.t. $S = \{(x_i, y_i)\}_{i=1}^n$ if $u = \sum_{i=1}^n s_i y_i x_i$ with $\max_{i,j} s_i/s_j \leq \tau$.
Theorem [F.*-Vardi*-Bartlett-Srebro, COLT'23]
For $\tau \geq 1$, assume noise rate $p < \frac{1}{1+\tau}$. For some absolute $C, C' > 1$, under (A1)-(A3) w.p.
at least 99% over Pⁿ, if u is τ -uniform w.r.t. S then: for all k , $y_k = \operatorname{sgn}(\langle u, x_k \rangle)$, and
 $p \leq \mathbb{P}_{(x,y)\sim \mathsf{P}}(y \neq \operatorname{sgn}(\langle u, x \rangle)) \leq p + \exp(-n\|\mu\|^4/C'd)$.

• Benign overfitting if $\|\mu\| = \Theta(d^{\beta})$ for $\beta \in (1/4, 1/2)$.

• Sample average $\sum_{i=1}^{n} y_i x_i$ is 1-uniform and can tolerate noise rates close to p = 1/2.

Benign overfitting for τ -uniform classifiers

Say
$$u \in \mathbb{R}^d$$
 is τ -uniform w.r.t. $S = \{(x_i, y_i)\}_{i=1}^n$ if $u = \sum_{i=1}^n s_i y_i x_i$ with $\max_{i,j} s_i/s_j \leq \tau$.
Theorem [F.*-Vardi*-Bartlett-Srebro, COLT'23]
For $\tau \geq 1$, assume noise rate $p < \frac{1}{1+\tau}$. For some absolute $C, C' > 1$, under (A1)-(A3) w.p.
at least 99% over Pⁿ, if u is τ -uniform w.r.t. S then: for all k , $y_k = \operatorname{sgn}(\langle u, x_k \rangle)$, and
 $p \leq \mathbb{P}_{(x,y)\sim \mathsf{P}}(y \neq \operatorname{sgn}(\langle u, x \rangle)) \leq p + \exp(-n \|\mu\|^4 / C'd)$.

• Benign overfitting if
$$\|\mu\| = \Theta(d^{\beta})$$
 for $\beta \in (1/4, 1/2)$.

- Sample average $\sum_{i=1}^{n} y_i x_i$ is 1-uniform and can tolerate noise rates close to p = 1/2.
- Previous implicit bias results \implies max-margin linear classifiers and max-margin two-layer leaky ReLU networks are τ -uniform for $\tau = O(1)$.
- No dependence on number of parameters of network!

- Will focus on the 1-uniform classifier $u := \sum_{i=1}^{n} y_i x_i$ and Gaussian data $z \sim N(0, I_d)$.
- Recall data generated: $\tilde{y} \sim \text{Unif}(\{\pm 1\}), x | \tilde{y} = \tilde{y}\mu + z$, then $y = -\tilde{y}$ w.p. p.
- Say $i \in C$ ('clean') if $y_i = \tilde{y}_i$, $i \in \mathcal{N}$ ('noisy') if $y_i = -\tilde{y}_i$.

- Will focus on the 1-uniform classifier $u := \sum_{i=1}^{n} y_i x_i$ and Gaussian data $z \sim N(0, I_d)$.
- Recall data generated: $\tilde{y} \sim \text{Unif}(\{\pm 1\}), \, x | \tilde{y} = \tilde{y}\mu + z$, then $y = -\tilde{y}$ w.p. p.
- Say $i \in C$ ('clean') if $y_i = \tilde{y}_i$, $i \in \mathcal{N}$ ('noisy') if $y_i = -\tilde{y}_i$.

$$u = \sum_{i=1}^{n} y_i x_i = \sum_{i \in \mathcal{C}} (\mu + y_i z_i) + \sum_{i \in \mathcal{N}} (-\mu + y_i z_i) = (|\mathcal{C}| - |\mathcal{N}|) \mu + \sum_{i=1}^{n} y_i z_i$$
$$\propto \mu + \frac{1}{|\mathcal{C}| - |\mathcal{N}|} \sum_{i=1}^{n} y_i z_i =: \mu + \Delta_n$$

- Will focus on the 1-uniform classifier $u := \sum_{i=1}^{n} y_i x_i$ and Gaussian data $z \sim N(0, I_d)$.
- Recall data generated: $\tilde{y} \sim \text{Unif}(\{\pm 1\}), \, x | \tilde{y} = \tilde{y}\mu + z$, then $y = -\tilde{y}$ w.p. p.
- Say $i \in C$ ('clean') if $y_i = \tilde{y}_i$, $i \in \mathcal{N}$ ('noisy') if $y_i = -\tilde{y}_i$.

$$u = \sum_{i=1}^{n} y_i x_i = \sum_{i \in \mathcal{C}} (\mu + y_i z_i) + \sum_{i \in \mathcal{N}} (-\mu + y_i z_i) = (|\mathcal{C}| - |\mathcal{N}|) \mu + \sum_{i=1}^{n} y_i z_i$$
$$\propto \mu + \frac{1}{|\mathcal{C}| - |\mathcal{N}|} \sum_{i=1}^{n} y_i z_i =: \mu + \Delta_n$$

• Signal component will help with generalization, but hurts overfitting: $\langle \mu, yx \rangle \gg 0$ for clean test examples, $\langle \mu, y_i x_i \rangle \ll 0$ for $i \in \mathcal{N}$

- Will focus on the 1-uniform classifier $u := \sum_{i=1}^{n} y_i x_i$ and Gaussian data $z \sim N(0, I_d)$.
- Recall data generated: $\tilde{y} \sim \text{Unif}(\{\pm 1\}), x | \tilde{y} = \tilde{y}\mu + z$, then $y = -\tilde{y}$ w.p. p.
- Say $i \in C$ ('clean') if $y_i = \tilde{y}_i$, $i \in \mathcal{N}$ ('noisy') if $y_i = -\tilde{y}_i$.

$$u = \sum_{i=1}^{n} y_i x_i = \sum_{i \in \mathcal{C}} (\mu + y_i z_i) + \sum_{i \in \mathcal{N}} (-\mu + y_i z_i) = (|\mathcal{C}| - |\mathcal{N}|) \mu + \sum_{i=1}^{n} y_i z_i$$
$$\propto \mu + \frac{1}{|\mathcal{C}| - |\mathcal{N}|} \sum_{i=1}^{n} y_i z_i =: \mu + \Delta_n$$

- Signal component will help with generalization, but hurts overfitting: $\langle \mu, yx \rangle \gg 0$ for clean test examples, $\langle \mu, y_i x_i \rangle \ll 0$ for $i \in \mathcal{N}$
- Overfitting component will help with overfitting, but hurts generalization: $\langle \Delta_n, y_k x_k \rangle \gg 0$ for training, but Δ_n useless for test

- Will focus on the 1-uniform classifier $u := \sum_{i=1}^{n} y_i x_i$ and Gaussian data $z \sim N(0, I_d)$.
- Recall data generated: $\tilde{y} \sim \text{Unif}(\{\pm 1\}), \ x | \tilde{y} = \tilde{y}\mu + z$, then $y = -\tilde{y}$ w.p. p.
- Say $i \in C$ ('clean') if $y_i = \tilde{y}_i$, $i \in \mathcal{N}$ ('noisy') if $y_i = -\tilde{y}_i$.

$$u = \sum_{i=1}^{n} y_i x_i = \sum_{i \in \mathcal{C}} (\mu + y_i z_i) + \sum_{i \in \mathcal{N}} (-\mu + y_i z_i) = (|\mathcal{C}| - |\mathcal{N}|) \mu + \sum_{i=1}^{n} y_i z_i$$
$$\propto \mu + \frac{1}{|\mathcal{C}| - |\mathcal{N}|} \sum_{i=1}^{n} y_i z_i =: \mu + \Delta_n$$

- Signal component will help with generalization, but hurts overfitting: $\langle \mu, yx \rangle \gg 0$ for clean test examples, $\langle \mu, y_i x_i \rangle \ll 0$ for $i \in \mathcal{N}$
- Overfitting component will help with overfitting, but hurts generalization: $\langle \Delta_n, y_k x_k \rangle \gg 0$ for training, but Δ_n useless for test
- Appropriately balanced, they together allow for benign overfitting

$$u = \sum_{i=1}^{n} y_i x_i \propto \mu + \frac{1}{|\mathcal{C}| - |\mathcal{N}|} \sum_{i=1}^{n} y_i z_i \approx \mu + \frac{1}{n(1-2p)} \sum_{i=1}^{n} y_i z_i =: \mu + \Delta_n.$$

Since $z_i \sim N(0, I_d)$, for p = 1/4 have $\Delta_n \sim N(0, \frac{1}{4n}I_d)$.

$$u = \sum_{i=1}^{n} y_i x_i \propto \mu + \frac{1}{|\mathcal{C}| - |\mathcal{N}|} \sum_{i=1}^{n} y_i z_i \approx \mu + \frac{1}{n(1-2p)} \sum_{i=1}^{n} y_i z_i =: \mu + \Delta_n.$$

Since $z_i \sim N(0, I_d)$, for p = 1/4 have $\Delta_n \sim N(0, \frac{1}{4n}I_d)$.

Signal effect on clean test data :

• $\langle \tilde{y}\mu, \tilde{y}\mu + z \rangle = \|\mu\|^2 + \mathsf{N}(0, \|\mu\|^2).$

Signal effect on training data:

• $\langle y_k \mu, \tilde{y}_k \mu + z_k \rangle =$ $y_k \tilde{y}_k \|\mu\|^2 + \mathsf{N}(0, \|\mu\|^2).$ $y_k \tilde{y}_k$ is negative for $k \in \mathcal{N}$.

$$u = \sum_{i=1}^{n} y_i x_i \propto \mu + \frac{1}{|\mathcal{C}| - |\mathcal{N}|} \sum_{i=1}^{n} y_i z_i \approx \mu + \frac{1}{n(1-2p)} \sum_{i=1}^{n} y_i z_i =: \mu + \Delta_n.$$

Since $z_i \sim N(0, I_d)$, for p = 1/4 have $\Delta_n \sim N(0, \frac{1}{4n}I_d)$.

Signal effect on clean test data :

•
$$\langle \tilde{y}\mu, \tilde{y}\mu + z \rangle = \|\mu\|^2 + \mathsf{N}(0, \|\mu\|^2).$$

Signal effect on training data:

• $\langle y_k \mu, \tilde{y}_k \mu + z_k \rangle =$ $y_k \tilde{y}_k \|\mu\|^2 + \mathsf{N}(0, \|\mu\|^2).$ $y_k \tilde{y}_k$ is negative for $k \in \mathcal{N}.$ Overfitting component effect on clean test:

•
$$|\langle \tilde{y}\Delta_n, \tilde{y}\mu + z \rangle| = O\left(||\mu||^2/\sqrt{n}\right) + O(\sqrt{d/n}).$$

Overfitting component effect on training:

•
$$2\sqrt{n}\langle \Delta_n, y_k z_k \rangle =$$

 $\|z_k\|^2 + \sum_{i \neq k} \langle y_i z_i, y_k z_k \rangle \gtrsim d \text{ if } d \gg n^2.$

• $\langle y_k \Delta_n, \tilde{y}_k \mu + z_k \rangle \ge \Omega(d/\sqrt{n}) - O(\|\mu\|/\sqrt{n}).$

$$u = \sum_{i=1}^{n} y_i x_i \propto \mu + \frac{1}{|\mathcal{C}| - |\mathcal{N}|} \sum_{i=1}^{n} y_i z_i \approx \mu + \frac{1}{n(1-2p)} \sum_{i=1}^{n} y_i z_i =: \mu + \Delta_n.$$

Since $z_i \sim N(0, I_d)$, for p = 1/4 have $\Delta_n \sim N(0, \frac{1}{4n}I_d)$.

Signal effect on clean test data :

•
$$\langle \tilde{y}\mu, \tilde{y}\mu + z \rangle = \|\mu\|^2 + \mathsf{N}(0, \|\mu\|^2).$$

Signal effect on training data:

• $\langle y_k \mu, \tilde{y}_k \mu + z_k \rangle =$ $y_k \tilde{y}_k \|\mu\|^2 + \mathsf{N}(0, \|\mu\|^2).$ $y_k \tilde{y}_k$ is negative for $k \in \mathcal{N}.$ Overfitting component effect on clean test:

•
$$|\langle \tilde{y}\Delta_n, \tilde{y}\mu + z \rangle| = O\left(\|\mu\|^2/\sqrt{n}\right) + O(\sqrt{d/n}).$$

Overfitting component effect on training:

- $2\sqrt{n}\langle\Delta_n, y_k z_k\rangle =$ $\|z_k\|^2 + \sum_{i \neq k} \langle y_i z_i, y_k z_k\rangle \gtrsim d \text{ if } d \gg n^2.$
- $\langle y_k \Delta_n, \tilde{y}_k \mu + z_k \rangle \ge \Omega(d/\sqrt{n}) O(\|\mu\|/\sqrt{n}).$
- If $\|\mu\|^2 \gg \sqrt{d/n}$, Signal dominates effect on clean test data.
- If $d \gg \|\mu\|$, $d/\sqrt{n} \gg \|\mu\|^2$, Overfitting dominates effect on training.
- Simultaneously satisfied if e.g. $\|\mu\| = \Theta(d^{\beta})$, $\beta \in (1/4, 1/2)$, and $d \gg n^{\frac{1}{1-2\beta}}$.

Conclusion

• Implicit bias of gradient flow in two-layer leaky ReLU nets when data is 'nearly-orthogonal':

$$||x_k||^2 \gg n \max_{i \neq j} |\langle x_i, x_j \rangle|.$$

• KKT points of max-margin problem for two-layer leaky ReLU nets have linear decision boundaries given by *τ*-uniform classifiers:

$$\operatorname{sgn}(f(x;V)) = \operatorname{sgn}(\langle z, x \rangle), \quad z = \sum_{i=1}^{n} s_i y_i x_i, \quad \max_{i,j} s_i / s_j = O(1).$$

- Under certain distributional assumptions and if $d \gg n$, τ -uniform classifiers exhibit benign overfitting.
- In opposing cluster setting, such classifiers decomposed into 'signal' and 'overfitting' components which are in tension but can be balanced.

Surprises in neural networks trained by gradient descent

- $d \gg n$ necessary for benign overfitting in *linear* models, but unknown if necessary for neural networks
- What happens in two-layer leaky nets on opposing cluster data when $n \gg d$?

Surprises in neural networks trained by gradient descent

- $d \gg n$ necessary for benign overfitting in *linear* models, but unknown if necessary for neural networks
- What happens in two-layer leaky nets on opposing cluster data when $n \gg d$?

• Learning dynamics different in n>d setting; overfitting less 'benign'

 \longrightarrow "Blessing of dimensionality"?

Benign overfitting for leaky ReLU networks

Let
$$f(x;W) = \sum_{j=1}^{m} a_j \phi(\langle w_j, x \rangle)$$
, $\phi(q) = \max(q, \gamma q)$, and max-margin problem,

$$\min_{W} \|W\|_F^2 \quad \text{s.t.} \quad y_i f(x_i; W) \ge 1, \text{ for all } i \in [n].$$

$$\tag{1}$$

Theorem [F.*-Vardi*-Bartlett-Srebro, COLT'23] Let V be a KKT point of (1). For opposing cluster data, under (A1)-(A3), w.p. at least 99%: 1. There exists $z \in \mathbb{R}^d$ such that for all $x \in \mathbb{R}^d$, $\operatorname{sgn}(\langle z, x \rangle) = \operatorname{sgn}(f(x; V))$. 2. $z \propto \sum_{i=1}^{n} s_i y_i x_i$ where $\max_{i,j} \frac{s_i}{s_j} \le \frac{51}{49} \gamma^{-2}$, i.e. z is τ -uniform for $\tau \le \frac{51}{49} \gamma^{-2}$. 3. For noise rate $p \leq 0.49\gamma^2$, $p \leq \mathbb{P}_{(x,y)\sim \mathsf{P}}\left(y \neq \operatorname{sgn}(f(x;V))\right) \leq p + \exp\left(-n\|\mu\|^4/C'd\right)$. And for any initialization W(0), gradient flow converges in direction to a net satisfying above.

• Test error does not depend on number of neurons.

• m = 1, $\gamma \to 1$: leaky ReLU net becomes linear max-margin, tolerates close to p = 1/2.