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Implicit regularization

• A.K.A. “Implicit bias”, “algorithmic regularization”, “inductive bias”, . . .

• Optimization algorithms can minimize ‘complexity’, with no explicit regularization.
• Gradient flow in least squares ↔ min `2:

d

dt
w(t) = −∇

(
1

n

n∑
i=1

(yi − 〈w(t), xi〉)2

)
←→ w(t)→ min

w
‖w‖22 : 〈w, xi〉 = yi ∀i.

• Gradient flow/descent on exponential loss ↔ maximum margin:

d

dt
w(t) = −∇

(
1

n

n∑
i=1

exp
(
− yi〈w(t), xi〉

))
←→ w(t)→ min

w
‖w‖22 : yi〈w, xi〉 ≥ 1 ∀i.

• For gradient flow/descent on neural nets, story is much more complicated, but
conjectured to contribute to success of deep learning

See: [Telgarsky’13; Soudry+’18; Ji-Telgarsky’20; Lyu-Li’20; . . . ]
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Benign overfitting

• Benign overfitting refers to settings where there is noise , the estimator achieves

zero training error (overfits) , yet still generalizes well (even optimally).

• Hard to reconcile uniform convergence with interpolation of noisy data:

c < sup
f∈F

L(f) = sup
f∈F

L(f)− L̂n(f)
(?)

.
√

Complexity(F)/n.

• Good understanding of mechanisms of benign overfitting in linear regression [Bartlett+’20;

Hastie+’22; . . . ], but little in neural networks
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Our contributions

We examine behavior of neural nets when trained on “high-dimensional data” (d � n, to be
made precise shortly).

• Implicit regularization: Gradient flow-trained two-layer networks have low rank and a
very simple/tractable structure.

• Benign overfitting from implicit regularization: in particular distributional settings,
this simple structure implies benign overfitting.
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Implicit bias in homogeneous neural networks

L̂(θ) =
1

n

n∑
i=1

`
(
yiN(xi; θ)

)
, `(q) = log(1 + exp(−q)), d

dt
θ(t) = −∇L̂(θ(t)) ,

min
θ
‖θ‖2 s.t. yiN(xi; θ) ≥ 1, for all i ∈ [n]. (1)

Theorem [Lyu-Li’19; Ji-Telgarsky’20]

Consider gradient flow -trained net. If N(x; θ) is L-homogeneous (N(x;αθ) = αLN(x; θ))

and there exists time t0 s.t. L̂(θ(t0)) < 1/n. Then gradient flow converges in direction to a

first-order stationary point (KKT point) of max-margin problem (1) , and L̂(θ(t))→ 0.

• There exists θ∗ satisfying Karush–Kuhn–Tucker conditions of (1) s.t. θ(t)
‖θ(t)‖ →

θ∗

‖θ∗‖ .
• Satisfying KKT conditions does not imply global optimality in general [Vardi-Shamir-Srebro’22].
• Theorem does not depend on initialization θ(0).
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Implicit bias in homogeneous neural networks

• By [Lyu-Li’19; Ji-Telgarsky’20], KKT conditions of max-margin problem (1) capture

limiting behavior of (homogeneous) neural network training.

min
θ
‖θ‖2 s.t. yiN(xi; θ) ≥ 1, for all i ∈ [n]. (1)

• We’ll show that in some settings, satisfaction of KKT conditions for Problem (1) implies
good generalization (and benign overfitting).
• Any algorithm that produces max-margin neural nets would have same behavior.
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The setting: two-layer leaky ReLU networks

• Two-layer nets with leaky ReLU activations ( φ(z) = max(z, γz) for

all z) trained by GD on the logistic loss:

8 4 0 4 8

0

4

8

f(x;W ) =
m∑
j=1

ajφ(〈wj , x〉), aj ∈ {±1/
√
m},

d

dt
W (t) = −∇L̂(W (t)), W (0) : arbitrary,

L̂(W ) = 1/n
∑n

i=1 log
(
1 + exp(−yif(xi;W ))

)
.

• Since φ is 1-homogeneous , so is f(x; ·).
• =⇒ KKT conditions for margin maximization characterize limiting behavior of trained

neural nets.
min ‖W‖2F s.t. yif(xi;W ) ≥ 1 for all i ∈ [n].
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The setting: “High-dimensional data”

• We assume data {(xi, yi)}ni=1 ⊂ Rd × {±1} satisfy,

‖xi‖2 � nmax
k 6=j
|〈xj , xk〉| , max

i,k

‖xi‖
‖xk‖

= O(1).

• Purely geometric condition on features: no assumptions on labels {yi}ni=1, no
probabilistic/distributional assumptions made.

• Satisfied in many settings w.h.p. when (xi, yi)
i.i.d.∼ P and d is large relative to n:

• Isotropic Gaussians xi
i.i.d.∼ N(0, Id) when d = Ω̃(n2).

• x has independent sub-Gaussian components with E[x] = 0 and E[xx>] = Σ where
trace(Σ)√
trace(Σ2)

= Ω̃(n).

• Not satisfied in some high-dimensional settings.

• xi
i.i.d.∼ N(0,diag(λ)) where λ = diag(µ, 1, . . . , 1) and µ→∞.
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Implicit bias in leaky ReLU nets for high-dimensional data

Let f(x;W ) be two-layer leaky ReLU network, and consider max-margin problem,

min
W
‖W‖2F s.t. yif(xi;W ) ≥ 1, for all i ∈ [n]. (1)

Theorem [F.∗-Vardi∗-Bartlett-Srebro-Hu ICLR’23]

Suppose ‖xi‖2 � nmax
k 6=j
|〈xj , xk〉| and maxi,k

‖xi‖
‖xk‖ = O(1). Let V be a KKT point of

Problem (1). Then the following holds:

1. rank(V ) ≤ 2 .

2. There exists z ∈ Rd such that for all x ∈ Rd, sgn(〈z, x〉) = sgn(f(x;V )) .

3. This z satisfies z ∝
∑n

i=1 siyixi for some si > 0 where maxi,j si/sj = O(1) .

And for any initialization W (0), gradient flow converges in direction to a net satisfying above.
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• For wj
i.i.d.∼ N(0, σ2I), rank(W (0)) ≥ m ∧ d =⇒ rank reducing implicit regularization.

• Decision boundary is linear , despite nonlinear hypothesis class, and takes simple form .

9 / 18



Implicit bias in leaky ReLU nets for high-dimensional data

Theorem [F.∗-Vardi∗-Bartlett-Srebro-Hu ICLR’23]

Suppose ‖xi‖2 � nmax
k 6=j
|〈xj , xk〉| and maxi,k

‖xi‖
‖xk‖ = O(1). Let V be a KKT point of

Problem (1). Then the following holds:

1. rank(V ) ≤ 2 .

2. There exists z ∈ Rd such that for all x ∈ Rd, sgn(〈z, x〉) = sgn(f(x;V )) .

3. This z satisfies z ∝
∑n

i=1 siyixi for some si > 0 where maxi,j si/sj = O(1) .

And for any initialization W (0), gradient flow converges in direction to a net satisfying above.

• For wj
i.i.d.∼ N(0, σ2I), rank(W (0)) ≥ m ∧ d =⇒ rank reducing implicit regularization.

• Decision boundary is linear , despite nonlinear hypothesis class, and takes simple form .

9 / 18



Implicit bias in leaky ReLU nets for high-dimensional data

Theorem [F.∗-Vardi∗-Bartlett-Srebro-Hu ICLR’23]

Suppose ‖xi‖2 � nmax
k 6=j
|〈xj , xk〉| and maxi,k

‖xi‖
‖xk‖ = O(1). Let V be a KKT point of

Problem (1). Then the following holds:

1. rank(V ) ≤ 2 .

2. There exists z ∈ Rd such that for all x ∈ Rd, sgn(〈z, x〉) = sgn(f(x;V )) .

3. This z satisfies z ∝
∑n

i=1 siyixi for some si > 0 where maxi,j si/sj = O(1) .

And for any initialization W (0), gradient flow converges in direction to a net satisfying above.

• For wj
i.i.d.∼ N(0, σ2I), rank(W (0)) ≥ m ∧ d =⇒ rank reducing implicit regularization.

• Decision boundary is linear , despite nonlinear hypothesis class, and takes simple form .

9 / 18



Proof idea

• Proof is based on analysis of KKT conditions for margin-maximization,

f(x;W ) =

m∑
j=1

ajφ(〈wj , x〉), min
θ
‖W‖2F s.t. yif(xi;W ) ≥ 1, for all i ∈ [n], (1)

• First step: there exist Lagrange multipliers λ1, . . . , λn ≥ 0 s.t. for every j ∈ [m],

wj =

n∑
i=1

λi∇wj (yif(xi;W )) =

n∑
i=1

λiyiajφ
′
i,jxi. (1)

• φ′i,j ≥ γ > 0 is sub-gradient of φ at 〈wj , xi〉, and for all i ∈ [n], λi = 0 if
yif(xi;W ) > 1.

• Analysis proceeds by showing all λi are strictly positive, “not too small” and “not too
large”, then using (1) to analyze f(x;W ).
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Summary: Implicit regularization of gradient flow

• Provided data is sufficiently high-dimensional ( ‖xi‖2 � nmax
k 6=j
|〈xj , xk〉| ), gradient flow

is biased towards low-rank networks.
• Moreover, decision boundary is linear, and satisfies

sgn(〈z, x〉) = sgn(f(x;W )), z ∝
∑n

i=1 siyixi, maxi,j si/sj = O(1) .

• Next: use these results to say something about generalization and benign overfitting.

• Benign overfitting refers to settings where there is noise , the estimator achieves

zero training error (overfits) , yet still generalizes well (even optimally).
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Benign overfitting

• Minimum-norm least squares interpolation is most well-understood predictor in benign
overfitting, aided by the explicit formula for the predictor:

argmin{‖w‖2 : yi = 〈w, xi〉} = X>(XX>)+y.

• Even in linear classification, no explicit formula for max-margin predictor (in general).
Ditto NNs trained by GD/GF.

• If data is “high-dimensional”, then our implicit bias results show that NN trained by GF
converges to network satisfying:

sgn(〈z, x〉) = sgn(f(x;W )), z ∝
∑n

i=1 siyixi , max
i,j

si/sj = O(1).

• =⇒ NN trained by gradient flow exhibits benign overfitting if x 7→ sgn(〈z, x〉) does.
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Distributional setting

• Opposing clusters: for µ ∈ Rd and z ∼ P
isotropic, independent sub-Gaussian components,

ỹ ∼ Unif({±1}), x|ỹ = ỹµ+z, y =

{
ỹ, w.p. 1− p,
−ỹ, w.p. p.

μ

• Analysis can be extended to additional settings, but key ideas can be seen with
opposing clusters , so will focus here
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Benign overfitting for τ -uniform classifiers

Say u ∈ Rd is τ -uniform w.r.t. S = {(xi, yi)}ni=1 if u =
∑n

i=1 siyixi with maxi,j si/sj ≤ τ .

Assumptions: for large C > 1,

(A1) Number of samples n ≥ C.

(A2) Mean separation ‖µ‖ = Θ(dβ), β ∈ (0, 1/2).

(A3) Dimension d ≥ Cn2∨
1

1−2β log(n).

(A2) + (A3) imply ‖xk‖2 � nmaxi 6=j |〈xi, xj〉|.

μ

• x|ỹ = ỹµ+ z, labels flipped w.p. p.

Theorem [F.∗-Vardi-Bartlett-Srebro, COLT’23]

For τ ≥ 1, assume noise rate p < 1
1+τ . For some absolute C,C ′ > 1, under (A1)-(A3) w.p. at

least 99% over Pn, if u is τ -uniform w.r.t. S then: for all k ∈ [n], yk = sgn
(
〈u, xk〉

)
, and

p ≤ P(x,y)∼P
(
y 6= sgn(〈u, x〉)

)
≤ p+ exp (−n‖µ‖4/C′d) .

Benign overfitting if ‖µ‖ = Θ(dβ) for β ∈ (1/4, 1/2).
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Assumptions: for large C > 1,

(A1) Number of samples n ≥ C.

(A2) Mean separation ‖µ‖ = Θ(dβ), β ∈ (0, 1/2).

(A3) Dimension d ≥ Cn2∨
1

1−2β log(n).
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μ

• x|ỹ = ỹµ+ z, labels flipped w.p. p.

Theorem [F.∗-Vardi-Bartlett-Srebro, COLT’23]

For τ ≥ 1, assume noise rate p < 1
1+τ . For some absolute C,C ′ > 1, under (A1)-(A3) w.p. at

least 99% over Pn, if u is τ -uniform w.r.t. S then: for all k ∈ [n], yk = sgn
(
〈u, xk〉

)
, and

p ≤ P(x,y)∼P
(
y 6= sgn(〈u, x〉)

)
≤ p+ exp (−n‖µ‖4/C′d) .

Benign overfitting if ‖µ‖ = Θ(dβ) for β ∈ (1/4, 1/2).
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• Sample average
∑n

i=1 yixi is 1-uniform and can tolerate noise rates close to p = 1/2.

• Previous implicit bias results =⇒ max-margin linear classifiers and max-margin
two-layer leaky ReLU networks are τ -uniform for τ = O(1).

• No dependence on number of parameters of network!
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Proof idea: signal + overfitting component decomposition

• Will focus on the 1-uniform classifier u :=
∑n

i=1 yixi and Gaussian data z ∼ N(0, Id).
• Recall data generated: ỹ ∼ Unif({±1}), x|ỹ = ỹµ+ z, then y = −ỹ w.p. p.
• Say i ∈ C (‘clean’) if yi = ỹi, i ∈ N (‘noisy’) if yi = −ỹi.

u =
n∑
i=1

yixi =
∑
i∈C

(µ+ yizi) +
∑
i∈N

(−µ+ yizi) = (|C| − |N |)µ+
n∑
i=1

yizi

∝ µ +
1

|C| − |N |

n∑
i=1

yizi =: µ + ∆n

• Signal component will help with generalization, but hurts overfitting: 〈µ, yx〉 � 0 for

clean test examples, 〈µ, yixi〉 � 0 for i ∈ N
• Overfitting component will help with overfitting, but hurts generalization:

〈∆n, ykxk〉 � 0 for training, but ∆n useless for test
• Appropriately balanced, they together allow for benign overfitting
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Proof idea: signal + overfitting component decomposition

u =
∑n

i=1 yixi ∝ µ + 1
|C|−|N |

∑n
i=1 yizi ≈ µ + 1

n(1−2p)
∑n

i=1 yizi =: µ+ ∆n.

Since zi ∼ N(0, Id), for p = 1/4 have ∆n ∼ N(0, 1
4nId).

Signal effect on clean test data :

• 〈ỹµ, ỹµ+ z〉 = ‖µ‖2 + N(0, ‖µ‖2).

Signal effect on training data:

• 〈ykµ, ỹkµ+ zk〉 =
ykỹk‖µ‖2 + N(0, ‖µ‖2).
ykỹk is negative for k ∈ N .

Overfitting component effect on clean test:

• |〈ỹ∆n, ỹµ+z〉| = O
(
‖µ‖2/

√
n
)
+O(

√
d/n).

Overfitting component effect on training:

• 2
√
n〈∆n, ykzk〉 =

‖zk‖2 +
∑

i 6=k〈yizi, ykzk〉 & d if d� n2.

• 〈yk∆n, ỹkµ+zk〉 ≥ Ω(d/
√
n)−O(‖µ‖/

√
n).

• If ‖µ‖2 �
√
d/n, Signal dominates effect on clean test data .

• If d� ‖µ‖, d/
√
n� ‖µ‖2, Overfitting dominates effect on training .

• Simultaneously satisfied if e.g. ‖µ‖ = Θ(dβ), β ∈ (1/4, 1/2), and d� n
1

1−2β .

17 / 18



Proof idea: signal + overfitting component decomposition

u =
∑n

i=1 yixi ∝ µ + 1
|C|−|N |

∑n
i=1 yizi ≈ µ + 1

n(1−2p)
∑n

i=1 yizi =: µ+ ∆n.

Since zi ∼ N(0, Id), for p = 1/4 have ∆n ∼ N(0, 1
4nId).

Signal effect on clean test data :
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Conclusion

• Implicit bias of gradient flow in two-layer leaky ReLU nets when data is
‘nearly-orthogonal’:

‖xk‖2 � nmax
i 6=j
|〈xi, xj〉|.

• KKT points of max-margin problem for two-layer leaky ReLU nets have linear decision
boundaries given by τ -uniform classifiers:

sgn
(
f(x;V )

)
= sgn

(
〈z, x〉

)
, z =

∑n
i=1 siyixi, maxi,j si/sj = O(1).

• Under certain distributional assumptions and if d� n, τ -uniform classifiers exhibit
benign overfitting.

• In opposing cluster setting, such classifiers decomposed into ‘signal’ and ‘overfitting’
components which are in tension but can be balanced.
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Surprises in neural networks trained by gradient descent

• d� n necessary for benign overfitting in linear models, but unknown if necessary for
neural networks
• What happens in two-layer leaky nets on opposing cluster data when n� d?
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• Learning dynamics different in n > d setting; overfitting less ‘benign’
−→ “Blessing of dimensionality”?
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Benign overfitting for leaky ReLU networks

Let f(x;W ) =
∑m

j=1 ajφ(〈wj , x〉), φ(q) = max(q, γq) , and max-margin problem,

min
W
‖W‖2F s.t. yif(xi;W ) ≥ 1, for all i ∈ [n]. (1)

Theorem [F.∗-Vardi∗-Bartlett-Srebro, COLT’23]

Let V be a KKT point of (1). For opposing cluster data, under (A1)-(A3), w.p. at least 99%:

1. There exists z ∈ Rd such that for all x ∈ Rd, sgn(〈z, x〉) = sgn(f(x;V )) .

2. z ∝
∑n

i=1 siyixi where maxi,j si/sj ≤ 51
49γ
−2 , i.e. z is τ -uniform for τ ≤ 51

49γ
−2 .

3. For noise rate p ≤ 0.49γ2 , p ≤ P(x,y)∼P
(
y 6= sgn(f(x;V ))

)
≤ p+ exp (−n‖µ‖4/C′d) . .

And for any initialization W (0), gradient flow converges in direction to a net satisfying above.

• Test error does not depend on number of neurons.
• m = 1, γ → 1: leaky ReLU net becomes linear max-margin, tolerates close to p = 1/2.
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