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Implicit regularization

e AK.A. “Implicit bias”", “algorithmic regularization”, “inductive bias”, ...

e Optimization algorithms can minimize ‘complexity’, with no explicit regularization.
® Gradient flow in least squares <+ min £
d 1 <
&w(t) =-V (n ;(yz - <w(t),:z:z>)2> +—  w(t) = muin lwl|3 : (w, ;) = y; Vi.

® Gradient flow/descent on exponential loss <> maximum margin:

%w(t) =-V (711 Zexp (- yz<w(t),xl>)> —  w(t) — qugn lwl|? : ys(w, x;) > 1Vi.
i=1

See: [Telgarsky'13; Soudry+'18; Ji-Telgarsky'20; Lyu-Li'20; .. .]
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e Optimization algorithms can minimize ‘complexity’, with no explicit regularization.
® Gradient flow in least squares <+ min £
d 1 <
aw(t) =-V (n ;(yz - <w(t),:z:z))2> —  w(t)— muin lwl|3 : (w, ;) = y; Vi.

® Gradient flow/descent on exponential loss <> maximum margin:

%w(t) =-V (711 Zexp (- yz<w(t),xl>)> —  w(t) — Irqlgn lwl|? : ys(w, x;) > 1Vi.
i=1

¢ For gradient flow/descent on neural nets, story is much more complicated, but
conjectured to contribute to success of deep learning

See: [Telgarsky'13; Soudry+'18; Ji-Telgarsky'20; Lyu-Li'20; .. .]
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Benign overfitting

® Benign overfitting refers to settings where there is , the estimator achieves

zero training error (overfits)

, yet still generalizes well (even optimally).
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Benign overfitting

® Benign overfitting refers to settings where there is , the estimator achieves

‘zero training error (overfits) |,

yet still generalizes well (even optimally).

° ‘ Hard to reconcile uniform convergence ‘ with interpolation of noisy data:

¢ <|sup L(f )EsupL \/m

fer

® Good understanding of mechanisms of benign overfitting in linear regression [gartiett+20;

Hastie+'22; ...], but little in neural networks
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Our contributions

We examine behavior of neural nets when trained on “high-dimensional data” (d > n, to be

made precise shortly).

¢ Implicit regularization: Gradient flow-trained two-layer networks have low rank and a
very simple/tractable structure.

* Benign overfitting from implicit regularization: in particular distributional settings,
this simple structure implies benign overfitting.
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Implicit bias in homogeneous neural networks

L0)= -3 t(uN(@sh)).  tla) = log(l +exp(~a)), | <0() = ~VE(@(D) |
=1

rnein 101> st yN(2i;60) > 1, for all i € [n]. (1)

Theorem [Lyu-Li'19; Ji-Telgarsky'20]

Consider | gradient flow -trained net. If ‘ N(z;0) is L—homogeneous‘ (N(z;00) = a“N(x;0))

and there exists time g s.t. E(Q(to)) < 1/n. Then gradient flow converges in direction to a
first-order stationary point (KKT point) of ‘ max-margin problem (1) , and L(6(t)) — 0.
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Implicit bias in homogeneous neural networks

L0)= -3 t(uN(@sh)).  tla) = log(l +exp(~a)), | <0() = ~VE(@(D) |
=1

rnain 101> st yN(2i;60) > 1, for all i € [n].

Theorem [Lyu-Li'19; Ji-Telgarsky'20]

Consider | gradient flow -trained net. If ‘ N(z;0) is L—homogeneous‘ (N(z;a8) = o N(z;0))

and there exists time g s.t. E(Q(to)) < 1/n. Then gradient flow converges in direction to a
first-order stationary point (KKT point) of ‘ max-margin problem (1) ‘ and L(0(t)) — 0.

® There exists 0* satisfying Karush—-Kuhn—Tucker conditions of (1) s.t. ”zgg” — Hg:H'

e Satisfying KKT conditions does not imply global optimality in general vardi-Shamir-Srebro22).
® Theorem does not depend on initialization 6(0).
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Implicit bias in homogeneous neural networks

® By [Lyu-Li'19; Ji-Telgarsky'20], KKT conditions of ‘ max-margin problem (1) ‘ capture

limiting behavior of (homogeneous) neural network training.

meinHGH2 sit. y;N(z;;0) > 1, for all ¢ € [n]. (1)

e We'll show that in some settings, satisfaction of KKT conditions for Problem (1) implies
good generalization (and benign overfitting).
® Any algorithm that produces max-margin neural nets would have same behavior.
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The setting: two-layer leaky ReLU networks

® Two-layer nets with leaky RelLU activations (‘ ¢(z) = max(z,7vz) ‘ for

all z) trained by GD on the logistic loss:
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The setting: two-layer leaky ReLU networks

® Two-layer nets with leaky RelLU activations (‘ ¢(z) = max(z,vz) ‘ for

all z) trained by GD on the logistic loss:

flas W) = Zaj(b((wjvx»’ a; € {:I:l/\/%},

%W(t) = —VE(W(t)), W(0) : arbitrary,

LW) =Y 31 log (1 + exp(—yif(zi; W))).

® Since ‘ ¢ is 1-homogeneous |, so is f(z;).
¢ — KKT conditions for margin maximization characterize limiting behavior of trained
neural nets.

min |[W|% st yif(x; W) > 1forall i € [n)].
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The setting: “High-dimensional data”

® We assume data {(z;,9;)}, C R? x {£1} satisfy,

szl _ o),

ik Jlzgll

112 .
l:l™ > e manx |z, 2k)

® Purely geometric condition on features: no assumptions on labels {y;}!" ;, no
probabilistic/distributional assumptions made.
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® Purely geometric condition on features: no assumptions on labels {y;}!" ;, no
probabilistic/distributional assumptions made.

e Satisfied in many settings w.h.p. when (z;,v;) P and d is large relative to n:

* Isotropic Gaussians z; <" N(0, I;) when d = Q(n?).
* 7 has independent sub-Gaussian components with E[z] =0 and E[zz "] = ¥ where
trace(X) _ Q(n)

4/ trace(X2)
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The setting: “High-dimensional data”

® We assume data {(z;,9;)}, C R? x {£1} satisfy,

&
|
=
—_
~—

12 .
el > x|z, )

® Purely geometric condition on features: no assumptions on labels {y;}!" ;, no
probabilistic/distributional assumptions made.

e Satisfied in many settings w.h.p. when (z;,v;) P and d is large relative to n:

* Isotropic Gaussians z; <" N(0, I;) when d = Q(n?).
* 7 has independent sub-Gaussian components with E[z] =0 and E[zz "] = ¥ where
trace(X) _ Q(n)

4/ trace(X2)

e Mot satisfied in some high-dimensional settings.
o 3 K N(0, diag(X)) where A = diag(p,1,...,1) and p — co.
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Implicit bias in leaky ReLU nets for high-dimensional data

Let f(z; W) be two-layer leaky ReLU network, and consider max-margin problem,

rr{}li/n W% st yif(zs W) > 1, forall i € [n]. (1)

Theorem [F.*-Vardi*-Bartlett-Srebro-Hu ICLR'23]

Suppose | ||z;]|? > nrknix\(wj,xkﬂ and max; j, lzall O(1). Let V be a KKT point of
J

[EA

Problem (1). Then the following holds:
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Implicit bias in leaky ReLU nets for high-dimensional data

Theorem [F.*-Vardi*-Bartlett-Srebro-Hu ICLR'23]

Suppose | ||z;||* > nrilix|(zj,mk>| and max; j, lzall O(1). Let V be a KKT point of
j

[EA

Problem (1). Then the following holds:
1. |rank(V) < 2|

2. There exists z € R? such that for all z € R?,

sgn((z, 7)) = sgn(f(2; V) |

3. This z satisfies | z o Y ;" | s;y;x; | for some s; > 0 where | max; j si/s; = O(1) |

And for any initialization W (0), gradient flow converges in direction to a net satisfying above.
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Implicit bias in leaky ReLU nets for high-dimensional data

Theorem [F.*-Vardi*-Bartlett-Srebro-Hu ICLR'23]

Suppose | ||z;||* > n%§x|<mj,mk>| and max; j, sl O(1). Let V be a KKT point of
J

[EA

Problem (1). Then the following holds:
1. |rank(V) < 2|

2. There exists z € R? such that for all z € R?, ‘sgn((z,@) = sgn(f(z;V)) ‘

3. This z satisfies | z o Y ;" | s;y;x; | for some s; > 0 where | max; j si/s; = O(1) |

And for any initialization W (0), gradient flow converges in direction to a net satisfying above.

* For w; bR N(0, o%1), ’rank(W(O)) >mAd = rank reducing implicit regularization.‘

® | Decision boundary is linear |, despite nonlinear hypothesis class, and takes .
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Proof idea

® Proof is based on analysis of KKT conditions for margin-maximization,

fla;W) =" a;0((wj, z)), min [W|[7 st yif (2 W) > 1, for all i € [n],
j=1

e First step: there exist Lagrange multipliers A\1,..., A, > 0 s.t. for every j € [m)],
n n
wij =Y ANV, (Wif (@i W) = > Aiyia; ¢} j;. (1)
i=1 i=1

® ¢, ;> >0 is sub-gradient of ¢ at (wj, z;), and for all i € [n], A\; = 0 if
yif(xi; W) > 1.

® Analysis proceeds by showing all \; are strictly positive, “not too small” and “not too
large”, then using (1) to analyze f(xz; W).
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Summary: Implicit regularization of gradient flow

* Provided data is sufficiently high-dimensional (| ||z;||* > ”%§X|<Ijv$k> ), gradient flow
J

is biased towards low-rank networks.
® Moreover, decision boundary is linear, and satisfies

sgn((z,x)) =sgn(f(z;W)), 2o d>rsiyixi, max;;si/s; =O0(1) ‘

® Next: use these results to say something about generalization and benign overfitting.

® Benign overfitting refers to settings where there is , the estimator achieves

zero training error (overfits)

, yet still generalizes well (even optimally).
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Benign overfitting

® Minimum-norm least squares interpolation is most well-understood predictor in benign
overfitting, aided by the explicit formula for the predictor:

argmin{”w”z cy = (w, )} = XT(XXT)+y.

® Even in linear classification, no explicit formula for max-margin predictor (in general).
Ditto NNs trained by GD/GF.
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Benign overfitting

® Minimum-norm least squares interpolation is most well-understood predictor in benign
overfitting, aided by the explicit formula for the predictor:

argmin{”w”z cy = (w, )} = XT(XXT)+y.

® Even in linear classification, no explicit formula for max-margin predictor (in general).
Ditto NNs trained by GD/GF.

e |f data is “high-dimensional”, then our implicit bias results show that NN trained by GF
converges to network satisfying:

sgu((z,0)) = sen(f(x; W), 2 o L sagas |, maxsifs; = O(1).

1’7]

e —> NN trained by gradient flow exhibits benign overfitting if z — sgn((z, x)) does.
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Distributional setting

‘Opposmg clusters: ‘ for y € R and z ~ P o T + et
isotropic, independent sub-Gaussian components, e o ¢ ) M + +
[ J + [ ] _'l'__}-l- .+
, w.p.1 —p,
g~ Unif({£1}), =zlg=gutz, y= y~ P P 0+:0. + 7+ T4
-y, W.p.p. [ ) + o

® Analysis can be extended to additional settings, but key ideas can be seen with
‘opposing clusters ‘ so will focus here
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Benign overfitting for 7-uniform classifiers

Say u € R% is | 7-uniform |w.r.t. S = i, yi) Yy ifu = >0 sy with max; ;i sifs; < 7.
i=1 i=1 )
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Benign overfitting for 7-uniform classifiers

Say u € R? is | 7-uniform w.rt. S = i, yi) Yy ifu = >0 sy with max; ;i sifs; < 7.
i=1 i=1 )]

Assumptions: for large C' > 1,

(A1) Number of samples n > C. ::5;.:’ U : o:::.+
(A2) Mean separation ||u|| = ©(d?), B € (0, 1/2). e« * toe

(A3) Dimension d > Con? T log(n).

® x|y = gu + z, labels flipped w.p. p.
(A2) + (A3) imply [log[|* > nmax;; [(zi, z;)]-
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Benign overfitting for 7-uniform classifiers

Say u € R is wort. S = {(z,y:) ey ifu =30 siyiw; with max; jsifs; < 7.

Assumptions: for large C' > 1,

(A1) Number of samples n > C. ::5;.:’ U : o:::.+
(A2) Mean separation ||u|| = ©(d?), B € (0, 1/2). e« * toe

(A3) Dimension d > Con? T log(n).
(A2) + (A3) imply ||z 3> nmaxi; [(zi, 2;)].
Theorem [F.*-Vardi-Bartlett-Srebro, COLT 23]

For 7 > 1, assume noise rate p < H% For some absolute C,C’ > 1, under (A1)-(A3) w.p. at

® x|y = gu + z, labels flipped w.p. p.

least 99% over P", if u is then: for all k € [n], | yr, = sgn((u,zy)) |, and

P < Py yyop (¥ # sen((u,z))) < p+exp (—nlul’/cra).

‘ Benign ‘ ’overfitting‘ if ||| = ©(dP) for B € (1/1,1/2).
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Benign overfitting for 7-uniform classifiers

Say u € R? is wort. S = {(@i,yi) g if w=>"7", siyix; with max; jsi/s; <.
Theorem [F.*-Vardi*-Bartlett-Srebro, COLT 23]

For 7 > 1, assume | noise rate p < 14—% . For some absolute C,C’" > 1, under (A1)-(A3) w.p.

at least 99% over P%, if u is

T-uniform w.r.t. S ‘ then: for all k, |y, = sgn({u, zx)) |, and

P <P y)op (y # sgn((u,z))) < p+ exp (—nlel?/cra) .

‘ Benign ‘ ’overfitting‘ if ||| = ©(d?) for B € (1/,1/2).

Sample average " | y;x; is 1-uniform and can ‘tolerate noise rates‘ close to p = 1/2.

Previous implicit bias results = max-margin linear classifiers and max-margin
two-layer leaky ReLU networks are T-uniform for 7 = O(1).

No dependence on number of parameters of network!
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Proof idea: signal + overfitting component decomposition

* Will focus on the 1-uniform classifier u := Y7 | y;x; and Gaussian data z ~ N(0, I).
® Recall data generated: § ~ Unif({£1}), z|g = gu + z, then y = —7 w.p. p.
e SayieC (‘clean’) if y; = g;, i € N (‘noisy’) if y; = —3;.
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=1

ieC ieN i=1

n
o [m]+ |c|_1w|zlyiz’i =[] +[An]
P

° ‘Signal component ‘ will help with generalization, but hurts overfitting: (u, yx) > 0 for
clean test examples, (i, y;z;) < 0 for i € N

° ’Overfitting component‘ will help with overfitting, but hurts generalization:
(Ap, yrxg) > 0 for training, but A,, useless for test
e Appropriately balanced, they together allow for benign overfitting
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Proof idea: signal + overfitting component decomposition

w=y " yix X+ |c|—1| | Yo Vi |~ [ p]+
Since z; ~ N(0, 1), for p = 1/4 have A, ~ N(0, L 1,).

1
w(i=2p) 2= Yi%i

T SA
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Proof idea: signal + overfitting component decomposition

U= E?:l YiTi X + \C|—1| | Z?:l Yizi | = + m Z?:l Yizi | = p+ Ap.
Since z; ~ N(0, 1), for p = 1/4 have A, ~ N(0, L 1,).
Signal ‘effect on clean test data ‘:
o (g gp+ 2) = [|pl® + N, [|]*).
‘ Signal ‘ ‘ effect on training data: ‘

© (Ynh, Grlt + z1) =
yr k] + N, [|]]).
YUk 1s negative for k € NV.
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w= 30 Yii o [+ | e Dot Yidi |~ (]| ey Dot Yi%i| =t b+ An
Since z; ~ N(0, 1), for p = 1/4 have A, ~ N(0, L 1,).

Signal ‘effect on clean test data ‘: Overfitting | component ‘ effect on clean test: ‘

© (G, g+ z) = ull® + N, [|ul?). * [{gAn, gu+2)| = O (|lul*/v/n)+0(v/d/n).
‘ Signal ‘ ‘ effect on training data: ‘ component ‘ effect on training: ‘
® Yk, Urp + 2x) = ° 2/n(An, yrzi) =
YTkl + N(O, [|]?). l2wll? + s Wiz, yzw) 2 d if d > n,
i I negative for k€ N © (edn, Gupict2x) = /)= O(lul/ V).
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Proof idea: signal + overfitting component decomposition

w= 30 Yii o [+ | e Dot Yidi |~ (]| ey Dot Yi%i| =t b+ An
Since z; ~ N(0, 1), for p = 1/4 have A, ~ N(0, L 1,).

M ‘ effect on clean test data ‘: component ‘ effect on clean test: ‘
® (G, gp+ 2) = [lpl® + N, [[u]l?). * |(§An, gutz)| = O (|ul*/ /) +O(V/d/n).
‘ Signal ‘ ‘ effect on training data: ‘ component ‘ effect on training: ‘
® Yk, Urp + 2x) = ° 2/n(An, yrzi) =
yk?ng_MHQ + |\_|(07 [[ell?). llze||? + Z#k@/izi, yrzk) = dif d>>n?.
i 15 negative for b €A (B Gorit 21) = QAd/ V)~ O/ V).
o If ||ul|2 > \/d/n, dominates ‘effect on clean test data ‘

o Ifd > ||pl|, d//n > ||u|? dominates ‘ effect on training ‘

e Simultaneously satisfied if e.g. ||u|| = ©(d?), B € (1/4,1/2), and d > NI
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Conclusion

e Implicit bias of gradient flow in two-layer leaky RelLU nets when data is
‘nearly-orthogonal’:
12 > nmax|{z;, ;)|
7]

e KKT points of max-margin problem for two-layer leaky RelLU nets have linear decision
boundaries given by 7-uniform classifiers:

sgn(f(x; V)) = sgn((z,x>), Z =0 Sy, max;;sifs; = O(1).

® Under certain distributional assumptions and if d > n, T-uniform classifiers exhibit
benign overfitting.

® |n opposing cluster setting, such classifiers decomposed into ‘signal’ and ‘overfitting’
components which are in tension but can be balanced.
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Surprises in neural networks trained by gradient descent

® d > n necessary for benign overfitting in linear models, but unknown if necessary for
neural networks
® What happens in two-layer leaky nets on opposing cluster data when n > d?
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Surprises in neural networks trained by gradient descent

® d > n necessary for benign overfitting in linear models, but unknown if necessary for
neural networks
® What happens in two-layer leaky nets on opposing cluster data when n > d?

n =100, d = 10,000, m =512 n=10,000,d =100, m =512
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® | earning dynamics different in n > d setting; overfitting less ‘benign’
— "Blessing of dimensionality”?
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Benign overfitting for Ieaky RelLU networks

Let f(z; W) = Z] 1aio((wy, x ‘qﬁ = max(q,7q) ‘ and max-margin problem,
r%i/n W% st yif(zs W) > 1, forall i € [n]. (1)

Theorem [F.*-Vardi*-Bartlett-Srebro, COLT'23]
Let V' be a KKT point of (1). For opposing cluster data, under (A1)-(A3), w.p. at least 99%:

1. There exists z € R? such that for all z € R, ‘sgn((z,@) =sgn(f(x;V)) ‘

2. |z < D2 sy | where | max; j sifs; < %7_2 , i.e. | z is T-uniform for 7 < 497 -2 ‘

3. For ‘ noise rate p < 0.4972 |, p < Py y)~p (y # sgn(f(z; V))) < p + exp (—nllul*/cd) . |.

And for any initialization W (0), gradient flow converges in direction to a net satisfying above.

® Test error does not depend on number of neurons.

° m=1, — 1: leaky RelLU net becomes linear max-margin, tolerates close to p = 1/2.
v y g
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