Stochastic Interpolants: A Unifying Framework for flows and diffusions

Michael Albergo With Eric Vanden-Eijnden and Nicholas M. Boffi

Youth in High Dimensions, Trieste, Italy May 2023

Motivation + Research Directions

Research Interests

Computational approaches to field theory (high energy physics, condensed matter, ...)

Machine learning techniques inspired by the underlying physics, as well as the demands of scientific computing

"Ab-initio Al"

QCD vacuum energy density, aka QCD Lava Lamp

Thanks to collaborators and mentors

F. Romero-

D. Boyda

J. Urban

D. Rezende

S. Racanière

A. Razavi

A. Botev

NEW YORK UNIVERSITY

R. Ranganath

N. Boffi

P. Lunts

M. Lindsey

A. Patel

UNIVERSITÄT Bern AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

G. Kanwar

Agenda

Topic: density estimation and sampling with transport maps

Motivation and background — the flow-based transport picture

Challenge: How to best learn expressive and scalable transport maps?

Inspiration from score based diffusion

Stochastic Interpolants: Unifying flows and diffusions

Unbiased generative modeling through either deterministic or stochastic dynamics

ODE / SDE tradeoff, interpolant design

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. from sample data $\{x_i\}_{i=1}^n$
- 2. from query access to the unnormalized log likelihood

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. from sample data $\{x_i\}_{i=1}^n$
- 2. from query access to the unnormalized log likelihood

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. from sample data $\{x_i\}_{i=1}^n$
- 2. from query access to the unnormalized log likelihood

Goal: estimate the unknown *probability density function* $\rho_1 \in \mathscr{D}(\Omega)$ either through:

- 1. from sample data $\{x_i\}_{i=1}^n$
- 2. from query access to the unnormalized log likelihood

The transport framework

- Take a simple *base density* ρ_0 (e.g. Gaussian) and;
- Build a (reversible) map $T: \Omega \to \Omega$ such that the *pushforward of* ρ_0 by T is $\rho_1: T \sharp \rho_0 = \rho_1$

Likelihood under $\rho(1)$ given by: $\rho_1(x) = \rho_0(T^{-1}(x)) \det[\nabla T^{-1}(x)]$

The transport framework

• Build a (reversible) map $T: \Omega \to \Omega$ such that the *pushforward of* $\rho(0)$ by T is $\rho(1)$: $T \sharp \rho(0) = \rho(1)$

Likelihood: $\rho_1(x) = \rho_0(T^{-1}(x)) \det[\nabla T^{-1}(x)]$

For parametric $\hat{T}(x)$ to be useful

- det[$\nabla \hat{T}^{-1}(x)$] to be tractable
- $\hat{T}(x)$ maximally unconstrained

Brief history on transport realizations

Series of discrete transforms

T_k learned sequentially

Chen & Gopinath, NeurIPS 13 (2000); Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010); Tabak & Turner, Comm. Pure App. Math LXVI, 145-164 (2013).

T_k structured invertible NNs

NICE: Dinh *et al.* arXiv:1410.8516 (2014); Real NVP: Dinh *et al.* arXiv:1605.08803 (2016) Rezende *et al.*, arXiv:1505.05770 (2015); Papamakarios *et al.* arXiv:1912.02762 (2019); ...

 $k \to \infty$

T solution of *continuous time flow*

FFJORD: Grathwohl *et al.* arXiv:1810.01367 (2018)

det[$\nabla T^{-1}(x)$] tractable, but too constrained?

• det[$\nabla T^{-1}(x)$] $\rightarrow \text{Tr}[\frac{\partial b_t}{\partial x(t)}]$

- estimable via Skilling-Hutchinsion O(D)
- integrable with Neural ODEs

The continuous time picture

 X_t flow map given by velocity field b(t, x)

 $X_{t=0}(x) = x \in \mathbb{R}^d$ $\dot{X}_t(x) = b(t, X_t(x))$

The continuous time picture

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

Transport equation $\partial_t \rho(t, x) + \nabla \cdot (b(t, x)\rho(t, x)) = 0, \quad \rho(t = 0, \cdot) = \rho_0$

If $\rho(t)$ solves TE, then $\rho(t = 1, \cdot) = \rho_1$

The continuous time picture

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

Fransport equation
$$\partial_t \rho(t, x) + \nabla \cdot (b(t, x)\rho(t, x)) = 0, \quad \rho(t = 0, \cdot) = \rho_0$$

If
$$\rho(t)$$
 solves TE, then $\rho(t = 1, \cdot) = \rho_1$

Benamou-Brenier theory guarantees that b(t, x) exists (assuming Lipschitz) How to find a sufficient b(t, x) to map ρ_0 to ρ_1 ?

Solving for b(t, x) solves the transport

One approach: find b(t, x) via maximum likelihood

$$\rho(1, X_1(x)) = \rho_0(x) \exp\left(-\int_0^1 \nabla \cdot b(t, X_t(x))dt\right)$$

FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)

$$\min_{b} KL(\rho_1 || \rho(1)) = \min \mathbb{E}_{\rho_1} \left[\log \frac{\rho_1(x)}{\rho(1, x)} \right]$$
$$= \min - \mathbb{E}_{\rho_1} \left[\log \rho(1, x) \right] + C \qquad (1)$$

- b(t, x) parametrized as neural network
- adjoint method (Neural ODE) allows for gradient wrt parameters of b

Is there a simpler paradigm for learning b(t, x)?

Inspiration: Score-based diffusion

Song et al. arXiv:2011.13456 (2021); Sohl-Dickstein et al arXiv:1503.03585 (2021); Hyvärinen JMLR **6** (2005); Vincent, Neural Comp. **23**, 1661 (2011)

Map $x_1 \sim \rho_1$ to Gaussian ρ_0 via Ornstein-Uhlenbeck (OU) process

"A brain riding a rocket ship headed toward the moon." Imagen, Saharia et al 2205.11487

$$dX_t = -X dt + \sqrt{2} dW_t, \quad X_0 = x_1$$

SDE
$$dX_t^B = -X_t dt + \nabla \log \rho(t, X_t) dt + \sqrt{2} dW_t, \quad X_0 = x_0$$

ODE $b(t, x) = x - \nabla \log \rho(t, x)$

Access to the score $s(t, x) = \nabla \log \rho(t, x)$ allows one to simulate the reverse process as a generative model

Inspiration: Score-based diffusion

Why does it work so well? $dX_t^B = -X_t dt + \nabla \log \rho(t, X_t) dt + \sqrt{2} dW_t$

- Data available from $\rho(t, x)$ for any $t: X_t = xe^{-t} + \sqrt{2} \int_0^t e^{-t+s} dW_s$
- By choosing a path in the space of measures, turns generative modeling into a **regression problem**

$$s(t,x) = \underset{\hat{s}(t,x)}{\operatorname{argmin}} \int |\hat{s}(t,x) - \nabla \log \rho(t,x)|^2 \rho(t,x) dx$$
$$= \underset{\hat{s}(t,x)}{\operatorname{argmin}} \int \left(|\hat{s}(t,x)|^2 + 2\nabla \cdot \hat{s}(t,x) \right) \rho(t,x) dx$$

Limitations?

score matching

Hyvarinen 2005

- Requires one of the endpoints of the transport to be Gaussian
- Requires $t \to \infty$ in noising interval. Truncation over $t \in [0,T]$ $T \gg 1$ introduces **bias**.
- Once thought of as a regression, not a priori clear the necessity of OU

How can we work exactly on $t \in [0,1]$ with arbitrary ρ_0 and ρ_1 , build a connection between them, and get the velocity b(t, x) directly?

Stochastic Interpolants

Interpolant Function $I(t, x_0, x_1)$

- A function of x_0 , x_1 , and time *t* with b.c.'s: $I_{t=0} = x_0$ and $I_{t=1} = x_1$
- Example: $I(t, x_0, x_1) = (1 t)x_0 + tx_1$

If x_0 , x_1 drawn independently, then $I(t, x_0, x_1)$ is a stochastic process which samples $x_t \sim \rho(t, x)$

$$\rho(t, x) = \mathbb{E}_{\rho_0, \rho_1} \left[\delta \left(x - I(t, x_0, x_1) \right) \right]$$

Interpolant Density

Stochastic Interpolant: $I(t, x_0, x_1)$

 $\rho(t, x)$ satisfies continuity equation

$$\rho(t, x) = \mathbb{E}_{\rho_0, \rho_1} \left[\delta \left(x - I(t, x_0, x_1) \right) \right]$$

$$\partial_t \rho(t, x) + \nabla \cdot (b(t, x)\rho(t, x)) = 0$$

Why? Chain rule gives the current density

$$\partial_t \rho(t, x) = -\mathbb{E}_{\rho_0, \rho_1} [\partial_t I_t \nabla \delta(x - I_t)] \equiv -\nabla \cdot j_t(x)$$

with $j(t, x) = \mathbb{E}_{\rho_0, \rho_1} [\partial_t I_t \delta(x - I_t)]$

Stochastic Interpolant: $I(t, x_0, x_1)$

 $\rho(t, x)$ satisfies continuity equation

$$\rho(t, x) = \mathbb{E}_{\rho_0, \rho_1} \left[\delta \left(x - I(t, x_0, x_1) \right) \right]$$

$$\partial_t \rho(t, x) + \nabla \cdot (b(t, x)\rho(t, x)) = 0$$

Why? Chain rule gives the current density

$$\partial_t \rho(t, x) = -\mathbb{E}_{\rho_0, \rho_1} [\partial_t I_t \nabla \delta(x - I_t)] \equiv -\nabla \cdot j_t(x)$$

with $j(t, x) = \mathbb{E}_{\rho_0, \rho_1} [\partial_t I_t \delta(x - I_t)]$

j(t, x) allows us to directly write down a velocity field

$$b(t, x) = j(t, x)/\rho(t, x) \quad \text{ if } \rho(t, x) > 0$$

Definition of the Interpolant Velocity: b(t, x)

Definition: The conditional expectation of a function f of (t, x_0, x_1) given $x_t = x$ is such that $\int \mathbb{E} \left[f(t, x_0, x_1) \mid x_t = x \right] \rho(t, x) \, dx = \mathbb{E}_{\rho_0, \rho_1} \left[f(t, x_0, x_1) \right]$

Definition of the Interpolant Velocity: b(t, x)

Definition: The conditional expectation of a function f of (t, x_0, x_1) given $x_t = x$ is such that $\int \mathbb{E} \left[f(t, x_0, x_1) \mid x_t = x \right] \rho(t, x) \, dx = \mathbb{E}_{\rho_0, \rho_1} \left[f(t, x_0, x_1) \right]$

This gives a simple form for the velocity field b(t, x)

$$b(t, x) = j(t, x)/\rho(t, x)$$

=
$$\frac{\mathbb{E}\left[\partial_t I_t \delta(x - I_t)\right]}{\mathbb{E}\left[\delta(x - I_t)\right]} \quad (\text{if } \rho(t, x) \neq 0 \text{ else } 0)$$

=
$$\mathbb{E}\left[\partial_t I(t, x_0, x_1) \mid x_t = x\right]$$

b(t,x) is readily amenable to estimation via evaluations of I_t under $ho_0,
ho_1$

Quadratic Loss over b(t, x)

Proposition:

MSA & Vanden-Eijnden arXiv:2209.15571 (2022); Liu et al. arXiv:2209.03003 (2022); Lipman et al. arXiv:2210.02747 (2022)

The PDF $\rho(t, x)$ satisfying the continuity equation has a velocity field b(t, x) which is the minimizer of a simple quadratic objective

$$L[\hat{b}] = \min_{\hat{b}(t,x)} \int_0^1 \mathbb{E} \left[|\hat{b}(t,x_t) - \partial_t I(t,x_0,x_1)|^2 \right] dt$$
$$= \left(|\hat{b}(t,x_t)|^2 - 2\partial_t I(t,x_0,x_1) \cdot \hat{b}(t,x_t) \right) dt + \text{const}$$

where $x_t = I(t, x_0, x_1)$.

Quadratic Loss over b(t, x)

Proposition:

MSA & Vanden-Eijnden arXiv:2209.15571 (2022); Liu et al. arXiv:2209.03003 (2022); Lipman et al. arXiv:2210.02747 (2022)

The PDF $\rho(t, x)$ satisfying the continuity equation has a velocity field b(t, x) which is the minimizer of a simple quadratic objective

$$L[\hat{b}] = \min_{\hat{b}(t,x)} \int_0^1 \mathbb{E} \left[|\hat{b}(t,x_t) - \partial_t I(t,x_0,x_1)|^2 \right] dt$$
$$= \left(|\hat{b}(t,x_t)|^2 - 2\partial_t I(t,x_0,x_1) \cdot \hat{b}(t,x_t) \right) dt + \text{const}$$

where $x_t = I(t, x_0, x_1)$.

- Loss is directly estimable over $ho_0,
 ho_1$
- Generative model connects *any* two densities, does not require OU process
- Likelihood and sampling available via fast ODE integrators
- Loss bounds Wasserstein-2 between $\rho(1, x)$ and ρ_1 (Gronwall)

Numerical examples

Toy non-Gaussian densities & Image generation

Cifar-10, image-net

 128×128 res flowers

What about diffusion?

The interpolant paradigm gave us a deterministic flow map between arbitrary densities ρ_0 and ρ_1

Can we do the same to learn a stochastic dynamics?

The interpolant score s(t, x)

Introduce Gaussianity into the interpolant

$$x_t = I(t, x_0, x_1) + \gamma(t)z$$

where
$$z \sim N(0,1)$$

and $\gamma(0) = \gamma(1) = 0$
e.g. $\gamma(t) = \sqrt{t(1-t)}$

Proposition:

 $\rho(t, x)$ satisfies a transport equation as before, with b(t, x) of the form

$$b(t, x) = \mathbb{E}\left[\partial_t I(t, x_0, x_1) + \partial_t \gamma(t) z \,|\, x_t = x\right]$$

Moreover, the score of $\rho(t, x)$ is given by

$$s(t, x) = -\gamma(t)^{-1} \mathbb{E}\left[z \,|\, x_t = x\right]$$

which minimizes

$$L[\hat{s}] = \int \mathbb{E}\left[\frac{1}{2} \left| \hat{s}(t, x_t) \right|^2 + \gamma(t)^{-1} z \cdot \hat{s}(t, x_t) \right] dt$$

Unifying Flows and Diffusions

MSA, Boffi, Vanden-Eijnden arXiv:2303.08797 (2023);

The score allows us to, like in the case of diffusion models, define a generative stochastic dynamics, now with tunable diffusivity ϵ

Transport equation

$$\partial_t \rho + \nabla \cdot (b\rho) = 0$$

ODE

$$\frac{d}{dt}X_t = b\left(t, X_t\right)$$

Just learn \hat{b}

Fokker-Planck Equations

$$\partial_t \rho + \nabla \cdot (b^{\mathrm{F/B}} \rho) = \epsilon \Delta \rho$$

where $b^{\mathrm{F/B}} = b \pm \epsilon s$

SDE

$$dX_t^{\mathrm{F/B}} = b_{\mathrm{F/B}}\left(t, X_t^{\mathrm{F}}\right)dt + \sqrt{2\epsilon}dW_t^{\mathrm{F/B}}$$

Learn
$$\hat{b}$$
 and \hat{s}

What is the tradeoff between the two? Is there an e^* ?

Bounding the KL between ρ and $\hat{\rho}$

Find Nick!

If $\hat{\rho}$ the density pushed by estimated deterministic dynamics b, then

$$\partial_t \hat{\rho} + \nabla \cdot (\hat{b} \hat{\rho}) = 0$$

$$\begin{split} \text{KL}(\rho(1)\|\hat{\rho}(1)) &= \int_{0}^{1} \int_{\mathbb{R}^{d}} (\nabla \log \hat{\rho} - \nabla \log \rho) \cdot (\hat{b} - b) \rho \, dx \, dt \\ & \text{matching } b \text{'s does not} \\ \text{bound KL, Fisher is} \\ \text{uncontrolled by small error} \\ & \text{in } \hat{b} - b \\ \text{tic dynamics } \hat{b}_{\text{F}} &= \hat{b} + \epsilon s, \\ \end{split}$$

If $\hat{
ho}$ the o stochastic dynamics $b_{\rm F} = b + \epsilon s$, then

$$\text{KL}(\rho(1) \| \hat{\rho}(1)) \leq \frac{1}{4\epsilon} \int_{0}^{1} \int_{\mathbb{R}^{d}} \left| \hat{b}_{\text{F}} - b_{\text{F}} \right|^{2} \rho \, dx dt \\ \hat{b}_{\text{F}} - b_{\text{F}} \text{ does control KL} \\ \text{divergence}$$
What does this mean practically?

Designing different interpolants: Mirror

One is free to construct a variety of interpolants, following the rules!

1. Boundary conditions are met

2. The score s(t, x) is available when:

 x_t includes $\gamma(t)z$ either ho_0 or ho_1 N(0,1)

Examples! define x_t , state b(t, x)

a) Mirror interpolant: $x_t = x_1 + \gamma(t)z$

$$b(t, x) = \dot{\gamma}(t) \mathbb{E} \left[z \,|\, x_t = x \right]$$
$$= -\gamma(t) \dot{\gamma}(t) s(t, x)$$

Learn map from ρ_1 — the data density — back to itself!*

(takes many SDE steps)

Designing different interpolants: One-sided

b) One-sided interpolant: $x_t = \alpha(t) z + \beta(t) x_1$

$$b(t,x) = \mathbb{E}\left[\dot{\alpha}(t)z + \dot{\beta}(t)x_1 \,|\, x_t = x\right] \quad s(t,x) = -\alpha^{-1}(t)\mathbb{E}\left[z \,|\, x_t = x\right]$$

Demonstrating tunable diffusion

Designing different interpolants: One-sided

Numerical Tradeoffs: Integrating SDEs is harder!

Do slight accuracy benefits seen in GMMs outweigh the numerical costs?

Summary and Outlook

We discussed a method built on stochastic interpolants that:

- \bullet allows one to build deterministic ${\rm or}$ stochastic generative models between arbitrary ρ_0, ρ_1
- provides a language for designing new types of maps

Questions going forward:

- Can we use interpolants to study the inductive bias in transport based generative modeling?
- What are realistic assumptions for comparing the ODE and SDE? Chen et al, 2305.11798, 2303.03384 Wibisono, 2211.01512
- Better SDE integrators than Euler-Maruyama?
- Applications to variational inference (access to the target $\log \rho_1$)?

Summary and Outlook

We discussed a method built on stochastic interpolants that:

- \bullet allows one to build deterministic ${\rm or}$ stochastic generative models between arbitrary ρ_0, ρ_1
- provides a language for designing new types of maps

See the papers (and Nick, here this week!) for:

- Optimizing the transport costs in both the ODE (OT) and SDE (Schrodinger Bridge) setting
- More experimental details
- Some preliminary available code: <u>https://github.com/malbergo/</u> <u>stochastic-interpolants</u>

Thanks !

Backup Slides

Expanded minimizer of MLE object for continuous flows

$$\min_{v} KL(\rho_1 || \rho(1)) = \min \mathbb{E}_{\rho_1} \left[\log \frac{\rho_1(x)}{\rho(1, x)} \right]$$
$$= \min - \mathbb{E}_{\rho_1} \left[\log \rho(1, x) \right] + C$$

Under reverse dynamics $X_{t=1} = x \sim \rho_1$

$$\min_{v} \mathbb{E}_{\rho_1} \left[\int_0^1 \nabla \cdot b(t, \bar{X}_t(x)) dt - \log \rho_0(\bar{X}_{t=0}(x)) \right] \qquad \text{s.t.} \quad \dot{\bar{X}}_t(x) = b(t, X_t(x))$$

Proof of score s(t, x) minimizer (1/2)

Let $g(t,k) = \mathbb{E}[e^{ikx_t}] = \mathbb{E}[e^{ikI_t}]E[e^{ikz}]$ be the characteristic function of $\rho(t,x)$

Then $g(t,k) = g_0(t,k)e^{-\frac{1}{2}\gamma^2(t)|k|^2}$

Consider the term $\mathbb{E}(ze^{i\gamma(t)kz})$ for which:

$$\mathbb{E}\left[ze^{i\gamma(t)k\cdot z}\right] = -\gamma^{-1}(t)\left(i\partial_k\right)\mathbb{E}e^{i\gamma(t)k\cdot z} = i\gamma(t)ke^{-\frac{1}{2}\gamma^2(t)|k|^2}$$

Then:

$$\mathbb{E}\left[ze^{ikx_t}\right] = \mathbb{E}\left[ze^{ik\gamma(t)z}\right]\mathbb{E}\left[e^{ikI_t}\right] = i\gamma(t)kg(t,k)$$

Relatedly using the conditional expectation:

$$\mathbb{E}\left[ze^{ikx_t}\right] = \int \mathbb{E}\left[ze^{ikx_t} \mid x_t = x\right] \rho(t, x) dx = \int \mathbb{E}\left[z \mid x_t = x\right] e^{ikx} \rho(t, x) dx = F\left(\mathbb{E}\left[z \mid x_t = x\right] \rho(t, x)\right) dx$$

Where F is the Fourier operator

Proof of score s(t, x) minimizer (1/2)

From before, note that the RHS of :

 $\mathbb{E}\left[ze^{ikx_t}\right] = i\gamma(t)kg(t,k)$

is the Fourier transform $F(-\gamma(t) \nabla \rho(t, x))$.

So
$$\mathbb{E}[ze^{ikx_t}] = F(\mathbb{E}[z | x_t = x]) = F(-\gamma(t) \nabla \rho(t, x))$$

Using $\nabla \rho / \rho = \nabla \log \rho$, we have

$$-\gamma(t)^{-1}\mathbb{E}[z \,|\, x_t = x] = \nabla \log \rho(t, x)$$

ODE vs SDE, numerical experiments

What does this mean practically?

Image experiments

Theory says		1/2
c* —	$\left(\frac{L_b[b] - \min_{\hat{b}} L_b[b]}{L_b[b]} \right)$	
c —	$\left\langle L_{s}[\hat{s}] - \min_{\hat{s}} L_{s}[\hat{s}] \right\rangle$	

FID

6.99	
5.68	
5.02	
Interpolant	
6.28	
6.95	
6.45	

SBDM Interpolant

$$y_t = x_0 e^{-t} + \sqrt{1 - e^{-2t}} z, \quad x_0 \sim \rho_0, \quad z \sim N(0, Id), \quad t \in [0, \infty)$$

Ŷ