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Agenda

Topic: density estimation and sampling with transport maps

Motivation and background — the flow-based transport picture

Challenge: How to best learn expressive and scalable transport maps?

Inspiration from score based diffusion

Stochastic Interpolants: Unifying flows and diffusions

Unbiased generative modeling through either deterministic
or stochastic dynamics

ODE / SDE tradeoft, interpolant design
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Problem Setup

Goal: estimate the unknown probability density function p; € D(L2) either through:
1. from sample data {x;}_,
2. from query access to the unnormalized log likelihood
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Problem Setup

Goal: estimate the unknown probability density function p; € (L) either through:
1. from sample data {x;}_,
2. from query access to the unnormalized log likelihood

_ piffusion
= measure transport perspective

May 28, 2023 - (]



Problem Setup

Goal: estimate the unknown probability density function p; € D(L2) either through:
1. from sample data {x;}_,
2. from query access to the unnormalized log likelihood

The transport framework

e Take a simple base density p, (€.9. Gaussian) and;

e Build a (reversible) map T : Q — Q such that the pushforward of py by Tis p;:  Thpy = p;
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Likelihood under p(1) given by: p;(x) = pO(T_l(x)) det[ VT~ '(x)]
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Problem Setup

The transport framework
e Build a (reversible) map T : Q — Q such that the pushforward of p(0) by Tis p(1):  T#p(0) = p(1)
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Likelihood: p;(x) = po(T~1(x)) det[ VT 1(x)]

For parametric f(x) to be useful

o det| Vf‘l(x)] to be tractable
:> Tradeoff!

. T(x) maximally unconstrained
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Brief history on transport realizations

Series of discrete transforms
det[ VT~ !(x)] tractable, but too constrained?
I’ learned sequentially

Chen & Gopinath, NeurlPS 13 (2000); 12 po
Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010); | pg . op1
Tabak & Turner, Comm. Pure App. Math LXVI, 145-164 /!
(2013). -

_ _ » - -~
T, structured invertible NNs LN by, L T e

NICE: Dinh et al. arXiv:1410.8516 (2014);

Real NVP: Dinh et al. arXiv:1605.08803 (2016)
Rezende et al., arXiv:1505.05770 (2015);
Papamakarios et al. arXiv:1912.02762 (2019); ...

k — oo
det[ VT~ '(x)] = Tr| o ]
T solution of ox (1)
continuous time flow e estimable via Skilling-Hutchinsion O(D)

FFJORD: Grathwonhl et al. arXiv:1810.01367 (2018)
e integrable with Neural ODEs
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The continuous time picture

X, flow map given by velocity field b(t,x) =1

tho(x) =x € R

lime

X (x) = b(t, X,(x))

Space
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The continuous time picture

X, flow map given by velocity field b(%, x)

X _o(x) =x € R?
X (x) = b(t, X (x))

At the level of the of the distribution, how does p(t, x) evolve?

Transport 0,p(t,x) + V - (b(t, x)p(t, x)) =0, p=0,)=p,

equation

If p(¢) solves TE, then p(t = 1, ) = p,
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The continuous time picture

X_ =T
X, flow map given by velocity field b(¢,x) =1 e
X—ox) =x € R § ', P
X,(0) = b(t, X))
tr=0 ) = x 0

[

space

At the level of the of the distribution, how does p(t, x) evolve?

Transport atp(f, x)+ V- (b(t, x)p(t, x)) = 0, p(t = 0,:) = £o

equation

If p(¢) solves TE, then p(t = 1, -) = p,

Benamou-Brenier theory guarantees How to find a sufficient
that b(t, x) exists (assuming Lipschitz) b(t, x) to map p, to p,?
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Solving for b(¢, x) solves the transport

1

One approach: ind b{(1, X)via  1.x,(x) = pywjexp( - | V- bt X0
maximum likelihood 0
FFJORD: Grathwonhl et al. arXiv:1810.01367 (2018)

p1(x) ]
p(1,x)

= min — E, [logp(l,x)] + C x

min KL(p,||p(1)) = min E, llog
b

e D(t,x) parametrized as neural network

e adjoint method (Neural ODE) allows for gradient wrt parameters of b

x Loss involves integrating the ODE
x Many paths from p, to p,

Is there a simpler paradigm for learning b(¢, x)?
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Inspiration: Score-based diffusion

Song et al. arXiv:2011.13456 (2021);
Sohl-Dickstein et al arXiv:1503.03585 (2021);

Hyvarinen JMLR 6 (2005);
Vincent, Neural Comp. 23, 1661 (2011)

Map x;, ~ p, to Gaussian p, via
- “A brain riding a rocket ship headed toward
Ornstein-Uhlenbeck (OU) pProcess the moon.” Imagen, Saharia et al 2205.11487

SDE  dX®=—X.dt+ Viogp(t,X,)dt +1/2dW, X, =x,
ODE b(t,x) = x — Vlog p(t, x)

Access to the score s(t,x) = Vlog p(t, x) allows one to
simulate the reverse process as a generative model

May 28, 2023 15 (]



Inspiration: Score-based diffusion

Why does it work so well? dX® = — X, dt + Vlog p(t, X,) dt + /2 dW,

4
e Data available from p(t, x) for any t: X, = xe ™" + \/EJ e " dW,
0
e By choosing a path in the space of measures, turns generative modeling into a
regression problem

s(t,x) = argmin | | 5(¢, x) — Vlog p(t, x) k p(t, x)dx

5(t,x)

= argmin ( | 5(¢, x) |2 + 2V - 5(¢, x)) p(t, x)dx

5(t,x)
Limitations?
e Requires one of the endpoints of the transport to be Gaussian

e Requires f — 00 in noising interval. Truncation over t € [0,7] T > 1 introduces bias.

e Once thought of as a regression, not a priori clear the necessity of OU
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Motivating the Interpolant

How can we work exactly on t € [0,1] with arbitrary p, and p,,
build a connection between them, and get the velocity b(t, x) directly?
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Stochastic Interpolants

Interpolant Function /(z, x,, x)
- A function of x,, x{, and time ¢ with b.c.’s: [_y = xyand [._; = x;

= Example: I(t, XO, .xl) — (1 — t)xO + t.xl

xy ~ pt, t = 0.0

¢ | | | | |
t=20.0
If Xy, X; drawn independently, then t x)=FE [5 x — I(t. xn. X ]
(¢, x5, x;) is a stochastic process pit, ) o1 ( (. %o 1))
which samples x, ~ p(t, x) Interpolant Density
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Stochastic Interpolant: /(z, x, x;)
p(t, x) satisfies continuity equation pt,x)=E, , [5(36 — 1(¢, x, X1))]

0,p(t,x) + V - (b(t, x)p(t,x)) = 0

Why? Chain rule gives the current density

op(t,x) =—E, 10, Volx —1I)] =—-V - j(x)
with j(t,x) = 10,1, 0(x — 1)}

_:009:01
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Stochastic Interpolant: /(z, x, x;)
p(t, x) satisfies continuity equation pt,x)=E, , [5(36 — (2, X, X1))]

0,p(t,x) + V - (b(t, x)p(t,x)) = 0

Why? Chain rule gives the current density

op(t,x) =—E, 10, Volx —1I)] =—-V - j(x)
10,1, 0(x — 1)}

with j(t,x) =

_:009:01

j(t, x) allows us to directly

write down a velocity field b(t,x) = j(t,x)/p(t,x) Ifp(t,x) >0
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Definition of the Interpolant Velocity: H(7, x)

Definition: The conditional expectation of a function f of (, x,, X;) given x, = x is such that

[[E [f(t, X, X1) | X, = x] p(t,x)dx = [Epo,pl [f (%, Xo, xl)]
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Definition of the Interpolant Velocity: H(¢, x)

Definition: The conditional expectation of a function f of (, x,, X;) given x, = x is such that

“[E [f(ta X0» xl) | Xy = X]p(t, .X) dx = [Epo,pl [f(t’ A0 xl)]

This gives a simple form for the velocity field b(z, x)

b(t,x) = j(t,x)/p(t, x)
E[0,,5(x— 1)
E [5 (x — It)]

= :dtl(t, Xo, X1) | X, = x]

(if p(z,x) # 0 else 0)

b(t, x) is readily amenable to estimation via evaluations of I, under py, p;

May 28, 2023 22



Quadratic Loss over b(t, x)

MSA & Vanden-Eijjnden arXiv:2209.15571 (2022);
P tion: Liu et al. arXiv:2209.03003 (2022);
roposition. Lipman et al. arXiv:2210.02747 (2022)

The PDF p(t, x) satisfying the continuity equation has a velocity field b(, x) which is
the minimizer of a simple quadratic objective

1
L[l;] = min[ E [l@(t, x,) — 01(t, xg, X;) |2] dt
b(t,x) 0

= < | b(s, X,) | — 20,1(¢, xy, X1) - b(t, xt)> dt + const

where x, = I(t, x4, X).
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Quadratic Loss over b(t, x)

MSA & Vanden-Eijjnden arXiv:2209.15571 (2022);
P tion: Liu et al. arXiv:2209.03003 (2022);
roposition. Lipman et al. arXiv:2210.02747 (2022)

The PDF p(t, x) satisfying the continuity equation has a velocity field b(, x) which is
the minimizer of a simple quadratic objective

1
L[l;] = min[ E [l@(t, x,) — 01(t, xg, X;) |2] dt
b(t,x) 0

— ( 1Bt x) |* = 20,0(1, x0, ;) - bz, xt)> dt + const
where x, = I(¢, Xy, X;)-
- Loss is directly estimable over p,, p;

- Generative model connects any two densities, does not require OU process

- Likelihood and sampling available via fast ODE integrators

. Loss bounds Wasserstein-2 between p(1, x) and p, (Gronwall)
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Exact

Interpolant Flow
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What about diffusion?

The interpolant paradigm gave us a deterministic flow map
between arbitrary densities p, and p,

ODE

Time )
P1
Can we do the same to learn a stochastic dynamics?

SDE

Time
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The interpolant score s(Z, x)

MSA, Boffi, Vanden-Eijjnden arXiv:2303.08797 (2023)

Introduce Gaussianity into the interpolant
where z ~ N(0,1)
x, = I(t, x9, x1) + 7(D)z and y(0) = (1) = 0
e.9.y(1) =/t(1 - 1)

Proposition:
p(t, x) satisfies a transport equation as before, with b(¢, x) of the form

b(t,x) = E |01, x5, x)) + 0,y(Dz | x, = x|

Moreover, the score of p(z, x) is given by

s(t,x) = —y(H)~'E [Z\xt = x]

which minimizes

L[§] = J[E [% | (¢, x,) |2 + ()7 'z 8, xt)] dt

May 28, 2023 27



Unifying Flows and Diffusions

MSA, Boffi, Vanden-Eijnden arXiv:2303.08797 (2023);

The score allows us to, like in the case of diffusion models, define a
generative stochastic dynamics, now with tunable diffusivity €

Transport equation Fokker-Planck Equations

0,p+ V- (b"Pp) =eAp

where bF'B = p + ¢5

dp+V-(bp)=0

ODE SDE
d
—X=b (7, X,) dXF'® = by (1, XF) dt +/2ed W
[
Just learn b Learn b and §

What is the tradeoff between the two? Is there an ¢*?
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Bounding the KL between p and p

Find Nick!

If p the_d(_-)n_sﬂy pushc_ed by estimated 0, s+ V- (bp) =0
deterministic dynamics b, then

1
KL(p(D)1p(1)) = J J (Vlogp — Viogp) - (b — bypdxds
0 JR matching b’s does not
~— bound KL, Fisher is

uncontrolled by small error

If p the density pushed by estimated nb=b
stochastic dynamics b = b + ¢, 0p+ V- (b)) =eAp
then
O R A 2
KL(p(D (1) < - bp— by | pdxds
“lodre’ N—r b — by does control KL
divergence

What does this mean practically?
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ODE vs SDE, numerical experiments

What does this mean practically? Theory says

n . A N\ 172
o L,[b] — min; L,[D]
LJ[5] — min; LJ[5]

128 dimensional Gaussian Mixtures

e=20 c=4.0 e =12.0 *
: 0.004
p1(x,y) — pi(x,y): Errorin & 1] - | ] ] o
kernel density estimateof2D < | ; ; 0000
cross section = U] e®g | 1 o
T | IS ] I I I =000
(v, s) —e— (b, s)
0.03 - (v, m) == (b, )
KL for learned b, § minimal S o021
around ¢ ~ 5.0, then T
Increases 0.01 -
0.00 -+ —mF——F————————————
*SDE dominance not | ° 10 15

necessarily generalize to images
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Designing different interpolants: Mirror

One is free to construct a variety of interpolants, following the rules!

1. Boundary conditions are met

X, Includes y(7)z
2. The score s(t, x) is available when: { .t r)
either p, or p; N(O,1)

Examples! define x,, state H(¢, x)

b(t,x)

y(DE [Z‘Xt — X]
— y(@O)y()s(1, x)

a) Mirror interpolant: x, = x; + y(#)z

Learn map from p; — the
data density — back to itself!*
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Designing different interpolants: One-sided

One-sided interpolant: x, = a(t) z + p(¢) x,

b(t,x) =

= [d(t)z + ,B(t)xl | x, = x] s(t,x) = — a~(¥)

Demonstrating tunable diffusion

€ — U.

€ — 1.

€ — 4.

€ — 4.
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Designing different interpolants: One-sided

Numerical Tradeoffs: Integrating SDEs is harder!

t=0 t=1 t=2 t=3 t=4 t=3 t=5 t=1 t=5 t=3 Steps
€ — aptive
¢ —
¢ —
€ = 500!
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Summary and Outlook

We discussed a method built on stochastic interpolants that:

e allows one to build deterministic or stochastic generative
models between arbitrary pg, pq

¢ provides a language for designing new types of maps

Questions going forward:

e Can we use interpolants to study the inductive bias in transport
based generative modeling”

e \What are realistic assumptions for comparing the ODE and SDE?

Chen et al, 2305.11798, 2303.03384 Wibisono, 2211.01512

e Better SDE integrators than Euler-Maruyama®

o Applications to variational inference (access to the target log p;)?



Summary and Outlook

We discussed a method built on stochastic interpolants that:

e allows one to build deterministic or stochastic generative
models between arbitrary pg, pq

¢ provides a language for designing new types of maps

See the papers (and Nick, here this week!) for:

e Optimizing the transport costs in both the ODE (OT) and SDE
(Schrodinger Bridge) setting

e More experimental details

e Some preliminary available code: https://github.com/malbergo/
stochastic-interpolants



https://github.com/malbergo/stochastic-interpolants
https://github.com/malbergo/stochastic-interpolants
https://github.com/malbergo/stochastic-interpolants
https://github.com/malbergo/stochastic-interpolants

Thanks !
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Expanded minimizer of MLE object for continuous flows

p1(X) ]
p(1, x)

= min — E, [logp(l,x)] + C

min KL(p, || p(1)) = min E, llog

Under reverse dynamics X,_; = x ~ p;

1
min E o ” V - b(t, X (x))dt — log py(X =0(x))] s.t. j_(t(x) = D(t, X,(x))
v 0
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Proof of score s(#, x) minimizer (1/2)

Let g(¢, k) = -[eikxf] = -[eiklf]E [eikz] be the characteristic
function of p(z, x)

Then g(t, k) = g (t, kye ™7 I

Consider the term [E (zeiy(t)kz) for which:

iyOkz) — _ =l (q iy(Okz _ > —Ly2(0)|k|?
E |ze y~(1)(i0,) ke 1y(t)ke
Then:

— [Zeikxt] — [F [Zeik;/(t)z] m [eiklt] — l}/(t)kg(t, k)

Relatedly using the conditional expectation:

E [ze™] = J[E [ze™% ] x, = x| p(t, x)dx = JE 21, = x]e®p(t.x)dx = F(E[z]x, = x] p(t. )

Where F' is the Fourier operator
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Proof of score s(#, x) minimizer (1/2)

From before, note that the RHS of :
- [ze™| = ip(1)kg(t, k)
is the Fourier transform F(—y(7) V p(2, x)).

So E|ze™| = F(E|z|x, = x|) = F(—y(t) Vp(t,x))

Using Vp/p = Vlog p, we have

—y(0'Elz|x, = x| = Vlog p(t, x)
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ODE vs SDE, numerical experiments

What does this mean practically? Theory says

n . A N\ 12
o L,[b] — miny L,[D]
L,[5] — ming L[5]

Image experiments

FID
DDPM [20] 6.99
ScoreFlow [45] 5.68
Flow matching OT [31] 5.02
Interpolant
e =0.0 6.28
e =0.5 6.95
e=1.0 6.45

Frechet Inception Distance (FID)
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