Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins
000	000	000000	000000	00000

Matrix Factorization with Neural Networks of Associative Memory

Francesco Camilli Joint work with M. Mézard

The Abdus Salam International Center for Theoretical Physics

YHD, Trieste, May 30th, 2023

Hopfield Network is a model for associative memory. The task of the network is the storage of P patterns, ξ^{μ} that are recalled if we provide an input sufficiently close to one of them.

The memory effect is given by the interaction between neurons:

$$J_{ij}=rac{1}{N}\sum_{\mu=1}^{P}\xi_{i}^{\mu}\xi_{j}^{\mu}\,,\quad\xi_{i}^{\mu}=\pm1$$

that tend to make the patterns ground states for the energy:

$$E(\boldsymbol{J}, \boldsymbol{\sigma}) = -rac{1}{2} \sum_{i,j=1}^{N} J_{ij} \sigma_i \sigma_j \,, \quad \sigma_i = \pm 1$$

¹Hopfield, J., PNAS. 79 (8) 2554-2558 (1982)

Hopfield model ○●○	Matrix factorization	Decimation	Numerics	Towards general spins
Retrieval				

There are several alternatives (not limited to the following):

- the classical "neural dynamics": $\sigma_i^{t+1} = \operatorname{sign}(h_i^t), \ h_i^t = \sum_{j \neq i} J_{ij}\sigma_j^t;$
- Simulated Annealing on the energy $E({m J},{m \sigma})$
- Message passing algorithms (like AMP) on the Boltzmann-Gibbs measure $\langle \cdot \rangle \propto \exp\left(-\beta E(\boldsymbol{J}, \boldsymbol{\sigma})\right)$ at very high β

They all aim at sampling the BG measure at low temperature!

They all work provided a good initialization is provided!

Hopfield model ○●○	Matrix factorization	Decimation	Numerics	Towards general spins
Retrieval				

There are several alternatives (not limited to the following):

- the classical "neural dynamics": $\sigma_i^{t+1} = \operatorname{sign}(h_i^t), \ h_i^t = \sum_{j \neq i} J_{ij}\sigma_j^t;$
- Simulated Annealing on the energy $E({m J},{m \sigma})$
- Message passing algorithms (like AMP) on the Boltzmann-Gibbs measure $\langle \cdot \rangle \propto \exp\left(-\beta E(\boldsymbol{J}, \boldsymbol{\sigma})\right)$ at very high β

They all aim at sampling the BG measure at low temperature!

They all work provided a good initialization is provided!

Hopfield model ○●○	Matrix factorization	Decimation	Numerics	Towards general spins
Retrieval				

There are several alternatives (not limited to the following):

- the classical "neural dynamics": $\sigma_i^{t+1} = \operatorname{sign}(h_i^t), \ h_i^t = \sum_{j \neq i} J_{ij}\sigma_j^t;$
- Simulated Annealing on the energy $E({m J}, {m \sigma})$
- Message passing algorithms (like AMP) on the Boltzmann-Gibbs measure $\langle \cdot \rangle \propto \exp\left(-\beta E(\boldsymbol{J}, \boldsymbol{\sigma})\right)$ at very high β

They all aim at sampling the BG measure at low temperature!

They all work provided a good initialization is provided!

The patterns are typically *i.i.d.* drawn from a centered P_{ξ} . Which means:

$$\frac{\boldsymbol{\xi}^{\mu}\cdot\boldsymbol{\xi}^{\nu}}{N}=\delta_{\mu\nu}+O(N^{-1/2})\,.$$

Pattern interference² occurse when $\alpha = P/N > 0$.

Intuitive explanation

 $x \sim \langle \cdot \rangle$ can have a O(N) projection only onto a finite number of patterns. The remaining ones are $O(\sqrt{N})$.

²D.J. Amit, H. Gutfreund and H. Sompolinsky, in Phys. Rev. Lett. 55, 1530 (1985)

F. Camilli, fcamilli@ictp.it (ICTP)

MF with NN

The task is to recover an $N \times P$ matrix $\boldsymbol{\xi} = (\xi_i^{\mu})_{i \leq N}^{\mu \leq P}$ with $P/N = \alpha \geq 0$ from

$$Y_{ij} = \sum_{\mu=1}^{P} \frac{\xi_i^{\mu} \xi_j^{\mu}}{\sqrt{N}} + \sqrt{\Delta} Z_{ij} \,, \quad \boldsymbol{Z} \text{ Wigner} \,.$$

Bayes optimal approach: in the hypothesis of $\xi_i^{\mu} \stackrel{\text{\tiny M}}{\sim} P_{\xi}$

$$\Phi = \frac{1}{NP} \mathbb{E} \log \int \prod_{i=1}^{N} \prod_{\mu=P}^{N} dP_{\xi}(X_{i}^{\mu}) \exp \left[\frac{1}{2\Delta\sqrt{N}} \operatorname{Tr} \boldsymbol{Y} \boldsymbol{X} \boldsymbol{X}^{T} - \frac{\operatorname{Tr}(\boldsymbol{X} \boldsymbol{X}^{T})^{2}}{4\Delta N}\right]$$

The task is to recover an $N \times P$ matrix $\boldsymbol{\xi} = (\xi_i^{\mu})_{i \leq N}^{\mu \leq P}$ with $P/N = \alpha \geq 0$ from

$$Y_{ij} = \sum_{\mu=1}^{P} \frac{\xi_i^{\mu} \xi_j^{\mu}}{\sqrt{N}} + \sqrt{\Delta} Z_{ij} \,, \quad \boldsymbol{Z} \text{ Wigner} \,.$$

Bayes optimal approach: in the hypothesis of $\xi_i^{\mu} \stackrel{\text{iid}}{\sim} P_{\xi}$

$$\Phi = \frac{1}{NP} \mathbb{E} \log \int \prod_{i=1}^{N} \prod_{\mu=P}^{N} dP_{\xi}(X_{i}^{\mu}) \exp \left[\frac{1}{2\Delta\sqrt{N}} \operatorname{Tr} \boldsymbol{Y} \boldsymbol{X} \boldsymbol{X}^{T} - \frac{\operatorname{Tr}(\boldsymbol{X} \boldsymbol{X}^{T})^{2}}{4\Delta N}\right]$$

Hopfield model	Matrix factorization ○●○	Decimation 000000	Numerics	Towards general spins
Why is it	t interesting?			

In its asymmetric version $\mathbf{Y} = \mathbf{A}\mathbf{B} + \sqrt{\Delta}\mathbf{Z}$ matrix factorization is employed for:

- image and video restoration;
- image and video inpainting;

where usually one imposes \boldsymbol{B} is sparse and the columns of \boldsymbol{A} form an overcomplete basis.

We also have

- Recommendation systems
- A high rank version of spiked models!

When P is finite, the model reduces to the low rank matrix estimation, which is a well studied problem in the Bayes-optimal setting³.

³Among other refs: T. Lesieur, F. Krzakala and L. Zdeborová, Joi:10.1109/ALLERTON.2015.7447070.

Hopfield model	Matrix factorization ○●○	Decimation 000000	Numerics	Towards general spins
Why is it	t interesting?			

In its asymmetric version $\mathbf{Y} = \mathbf{A}\mathbf{B} + \sqrt{\Delta}\mathbf{Z}$ matrix factorization is employed for:

- image and video restoration;
- image and video inpainting;

where usually one imposes \boldsymbol{B} is sparse and the columns of \boldsymbol{A} form an overcomplete basis.

We also have

- Recommendation systems
- A high rank version of spiked models!

When P is finite, the model reduces to the low rank matrix estimation, which is a well studied problem in the Bayes-optimal setting³.

F. Camilli, fcamilli@ictp.it (ICTP)

³Among other refs: T. Lesieur, F. Krzakala and L. Zdeborová, doi:10.1109/ALLERTON.2015.7447070.

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins
000	000	000000	000000	00000
A related	problem [•] m	atrix denoising a	and the R	IF ⁴

Task: reconstruct a symmetric matrix **S** given the observations:

$$\mathbf{Y} = \mathbf{S} + \sqrt{\Delta} \mathbf{Z}, \quad \in \mathbb{R}^{N \times N},$$

with O(1) eigenvalues.

Cleaning procedure

$$\hat{\boldsymbol{\lambda}}_{S} = \boldsymbol{\lambda}_{Y} - 2\Delta \mathcal{H}[\rho_{Y}](\boldsymbol{\lambda}_{Y}), \quad \hat{\boldsymbol{S}} = \boldsymbol{O}\hat{\boldsymbol{\lambda}}_{S}\boldsymbol{O}^{T}$$

 $\rho_{\mathbf{Y}} =$ spectral density of \mathbf{Y} , $\mathcal{H} =$ Hilbert transform.

In our case **S** is $\frac{\xi\xi^{T}}{N}$ and we will measure its performance via the matrix MSE (mMSE):

mMSE :=
$$\frac{1}{2N} \left\| \hat{\boldsymbol{S}} - \frac{\boldsymbol{\xi} \boldsymbol{\xi}^{\mathsf{T}}}{N} \right\|^2$$

F. Camilli, fcamilli@ictp.it (ICTP)

⁴J. Bun, R. Allez, J.-P. Bouchaud, and M. Potters, IEEE Transactions on Information Theory, 62(12):7475–7490, 2016.

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins
Decimation:	a sub-optimal	vet feasible	approach	

We look for one column $\boldsymbol{\xi}^{\mu}$ of $\boldsymbol{\xi}$ at a time.

Decimation scheme:

- 1. Assume we are able to produce an estimate of ξ^P , denoted η^P sampling from a certain measure;
- 2. Subtract the corresponding rank 1 contribution from **Y**:

$$\boldsymbol{Y}_1 = \boldsymbol{Y} - \frac{\boldsymbol{\eta}^P \boldsymbol{\eta}^{P T}}{\sqrt{N}}$$

- 3. Replace $m{Y}_0\equivm{Y}$ with $m{Y}_1$ and produce another estimate for $m{\xi}^{P-1}$;
- 4. Repeat untill the *P*-th step when $\boldsymbol{Y}_P = \boldsymbol{Y}_1 \frac{\eta^1 \eta^{1T}}{\sqrt{N}} = \boldsymbol{Y} \sum_{\mu=1}^P \frac{\eta^\mu \eta^{\mu T}}{\sqrt{N}}$.

Hopfield model	Matrix factorization	Decimation •00000	Numerics	Towards general spins
Decimation:	a sub-optimal	vet feasible	approach	

We look for one column $\boldsymbol{\xi}^{\mu}$ of $\boldsymbol{\xi}$ at a time.

Decimation scheme:

- 1. Assume we are able to produce an estimate of ξ^P , denoted η^P sampling from a certain measure;
- 2. Subtract the corresponding rank 1 contribution from \boldsymbol{Y} :

$$oldsymbol{Y}_1 = oldsymbol{Y} - rac{oldsymbol{\eta}^Poldsymbol{\eta}^Poldsymbol{T}}{\sqrt{N}}$$

3. Replace $\mathbf{Y}_0 \equiv \mathbf{Y}$ with \mathbf{Y}_1 and produce another estimate for $\boldsymbol{\xi}^{P-1}$;

4. Repeat untill the *P*-th step when $\mathbf{Y}_P = \mathbf{Y}_1 - \frac{\eta^1 \eta^{1\,T}}{\sqrt{N}} = \mathbf{Y} - \sum_{\mu=1}^{P} \frac{\eta^{\mu} \eta^{\mu\,T}}{\sqrt{N}}$.

Hopfield model	Matrix factorization	Decimation OOOOO	Numerics	Towards general spins
R-th decimat	tion step			

Let $R = 0, 1, 2, \dots, P-1$ be the number of patterns already estimated. Define

$$oldsymbol{Y}_R = oldsymbol{Y} - \sum_{\mu=P-R+1}^P rac{\eta^\mu \eta^{\mu extsf{T}}}{\sqrt{N}}\,.$$

We assume the R + 1-th estimate is sampled from $\frac{1}{Z_R}e^{-\beta E(\mathbf{x}|\mathbf{Y}_R)}dP_{\xi}(\mathbf{x})$ with

$$-E(\mathbf{x}|\mathbf{Y}_{R}) = \frac{1}{2\sqrt{N}} \operatorname{Tr} \mathbf{Y}_{R} \mathbf{x} \mathbf{x}^{\mathsf{T}} - \frac{\|\mathbf{x}\|^{4}}{4N} =$$

= $\frac{\sqrt{\Delta}}{2\sqrt{N}} \sum_{i,j=1}^{N} Z_{ij} \mathbf{x}_{i} \mathbf{x}_{j} + \frac{1}{2N} \sum_{\mu=1}^{P} \left(\sum_{i=1}^{N} \xi_{i}^{\mu} \mathbf{x}_{i}\right)^{2} - \frac{1}{2N} \sum_{\mu=P-R+1}^{P} \left(\sum_{i=1}^{N} \eta_{i}^{\mu} \mathbf{x}_{i}\right)^{2} - \frac{\|\mathbf{x}\|^{4}}{4N}.$

The second set of terms is the energy of the Hopfield model!
The third set of terms repels from already found patterns.

Hopfield model	Matrix factorization	Decimation OOOOO	Numerics	Towards general spins
R-th decimat	tion step			

Let $R = 0, 1, 2, \ldots, P-1$ be the number of patterns already estimated. Define

$$oldsymbol{Y}_R = oldsymbol{Y} - \sum_{\mu=P-R+1}^P rac{\eta^\mu \eta^{\mu extsf{T}}}{\sqrt{N}}\,.$$

We assume the R + 1-th estimate is sampled from $\frac{1}{\mathcal{Z}_R} e^{-\beta E(\mathbf{x} | \mathbf{Y}_R)} dP_{\xi}(\mathbf{x})$ with

$$-E(\mathbf{x}|\mathbf{Y}_{R}) = \frac{1}{2\sqrt{N}} \operatorname{Tr} \mathbf{Y}_{R} \mathbf{x} \mathbf{x}^{\mathsf{T}} - \frac{\|\mathbf{x}\|^{4}}{4N} =$$

= $\frac{\sqrt{\Delta}}{2\sqrt{N}} \sum_{i,j=1}^{N} Z_{ij} x_{i} x_{j} + \frac{1}{2N} \sum_{\mu=1}^{P} \left(\sum_{i=1}^{N} \xi_{i}^{\mu} x_{i}\right)^{2} - \frac{1}{2N} \sum_{\mu=P-R+1}^{P} \left(\sum_{i=1}^{N} \eta_{i}^{\mu} x_{i}\right)^{2} - \frac{\|\mathbf{x}\|^{4}}{4N}.$

- The second set of terms is the energy of the Hopfield model!
- The third set of terms repels from already found patterns.

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins
Noise source	S			

It is important to notice that decimation is affected by three noise sources:

- a) The initial Gaussian noise Z;
- b) Patter interference, tuned by $\alpha = P/N$, rank over dimensionality, due to the similarity with Hopfield;
- c) Decimation itself! Indeed, the η 's are only estimates of the patterns.

The ultimate goal of decimation is **to decrease the effective rank of the hidden matrix**, so to tune down noise source b).

Does decimation corrupt itself?

Hopfield model	Matrix factorization	Decimation	Numerics 000000	Towards general spins
Noise source	S			

It is important to notice that decimation is affected by three noise sources:

- a) The initial Gaussian noise Z;
- b) Patter interference, tuned by $\alpha = P/N$, rank over dimensionality, due to the similarity with Hopfield;
- c) Decimation itself! Indeed, the η 's are only estimates of the patterns.

The ultimate goal of decimation is **to decrease the effective rank of the hidden matrix**, so to tune down noise source b).

Does decimation corrupt itself?

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins
000	000	000000	000000	00000
Decimation t	free entropies			

Each decimation step, say R + 1, has its own free entropy:

$$\Phi_{R+1} := \frac{1}{N} \mathbb{E} \log \int dP_{\xi}(\boldsymbol{x}) \exp\left(-\beta E(\boldsymbol{x} | \boldsymbol{Y}_{R})\right)$$

whose limit is computed with the *replica method*. The replica symmetric ansatz yields

RS free entropy

$$\Phi_{R+1} = \operatorname{Extr} \left\{ \Phi_0(\alpha, m^{[0,t]}, \beta; q, r, u) - \beta \frac{m^2}{2} + \mathbb{E}_{Z,\xi} \log \int dP_{\xi}(x) \exp\left(\left(Z\sqrt{r} + \beta m\xi \right) x - \frac{u+r}{2} x^2 \right) \right\}$$

- $m^{[0,t]}, t = R/P$ collection of the previous retrieval accuracies $m^{\mu} = rac{\xi^{\mu} \cdot \eta^{\mu}}{N}$;

- m: at stationarity is the R + 1-th retrieval accuracy;
- r: multiplies a std Gaussian, tunes amplitude of the noise.

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins
000	000	000000	000000	00000
Decimation •	free entropies			

Each decimation step, say R + 1, has its own free entropy:

$$\Phi_{R+1} := \frac{1}{N} \mathbb{E} \log \int dP_{\xi}(\boldsymbol{x}) \exp\left(-\beta E(\boldsymbol{x} | \boldsymbol{Y}_{R})\right)$$

whose limit is computed with the *replica method*. The replica symmetric ansatz yields

RS free entropy

$$\Phi_{R+1} = \operatorname{Extr} \left\{ \Phi_0(\alpha, m^{[0,t]}, \beta; q, r, u) - \beta \frac{m^2}{2} + \mathbb{E}_{Z,\xi} \log \int dP_{\xi}(x) \exp\left(\left(Z\sqrt{r} + \beta m\xi \right) x - \frac{u+r}{2} x^2 \right) \right\}$$

- $m^{[0,t]}$, t = R/P collection of the previous retrieval accuracies $m^{\mu} = \frac{\xi^{\mu} \cdot \eta^{\mu}}{N}$;

- *m*: at stationarity is the R + 1-th retrieval accuracy;
- r: multiplies a std Gaussian, tunes amplitude of the noise.

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins
000	000	000000	000000	00000
(Some)	saddle point equ	ations		

Recall

$$\langle \cdot \rangle_{\xi_i^{\mu},Z} = \frac{\int dP_{\xi}(x) e^{(Z\sqrt{r} + \beta m^{\mu}\xi_i^{\mu})x - \frac{r+u}{2}x^2}(\cdot)}{\int dP_{\xi}(x) e^{(Z\sqrt{r} + \beta m^{\mu}\xi_i^{\mu})x - \frac{r+u}{2}x^2}}$$

Saddle point equations

(r) $r = r_a + r_b + r_c$:

$$r_{a} = \beta^{2} \Delta q , \quad r_{b} = \frac{(1-t)\alpha\beta^{2}q}{(1-\beta(1-q))^{2}} ,$$
$$r_{c} = 2\alpha t\beta^{2}q \int_{0}^{t} d\tau f(\tau) [1+2\beta^{2}(1-q)^{2}f(\tau)]$$

(m)
$$m = \mathbb{E}_{\xi, Z} \xi \langle X \rangle_{\xi, Z}$$

(q) $q = \mathbb{E}_{\xi, Z} \langle X \rangle_{\xi, Z}^2$.

Hopfield model	Matrix factorization	Decimation	Numerics •00000	Towards general spins
Main questic	ons			

- Q1 Does decimation corrupt itself (too much)? Would it be able to retrieve all the patterns?
- Q2 Is there an efficient way to implement it?

Hopfield m	odel	Matrix fa	actorization	Decimation	n	Numerics	Towards general spins
000		000		000000		00000	00000
01	-						

Q1: Decimation is a valid procedure!

Here $\alpha = 0.03$, $\Delta = 1/\beta = 0.15$, N = 2000, $P_{\xi} = \text{Rad.}$ Blue dots are AMP initialized close to patterns.

Hopfield mo	odel	Matrix factorizat	on Dec	mation	Numerics	Towards general spins
Q2:	The grou	und sta	te "oracle	" for Ising	g spins	

Made up of three ingredients:

• Simulated annealing on $E(\sigma|\mathbf{Y}_R)$: we set the *i*-th spin up with probability

$$\frac{1}{1+\exp\left(-2\beta_k h_{i,k}\right)}, \quad \beta_k = 1+Ck, h_{i,k} = (\boldsymbol{Y}_R \boldsymbol{\sigma}_k)_i$$

 $k=1,2,\ldots$

- Decimation $\mathbf{Y}_R \mapsto \mathbf{Y}_R \frac{\eta^{\mu} \eta^{\mu \tau}}{\sqrt{N}}$
- Restarting criterion: due to the ragged landscape, the SA often gets stuck in metastable states. Hence, we compute the energy of the found configuration and test it against the expected energy of a GS, accessible through the theory.

Hopfield model	Matrix factorization	Decimation	Numerics ○○○●○○	Towards general spins
GS oracle				

Here N = 1300, with $P_{\xi} = \text{Rad}$, $\alpha = 0.03$, $\Delta = 0.08$, $\beta \to \infty$. No informative initialization needed!

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins
Decimation	performance			

Red: RIE, blue: decimation at $\beta = 1/\Delta$, green: decimation at $\beta \rightarrow \infty$.

Hopfie	ld model	Matrix factorization	Decimation	Numerics ○○○○○●	Towards general spins
	but not e	fficient!			

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins ●○○○○
Rademacher	sparse prior			
The above result	s hold for any well b	ehaved prior, in	cluding	

 $\rho = 0.2, \Delta = 0.08, \alpha = 0.05, N = 1500, n = 300, T > 0$ decimation 0.008 Theory with $\beta = 10, \lambda = 0$ AMP-MSE with $\lambda = 0$ 0.007 0.006 0.005 B S U 0.004 0.003 0.002 0.001 0.000 0.2 0.4 0.6 0.0 0.8 1.0

τ

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins
Sparsity h	elps in theory			

We now know that decimation gets through as long as the initial step has a good retrieval accuracy. Then it only improves. Sparsity helps to widen the regions of the phase space where retrieval is possible.

but we have a problem...

F. Camilli, fcamilli@ictp.it (ICTP)

... but it creates a golf course landscape

If we monitor the SA routine with strong sparsity, e.g. $\rho = 0.15$, and few patterns to find, we see that the energy stays constant for a large number of iterations before SA is lucky enough to find a pit!

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins
000	000	000000	000000	00000

Thanks!

YHD, Trieste, May 30th, 2023

Hopfield model	Matrix factorization	Decimation	Numerics	Towards general spins ○○○○●
Some Refere	nces			

- 1. Hopfield, J., Neural networks and physical systems with emergent collective computational abilities, PNAS. 79 (8) 2554-2558 (1982)
- 2. D.J. Amit, H. Gutfreund and H. Sompolinsky, *Storing Infinite Numbers of Patterns in a Spin-Glass Model of Neural Networks*, Physical Review Letters 55, 1530 (1985)
- Bun, J., Allez, R., Bouchaud, J. P., and Potters, M., *Rotational invariant estimator for general noisy matrices*, IEEE Transactions on Information Theory, 62(12), 7475-7490 (2016)
- T. Lesieur, F. Krzakala and L. Zdeborová, *MMSE of probabilistic low-rank matrix* estimation: Universality with respect to the output channel, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 680-687, doi:10.1109/ALLERTON.2015.7447070.
- 5. Camilli, F. and Mézard, M., *Matrix factorization with neural networks*, Physical Review E (2023, to appear), doi:10.48550/arXiv.2212.02105

and many more... write me if you are interested! fcamilli@ictp.it