
# Water availability

## Climate Information for Risk Assessment and Regional Adaptation

Izidine Pinto KNMI; Erika Coppola ICTP; Veruska Muccione University of Zurich





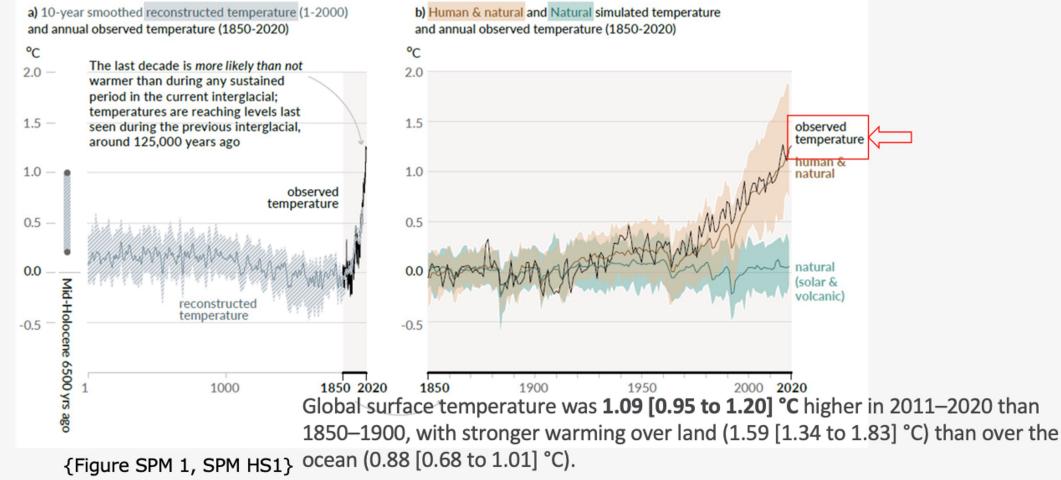
Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat



The Abdus Salam International Centre for Theoretical Physics

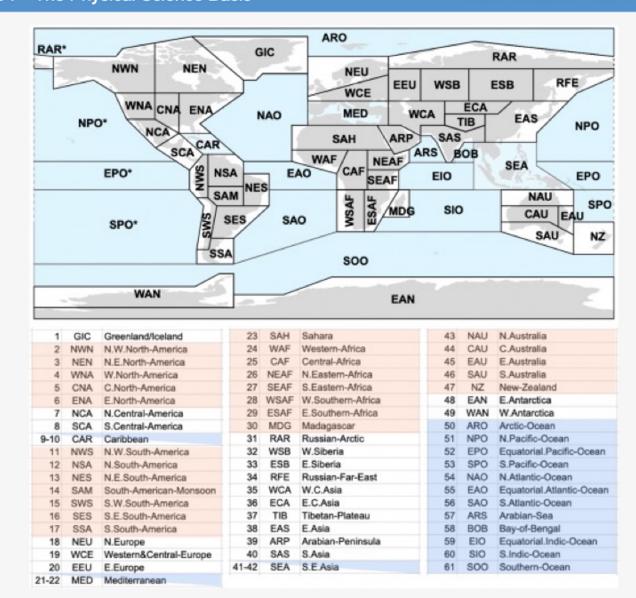





## What do we want to achieve in this session:

- Overview of methodologies used for water availability risk assessment carried on across WGI and WGII by mean of specific regional and topological region examples
- Start a discussion on the fit for purpose of this methodology from the end users point of view (YOU)
- Can you give us specific examples on what you find useful or what you would you like to change
- Try to reflect on how you could do it differently

INTERGOVERNMENTAL PANEL ON Climate change


WMO





INTERGOVERNMENTAL PANEL ON CLIMATE Change www. UNER

**IOCC** 



46 Land regions 15 Ocean regions

Climate consistency and better representation of regional climate features

 $(\mathbf{\hat{e}})$ 

Sufficiente number of grid boxes represented in models

{Figure 1.18, Figure Atlas.2}

Basis INTERGOVERNMENTAL PANEL ON Climate change

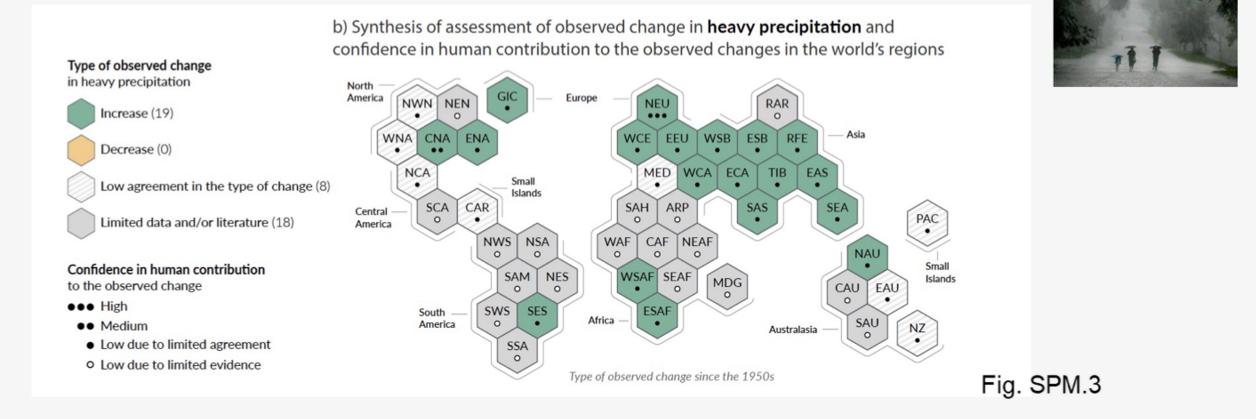
## Climate change is already affecting every inhabited region across the globe with human influence contributing to many observed changes in weather and climate extremes

a) Synthesis of assessment of observed change in hot extremes and confidence in human contribution to the observed changes in the world's regions Type of observed change in hot extremes North GIC America Europe NWN NEN NEU RAR Increase (41) .. ... ... .. Asia CNA ENA RFE EEU WSB ESB WNA WCE Decrease (0) ... .. ... ... ... ... EAS NCA MED WCA ECA TIB EAN Low agreement in the type of change (2) Small ... .. ... ... ... ... Islands CAR SCA SAH ARP SEA SAS Central Limited data and/or literature (2) PAC ... .. .. .. .. ... America .. CAF NEAF NSA WAF NWS NAU 0 ... .. Confidence in human contribution ... Small WSAF SEAF SAM NES Islands to the observed change MDG CAU EAU .. ... .. .. ... ••• High SWS SES South ESAF Africa Medium SAU .. ... ... America NZ Australasia ... Low due to limited agreement SSA 0 Low due to limited evidence Fig. SPM.3 Type of observed change since the 1950s

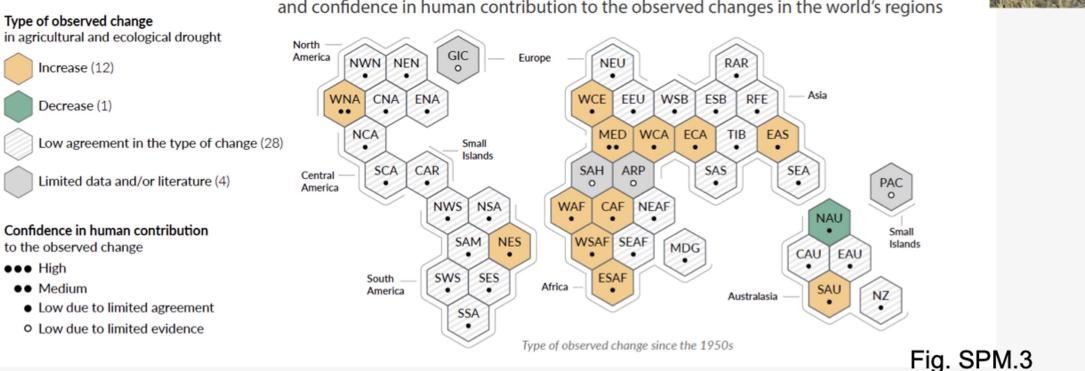
Some recent hot extremes observed over the past decade would have been extremely *unlikely* to occur without human influence on the climate system.






Human influence, in particular greenhouse gas emissions, is *likely* the main driver of the observed global scale intensification of heavy precipitation in land regions.

"The frequency and intensity of **heavy precipitation events** have increased since the 1950s over most land area for which observational data are sufficient for trend analysis (*high confidence*)


INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

6

WMO



Human-induced climate change has contributed to increases in agricultural and ecological droughts in some regions **due to evapotranspiration increases** (medium confidence).



c) Synthesis of assessment of observed change in **agricultural and ecological drought** and confidence in human contribution to the observed changes in the world's regions

INTERGOVERNMENTAL PANEL ON CLIMATE CHANCE

**(** 

WMO

**Observed changes in extremes & their attribution** 

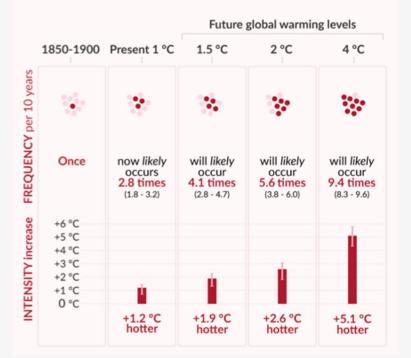
INTERGOVERNMENTAL PANEL ON CLIMATE CHAN

- It is *likely* that the global proportion of major (Category 3–5) tropical cyclone occurrence has increased over the last four decades, These changes cannot be explained by internal variability alone (*medium confidence*)
- Human influence has likely increased the chance of compound extreme events since the 1950s.
- Increases in the frequency of concurrent heatwaves and droughts on the global scale (*high confidence*);
- Increases in fire weather in some regions of all inhabited continents (*medium confidence*);
- Increases in compound flooding in some locations (medium confidence).





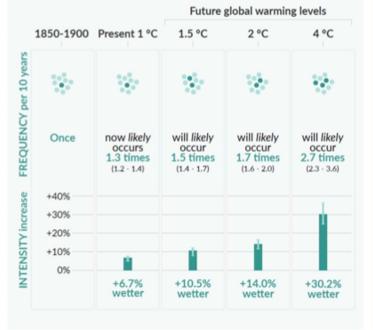



INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

## Projected changes in extremes are larger in frequency and intensity with every additional increment of global warming

Hot temperature extremes over land

#### 10-year event


Frequency and increase in intensity of extreme temperature event that occurred **once in 10 years** on average **in a climate without human influence** 



Heavy precipitation over land

#### 10-year event

Frequency and increase in intensity of heavy 1-day precipitation event that occurred **once in 10 years** on average **in a climate without human influence** 



#### Agricultural & ecological droughts in drying regions

 $(\mathbf{f})$ 

WMO

#### 10-year event

Frequency and increase in intensity of an agricultural and ecological drought event that occurred **once in 10 years** on average **across drying regions in a climate without human influence** 

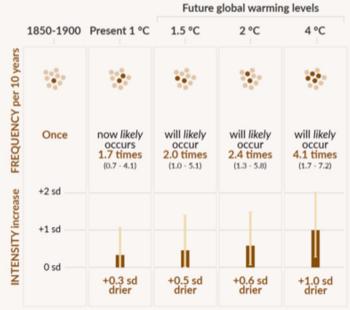
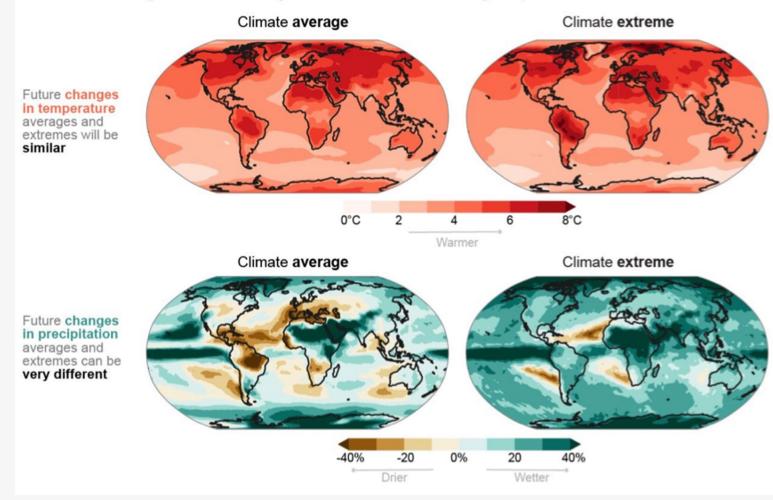



Figure SPM.6: Demonstrates extremes are already more likely and more intense due to current warming and these trends will continue with each additional fraction of warming.


Fig. SPM.6

UNEP

## Projected Changes in extremes vs means

FAQ 11.1: How will changes in climate extremes compare with changes in climate averages?

The direction and magnitude of future changes in climate extremes and averages depend on the variable considered.



### FAQ 11.1 Fig1

### FAQ8.3: Climate change and droughts

In some regions, drought is expected to increase under future warming



Schematic map highlighting in brown the regions where droughts are expected to become worse as a result of climate change. This pattern is similar regardless of the emissions scenario; however, the magnitude of change increases under higher emissions.

### SIXTH ASSESSMENT REPORT

Working Group I – The Physical Science Basis

and Sustainable Development

(WGII Chapter 8)



|                                       |                                                  |                      |              |            |       |                    | _           | _                                     | _         |         | _                    |                                     |              |                 |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            | 6                    |
|---------------------------------------|--------------------------------------------------|----------------------|--------------|------------|-------|--------------------|-------------|---------------------------------------|-----------|---------|----------------------|-------------------------------------|--------------|-----------------|-------------------|------------------|---------------------|-----------------------------|------------|-------------------------|------------------------------|------|----------------|--------------------|---------------|-----------------|------------------------|-----------------|---------------|----------------|------------------|-----------------------|----------------------------|----------------------|
|                                       |                                                  | (                    |              |            | )     |                    |             | (                                     |           |         | )                    |                                     |              | (               |                   |                  |                     |                             | (          | XX                      |                              |      | (              |                    |               |                 |                        |                 |               | 33             |                  |                       |                            |                      |
|                                       |                                                  | -                    | loat a       | nd Co      | Jd    |                    |             |                                       | Wet a     | nd Dr   |                      |                                     | _            | -               | 14                | Clin<br>/ind     | natic               | Impa                        |            | river<br>now a          | and Ic                       |      |                |                    | oasta         | 1               |                        | On              | en Oc         | 020            |                  |                       | Other                      |                      |
|                                       |                                                  | -                    |              |            |       | -                  | -           |                                       |           |         | -                    | 7                                   | -            | -               |                   |                  | 5                   | 5                           |            |                         |                              |      | 5              |                    |               |                 | -                      | · ·             |               |                | _                |                       |                            | _                    |
| Sector                                | Asset                                            | Mean air temperature | Extreme heat | Cold spell | Frost | Mean precipitation | River flood | Heavy precipitation and pluvial flood | Landslide | Aridity | Hydrological drought | Agricultural and ecological drought | Fire weather | Mean wind speed | Severe wind storm | Tropical cyclone | Sand and dust storm | Snow, glacier and ice sheet | Permafrost | Lake, river and sea ice | Heavy snowfall and ice storm | Hail | Snow avalanche | Relative sea level | Coastal flood | Coastal erosion | Mean ocean temperature | Marine heatwave | Ocean acidity | Ocean salinity | Dissolved oxygen | Air pollution weather | Atmospheric CO2 at surface | Radiation at surface |
| Food, Fibre and                       | Crop systems                                     |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              |                 |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            |                      |
| Other Ecosystem                       | Livestock and pasture systems                    |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              |                 |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            |                      |
| Products<br>(WGII Chapter 5)          | Forestry systems                                 |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              |                 |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            |                      |
| (Woll chapter 5)                      | Fisheries and aquaculture systems                |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              |                 |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            |                      |
| Cities, Settlements                   | Cities                                           |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              |                 |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            |                      |
| and Key                               | Land and water transportation                    |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              |                 |                   |                  | L_                  |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            |                      |
| Infrastructure<br>(WGII Chapter 6)    | Energy infrastructure                            |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              |                 |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            |                      |
|                                       | Built environment                                |                      |              |            |       | _                  |             |                                       |           |         |                      |                                     |              |                 |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            |                      |
|                                       | Labour productivity                              |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              |                 |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            |                      |
| Health, Well-being<br>and Communities | Morbidity                                        |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              | _               |                   |                  |                     |                             |            |                         |                              |      |                | _                  |               |                 |                        |                 |               |                |                  |                       |                            |                      |
| (WGII Chapter 7)                      | Mortality<br>Recreation and tourism <sup>a</sup> |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              | _               |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 |                        |                 |               |                |                  |                       |                            |                      |
|                                       | Housing stock <sup>b</sup>                       |                      |              |            |       |                    |             |                                       |           |         |                      |                                     |              | -               |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 | -                      |                 |               |                |                  |                       | $\left  - \right $         |                      |
| Poverty, Livelihoods                  | Formland                                         |                      |              |            |       | _                  |             | -                                     |           |         |                      |                                     |              | _               |                   |                  |                     |                             |            |                         |                              |      |                |                    |               |                 | -                      |                 |               |                | -                |                       | $\left  - \right $         | -                    |

climate 9 ge

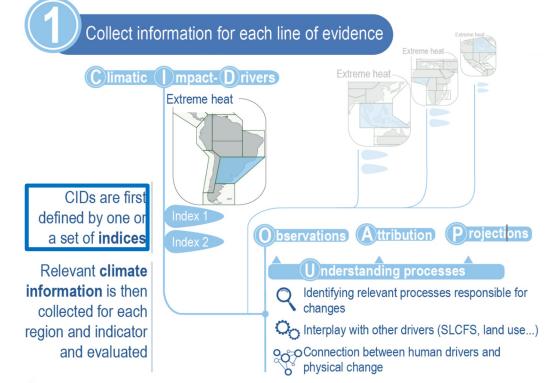
<sup>a</sup> The Recreation and tourism asset category includes outdoor exercise and the tourism industry (including ecosystem services) assessed in many WGII chapters

<sup>b</sup> This asset category is distinguished by the threat of a full loss of key investments and living environments rather than a recoverable damage or loss of productivity or profit

Table 12.2 WGI AR6



Farmland<sup>b</sup>


Livestock mortality<sup>b</sup>

Indigenous traditions

Each climate change can affect multiple sectors Each sector is affected by multiple climate changes

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

## Assessment of CIDs information at regional scale



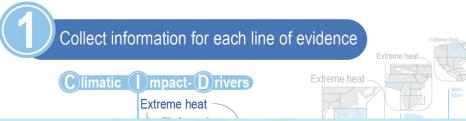
### CCB10.3 WGI AR6

Working Group I – The Physical Science Basis

#### INTERGOVERNMENTAL PANEL ON Climate change

#### Table AVI.2 | Regional CID indices table and relevant references.

| CID Category | Climatic Impact-driver<br>(from Table 12.1)<br>and Potential<br>Affected Sectors         | Index                                                                                    | Required<br>ECVs       | Way to<br>Calculate                                 | Bias<br>Adjustment | References                                                               |
|--------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|--------------------|--------------------------------------------------------------------------|
|              | Change in cooling demand<br>for energy demand and<br>building consumption                | Cooling degree days<br>above 22°C                                                        | Tas, tasmin,<br>tasmax | From projections                                    | Yes                | Spinoni et al. (2015, 2018)                                              |
| Heat         | Heat, with thresholds important for agriculture                                          | Number of days with<br>Tmax >35°C or 40°C<br>(TX35, TX40)                                | Tasmax                 | From projections                                    | Yes                | Hatfield and Prueger (2015);<br>Hatfield et al., (2015); Grotjahn (2021) |
|              | Heat stress index<br>combining humidity<br>used in occupational<br>and industrial health | NOAA heat index (HI):<br>number of days above<br>41°C threshold                          | Tasmax,<br>huss, ps    | From projections                                    | Yes                | Burkart et al. (2011); Lin et al. (2012);<br>Kent et al. (2014)          |
| c.H          | Heating degree day for<br>energy consumption                                             | Heating degree days below 15.5°C                                                         | Tas, tasmin,<br>tasmax | From projections                                    | Yes                | Spinoni et al. (2015, 2018)                                              |
| Cold         | Frost                                                                                    | Number of frost days                                                                     | Tasmin                 | From projections                                    | Yes                | Barlow et al. (2015); Rawlins et al. (201                                |
| Wet          | River flooding                                                                           | Flood index (FI)                                                                         | srroff/mrro            | From projections<br>and simplified<br>routing model | No                 | Forzieri et al. (2016); Alfieri et al. (2017)                            |
|              | Aridity                                                                                  | Soil moisture (SM)                                                                       | mrso                   | From projections                                    | No                 | Cook et al. (2020)                                                       |
| Drought      | Droughts                                                                                 | Standardized Precipitation<br>Index accumulated over 6<br>months (SPI-6)                 | Pr                     | From projections                                    | No                 | Naumann et al. (2018)                                                    |
| Wind & storm | Mean wind speed                                                                          | Annual mean wind speed                                                                   | sfcWind                | From projections                                    | No                 | Karnauskas et al. (2018); Li et al. (2018)                               |
| Snow/ice     | Snow season length                                                                       | Number of days with<br>snow water equivalent<br>>100 mm (SWE100)<br>over the snow season | Snw                    | From projections                                    | No                 | Damm et al. (2017); Wobus et al. (2017)                                  |
|              |                                                                                          | (Nov–Mar for NH)                                                                         |                        |                                                     |                    |                                                                          |
| Coastal      | Extreme sea level (ETWL)<br>inducing storm surges                                        | (Nov–Mar for NH)<br>1-in-100-year return<br>period level (ETWL)                          |                        | Data from authors                                   | No                 | Vousdoukas et al. (2018)                                                 |


ipcc

Annex VI: Climatic Impact-driver and Extreme Indice<sub>14</sub>s (IPCC **Siste**ssment Report – WG1)

#### Table AVI.1 | Table listing extreme indices used in Chapter 11.

| Extreme       | Label    | Index Name                                                                                                                                                                                                                                                                            | Units    | Variable                   |
|---------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
|               | TXx      | Monthly maximum value of daily maximum temperature                                                                                                                                                                                                                                    | °C       | Maximum temperature        |
|               | TXn      | Monthly minimum value of daily maximum temperature                                                                                                                                                                                                                                    | °C       | Maximum temperature        |
|               | TNn      | Monthly minimum value of daily minimum temperature                                                                                                                                                                                                                                    | °C       | Minimum temperature        |
|               | TNx      | Monthly maximum value of daily minimum temperature                                                                                                                                                                                                                                    | °C       | Minimum temperature        |
|               | TX90p    | Percentage of days when daily maximum temperature is greater than the 90th percentile                                                                                                                                                                                                 | %        | Maximum temperature        |
|               | TX10p    | Percentage of days when daily maximum temperature is less than the 10th percentile                                                                                                                                                                                                    | %        | Maximum temperature        |
|               | TN90p    | Percentage of days when daily minimum temperature is greater than the 90th percentile                                                                                                                                                                                                 | %        | Minimum temperature        |
|               | TN10p    | Percentage of days when daily minimum temperature is less than the 10th percentile                                                                                                                                                                                                    | %        | Minimum temperature        |
|               | ID       | Number of icing days: annual count of days when TX (daily maximum temperature) <0°C                                                                                                                                                                                                   | Days     | Maximum temperature        |
|               | FD       | Number of frost days: annual count of days when TN (daily minimum temperature) <0°C                                                                                                                                                                                                   | Days     | Minimum temperature        |
| Temperature   | WSDI     | Warm spell duration index: annual count of days with at least six consecutive days when TX >90th percentile                                                                                                                                                                           | Days     | Maximum temperature        |
|               | CSDI     | Cold spell duration index: annual count of days with at least six consecutive days when TN <10th percentile                                                                                                                                                                           | Days     | Minimum temperature        |
|               | SU       | Number of summer days: annual count of days when TX (daily maximum temperature) >25°C                                                                                                                                                                                                 | Days     | Maximum temperature        |
|               | TR       | Number of tropical nights: annual count of days when TN (daily minimum temperature) >20°C                                                                                                                                                                                             | Days     | Minimum temperature        |
|               | DTR      | Daily temperature range: monthly mean difference between TX and TN                                                                                                                                                                                                                    | °C       | Maximum and minimum tempe  |
|               | GSL      | Growing season length: annual (1 Jan to 31 Dec in Northern Hemisphere (NH), 1 July to 30 June<br>in Southern Hemisphere (SH)) count between first span of at least six days with daily mean<br>temperature TG >5°C and first span after July 1 (Jan 1 in SH) of six days with TG <5°C | Days     | Mean temperature           |
|               | 20TXx    | One-in-20 year return value of monthly maximum value of daily maximum temperature                                                                                                                                                                                                     | °C       | Maximum temperature        |
|               | 20TXn    | One-in-20 year return value of monthly minimum value of daily maximum temperature                                                                                                                                                                                                     | °C       | Maximum temperature        |
|               | 20TNn    | One-in-20 year return value of monthly minimum value of daily minimum temperature                                                                                                                                                                                                     | °C       | Minimum temperature        |
|               | 20TNx    | One-in-20 year return value of monthly maximum value of daily minimum temperature                                                                                                                                                                                                     | °C       | Minimum temperature        |
|               | Rx1 day  | Maximum one-day precipitation                                                                                                                                                                                                                                                         | mm       | Precipitation              |
|               | Rx5day   | Maximum five-day precipitation                                                                                                                                                                                                                                                        | mm       | Precipitation              |
|               | R5mm     | Annual count of days when precipitation is greater than or equal to 5 mm                                                                                                                                                                                                              | Days     | Precipitation              |
|               | R10mm    | Annual count of days when precipitation is greater than or equal to 10 mm                                                                                                                                                                                                             | Days     | Precipitation              |
|               | R20mm    | Annual count of days when precipitation is greater than or equal to 20 mm                                                                                                                                                                                                             | Days     | Precipitation              |
|               | R50mm    | Annual count of days when precipitation is greater than or equal to 50 mm                                                                                                                                                                                                             | Days     | Precipitation              |
|               | CDD      | Maximum number of consecutive days with less than 1 mm of precipitation per day                                                                                                                                                                                                       | Days     | Precipitation              |
| Precipitation | CWD      | Maximum number of consecutive days with more than or equal to 1 mm of precipitation per day                                                                                                                                                                                           | Days     | Precipitation              |
|               | R95p     | Annual total precipitation when the daily precipitation exceeds the 95th percentile of the wet-day (>1 $\mbox{mm}$ ) precipitation                                                                                                                                                    | mm       | Precipitation              |
|               | R99p     | Annual precipitation amount when the daily precipitation exceeds the 99th percentile<br>of the wet-day precipitation                                                                                                                                                                  | mm       | Precipitation              |
|               | SDII     | Simple precipitation intensity index                                                                                                                                                                                                                                                  | mm day-1 | Precipitation              |
|               | 20Rx1day | One-in-20 year return value of maximum one-day precipitation                                                                                                                                                                                                                          | mm day-1 | Precipitation              |
|               | 20Rx5day | One-in-20 year return value of maximum five-day precipitation                                                                                                                                                                                                                         | mm day-1 | Precipitation              |
|               | SPI      | Standardized precipitation index                                                                                                                                                                                                                                                      | Months   | Precipitation              |
|               | EDDI     | Potential evaporation, evaporative demand drought index                                                                                                                                                                                                                               | Months   | Evaporation                |
|               | SMA      | Soil moisture anomalies                                                                                                                                                                                                                                                               | Months   | Soil moisture              |
|               | SSMI     | Standardized soil moisture index                                                                                                                                                                                                                                                      | Months   | Soil moisture              |
| Drought       | SRI      | Standardized runoff index                                                                                                                                                                                                                                                             | Months   | Streamflow                 |
|               | SSI      | Standardized streamflow index                                                                                                                                                                                                                                                         | Months   | Streamflow                 |
|               | PDSI     | Palmer drought severity index                                                                                                                                                                                                                                                         | Months   | Precipitation, evaporation |
|               |          |                                                                                                                                                                                                                                                                                       |          |                            |

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES



## 1. Collection and assessment of the fitness-for-purpose of available information

Any specific climate change that is regionally relevant is assessed looking at lines of evidence, potentially across multiple indices. For example, several definitions of 'drought' exist that refer to a variety of the underlying processes, temporal and spatial scales, as well as sectoral applications and associated impacts (Sections 11.6 and 12.3). Such diverse definitions need to be gathered from the relevant literature, compared, and individually assessed if appropriate.

Once the indices of change are properly defined, the relevant climate information is collated from the available sources.

ลาน ธงลเนลเธน

physical change

CCB10.3 WGI AR6

## **Regional assessment short summary ...**

Number of land & coastal regions (a) and open-ocean regions (b) where each climatic impact-driver (CID) is projected to increase or decrease with high confidence (dark shade) or medium confidence (light shade)

| (a)                                | ()<br>Heat and Cold                                                        | ()<br>Wet and Dry                                                                                                                                                                                                                                                | )<br>Wind                                                                          | Snow and Ice | Other                                                                                                    | Coastal                                                                                          | (b)                          | Open Ocean                                                                                                                                               |
|------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🖓 NUMBER OF LAND & COASTAL REGIONS | O Mean surface temperature     O Extreme heat     O Cold spell     O Frost | <ul> <li>Mean precipitation</li> <li>River flood</li> <li>Heavy precipitation and pluvial flood</li> <li>Landslide</li> <li>Aridity</li> <li>Aridity</li> <li>Hydrological drought</li> <li>Agricultural and ecological drought</li> <li>Fire weather</li> </ul> | Mean wind speed     Severe wind storm     Tropical cyclone     Sand and dust storm |              | O Snow avalanche     O Air pollution weather     O Atmospheric CO, at surface     O Radiation at surface | C Relative sea level     Coastal flood     Coastal erosion     Marine heatwave     Ocean acidity | NUMBER OF OPEN-OCEAN REGIONS | O Mean ocean temperature     Mean ocean temperature     Marine heatwave     O Ceean acidity     O cean acidity     O cean salinity     O Dissolved oxgen |
| 45                                 |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  |                              |                                                                                                                                                          |
| 35                                 |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  |                              |                                                                                                                                                          |
| 25                                 |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  |                              |                                                                                                                                                          |
| 15                                 |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  | 15                           |                                                                                                                                                          |
| 5                                  |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  | 5                            |                                                                                                                                                          |
| 5                                  |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  | 5                            |                                                                                                                                                          |
| 15                                 |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  | 15                           |                                                                                                                                                          |
| 25                                 |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  |                              |                                                                                                                                                          |
| 35                                 |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  |                              |                                                                                                                                                          |
| 45                                 |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  |                              |                                                                                                                                                          |
| 55                                 |                                                                            |                                                                                                                                                                                                                                                                  |                                                                                    |              |                                                                                                          |                                                                                                  |                              |                                                                                                                                                          |

LIGHTER-SHADED 'ENVELOPE' LEGEND

BAR CHART LEGEND

Regions with high confidence increase

Regions with **high** confidence **decrease** 

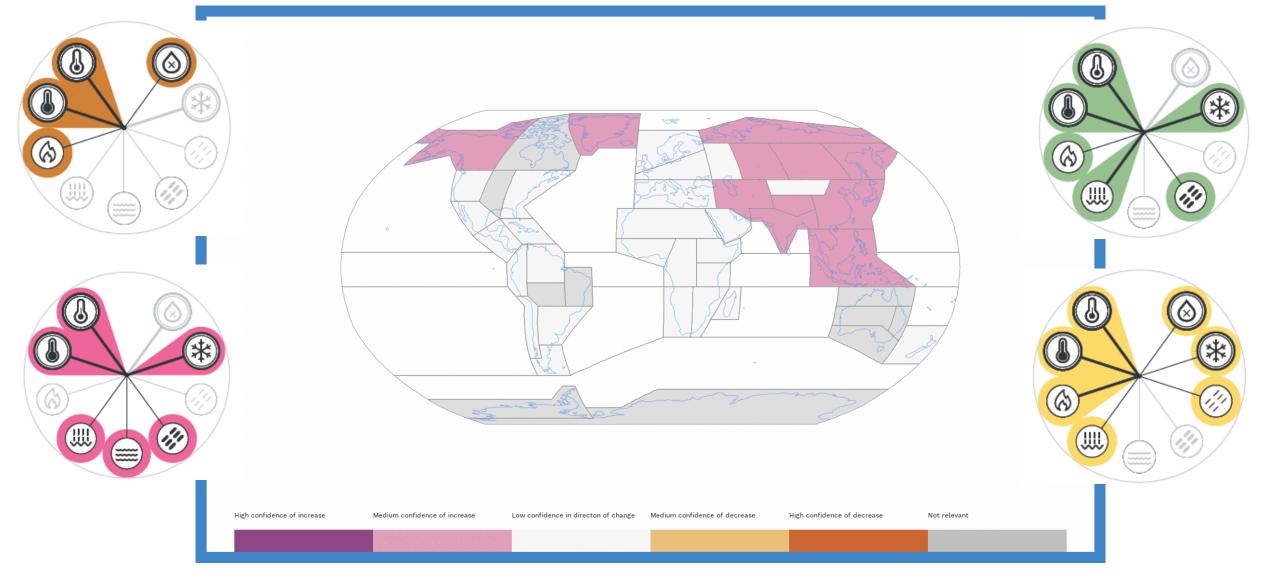
The height of the lighter shaded 'envelope' behind each bar represents the maximum number of regions for which each Regions with medium confidence increase CID is relevant. The envelope is symmetrical about the x-axis showing the maximum possible number of relevant regions Regions with medium confidence decrease for CID increase (upper part) or decrease (lower part).

ASSESSED FUTURE CHANGES Changes refer to a 20-30 year period centred around 2050 and/or consistent with 2°C global warming compared to a similar period within 1960-2014 or 1850-1900.

Changes of CIDs related to the water cycle have a more region specific distribution

All regions are projected to experience changes in at least 5 CIDs.

WMO


- 96% of regions are projected to experience changes in at least 10 CIDs.
- 50% of regions are projected to experience changes in at least 15 CIDs.

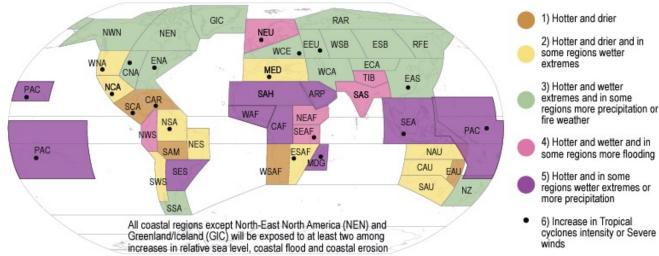
### Figure SPM.9 WGI AR6

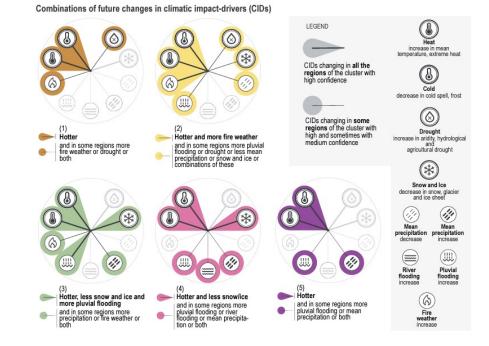
IPUU

**i**pcc

## Multiple climatic impact-drivers will change in all regions of the world




INTERGOVERNMENTAL P<u>ANEL ON Climate change</u>


**IOCC** 

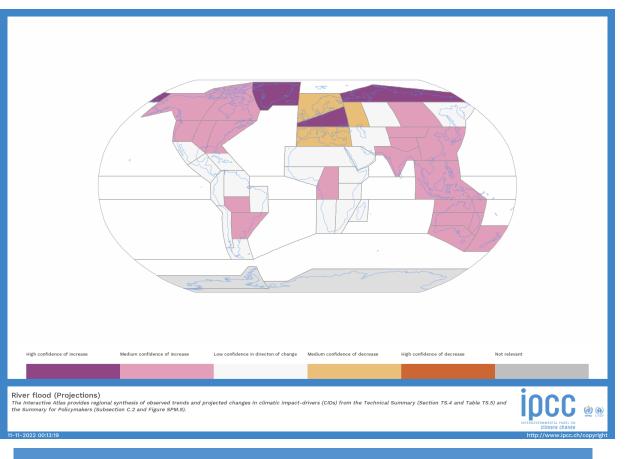
## Multiple climatic impact-drivers will change in all regions of the world

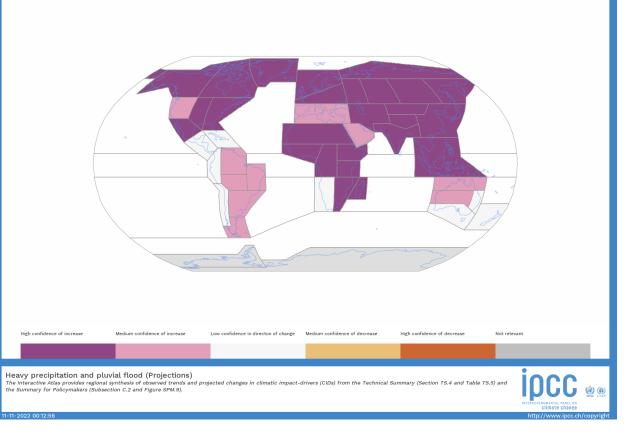
## While changes in climatic impact-drivers are projected everywhere, there is a specific combination of changes each region would experience

(a) World regions grouped into five clusters, each one based on a combination of changes in climatic impact-drivers Assessed future changes: Changes refer to a 20–30 year period centred around 2050 and/or consistent with 2°C global warming compared to a similar period within 1960–2014 or 1850–1900.






INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE


## **River flood**

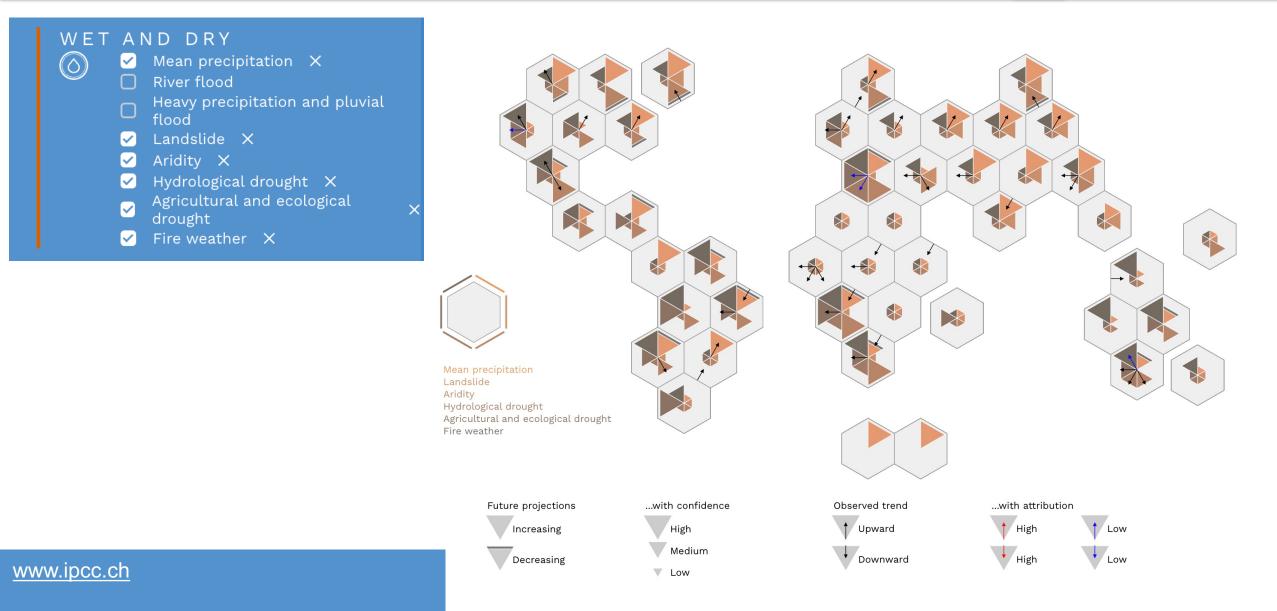
## **Pluvial flood**

UNE

WMO






### www.ipcc.ch

### Interactive Atlas: interactive-atlas.ipcc.ch

## SIXTH ASSESSMENT REPORT

Working Group I – The Physical Science Basis

# INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE



Interactive Atlas: interactive-atlas.ipcc.ch

Working Group I – The Physical Science Basis

#### INTERGOVERNMENTAL PANEL ON CLIMATE CHANEE

 Table 12.7 | Summary of confident
 SRES A18, or abox

 SRES A18, or above within each AR
 for more details

 for more details of the assessment
 in Section 12.5.2.

SRES A1B, or above within each AR6 for more details of the assessment r in Section 12.5.2.

Table 12.3 | Summary of confidence

Table 12.6 | Summary of confidence in direction of projected change in climatic impact-drivers in Central and South America, representing their aggregate characteristic changes for mid-century for scenarios RCP4.5, SSP2-4.5, SRES A1B, or above within each AR6 region (defined in Chapter 1), approximately corresponding (for CIDs that are independent of sea level rise) to global warming levels between 2 and 2.4°C (see Section 12.4 for more details of the assessment method). The table also includes the assessment of observed or projected time-of-emergence of the CID change signal from the natural interannual variability if found with at least *medium confidence* in Section 12.5.2.

. . .

**IOCC** 

UNEF

WMO

· · · ·

| in Section 12.5.2.                                      |                                                        | Climatic Impact-driver              |                      |              |            |       |             |                                       |           |         |      |   |                 |                   |                  |            |                             |        |         |                     |                        |                    |               |                 |                 |               |                            |                      |
|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------|----------------------|--------------|------------|-------|-------------|---------------------------------------|-----------|---------|------|---|-----------------|-------------------|------------------|------------|-----------------------------|--------|---------|---------------------|------------------------|--------------------|---------------|-----------------|-----------------|---------------|----------------------------|----------------------|
|                                                         | MED                                                    |                                     | н                    | eat an       | d Cold     |       |             |                                       | Wet ar    | nd Dry  |      |   |                 | Wir               | ıd               |            |                             | Sno    | ow and  | d Ice               |                        |                    | Coastal       | l and C         | ceanic          |               | Oth                        | ner                  |
| NEU<br>WCE<br>MED                                       | SAH<br>WAF<br>CAF<br>S<br>WSAF ES<br>WSAF ES<br>Region | SCA<br>NWS<br>SAM<br>SWS SES<br>SSA | Mean air temperature | Extreme heat | Cold spell | Frost | River flood | Heavy precipitation and pluvial flood | Landslide | Aridity | ught | 2 | Mean wind speed | Severe wind storm | Tropical cyclone | dust storm | Snow, glacier and ice sheet | afrost | sea una | vv snowfall and ice | Snow avalanche<br>Hail | Relative sea level | Coastal flood | Coastal erosion | Marine heatwave | Ocean acidity | Atmospheric CV2 at surface | Radiation at surface |
| Region                                                  | Sahara (SAH)                                           | Region                              |                      |              |            |       |             |                                       |           |         |      |   |                 |                   |                  |            | _                           |        | _       | _                   |                        |                    |               |                 |                 |               |                            |                      |
| Mediterranean (MED)                                     | Western Africa (WAF)                                   | Southern Central America (SCA)      | •                    | •            | •          |       |             |                                       |           |         |      |   |                 |                   | 2                |            |                             |        |         |                     |                        | •                  |               | 3               |                 | •             |                            |                      |
|                                                         | Central Africa (CAF)                                   | North-Western South America (NWS)   | •                    | •            | •          |       |             |                                       |           |         |      |   |                 |                   |                  |            |                             |        |         |                     |                        | •                  |               | 3,4             |                 | •             |                            |                      |
| Western and Central Europe (WCE)                        | North Eastern Africa (NEAF)                            | Northern South America (NSA)        | •                    | •            | •          |       |             |                                       |           |         |      |   |                 |                   | 2                |            |                             |        |         |                     |                        |                    |               | 3,4             |                 |               |                            |                      |
| Eastern Europe (EEU)                                    | South Eastern Africa (SEAF)                            | South American Monsoon (SAM)        | •                    | •            | •          |       | 1           |                                       |           |         |      |   |                 |                   |                  |            |                             |        |         |                     |                        |                    |               |                 |                 |               |                            |                      |
| Northern Europe (NEU)                                   | West Southern Africa (WSAF)                            | North-Eastern South America (NES)   | •                    | •            | •          |       |             |                                       |           |         |      |   |                 |                   |                  |            |                             |        |         |                     |                        | •                  |               | 3,4             |                 | •             |                            |                      |
| norment curope (neo)                                    | East Southern Africa (ESAF)                            | South-Western South America (SWS)   | •                    | •            | •          |       |             |                                       |           |         |      |   |                 |                   |                  |            |                             |        |         |                     |                        | •                  |               | 3               |                 | •             |                            | •                    |
| <ul> <li>Already emerged in the historical p</li> </ul> | Madagascar (MDG)                                       | South-Eastern South America (SES)   | •                    | •            | •          |       |             |                                       |           |         |      |   |                 |                   |                  |            |                             |        |         |                     |                        | •                  |               | 3               |                 | •             |                            | •                    |
| <ul> <li>Emerging by 2050 at least in scena</li> </ul>  | rios KCP8.5/33P5-8.5 ( <i>meaium</i> t                 | Southern South America (SSA)        | •                    |              | •          |       |             |                                       |           |         |      |   |                 |                   |                  |            |                             |        |         |                     |                        | •                  |               | 3               |                 | •             |                            | ð                    |

. . .

Emerging after 2050 and by 2100 at least in scenarios RCP8.5/SSP5-8.5 (medium to high contidence)

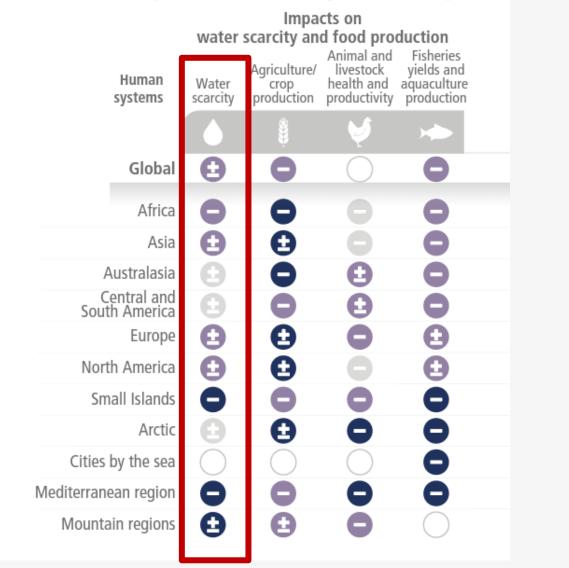
High confidence of decrease of decrease direction of change of increase of increase Not broadly relevant Roughly half the world's population currently experience severe water scarcity at some point each year, partly due to climate change INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

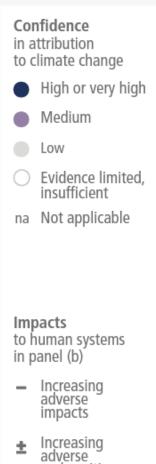


<section-header>



Working Group II contribution to the Sixth Assessment Report of the irgovernmental Panel on Climate Change





[Denis Onyodi / KRCS CC BY-NC 2.0]

Working Group II - Impacts, Adaptation and Vulnerability

INTERGOVERNMENTA<u>L PANEL ON **Climate change**</u>

### (b) Observed impacts of climate change on human systems





**IOCC** 

adverse and positive impacts

Figure SPM.2 WGII AR6

Working Group II – Impacts, Adaptation and Vulnerability

ITTERGOVERNMENTAL PANEL ON Climate change

ipcc

Rapid assessment of relative risk by sector and climate hazard for North America

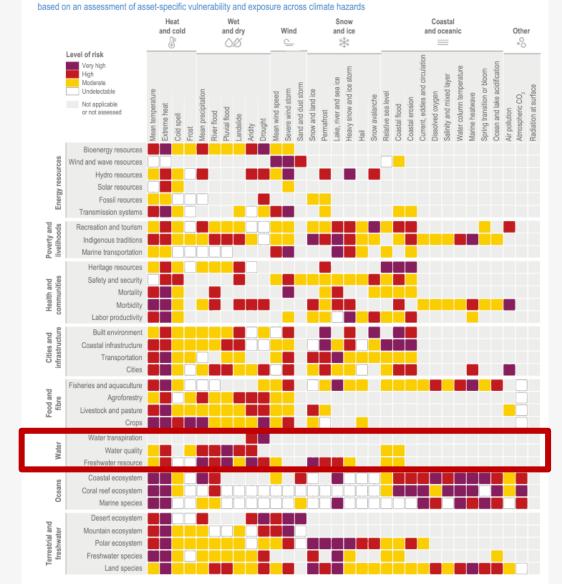



Figure 14.11 WGII AR6

### SIXTH ASSESSMENT REPORT

Working Group II – Impacts, Adaptation and Vulnerability

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

### **Climate impact-driver and socio-ecological vulnerability**

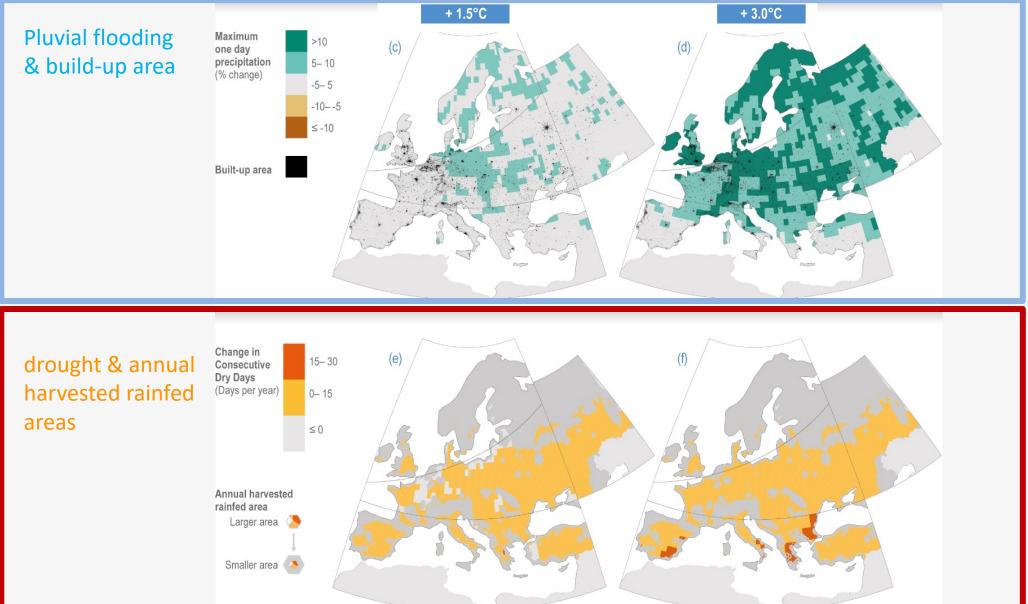



Figure 13.4 WGII AR6

### **Risk of pluvial flooding and meteorological drought**

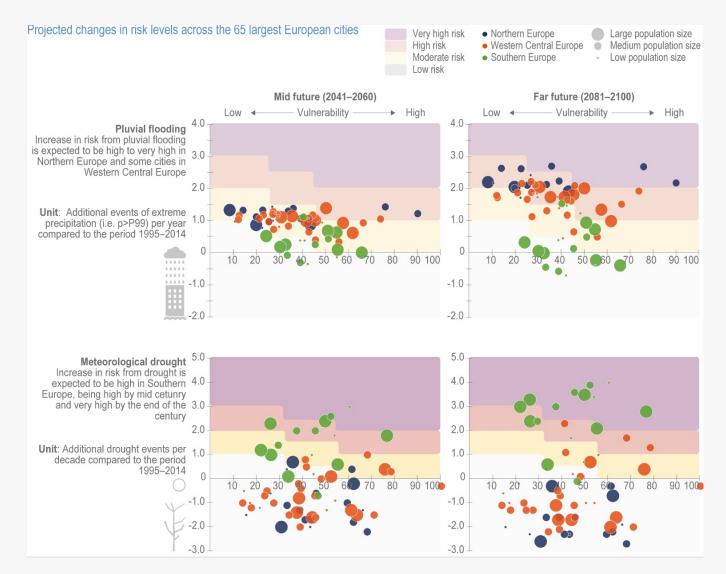
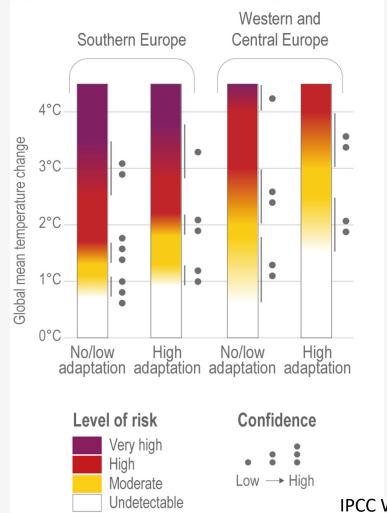
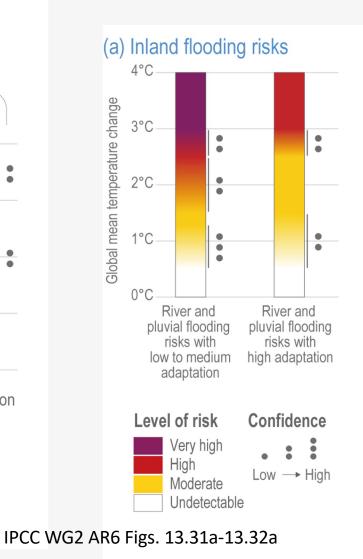





Figure 13.17 WGII AR6

#### Water related risks without and with adaptation in Europe

### (a) People at risk of water scarcity



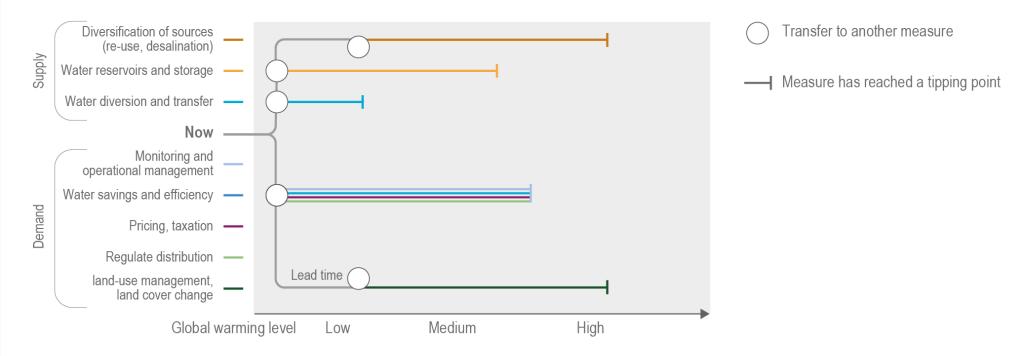


Low adaptation: largely sporadic and consists of small adjustments to Business-As-Usual. Coordination and mainstreaming are limited and fragmented.

6

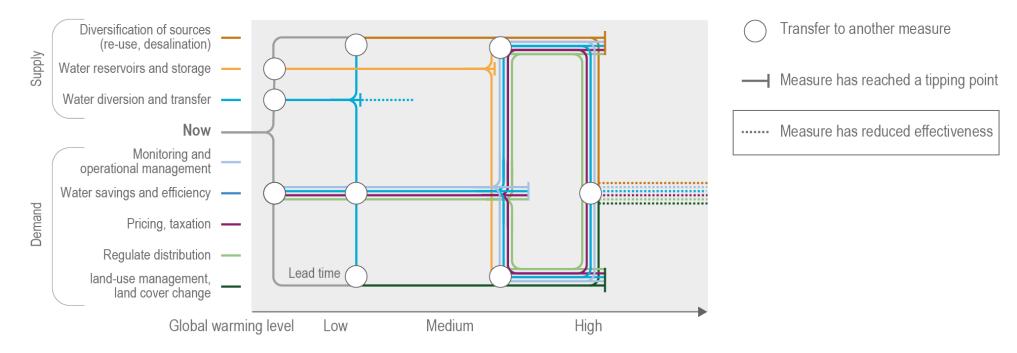
WMO

<u>Medium adaptation</u>: Adaptation is expanding and increasingly coordinated, including wider implementation and multi-level coordination.

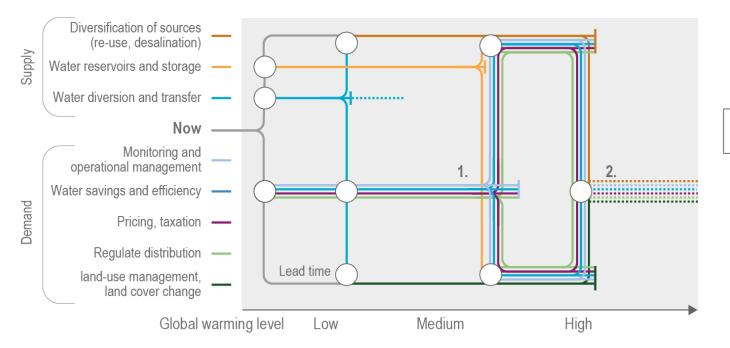

<u>High adaptation</u>: Adaptation is widespread and implemented at or very near its full potential across multiple dimensions.

IPCC WG2 Chapter 16

IPUU 🍈 INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE


iocc

### Adaptation pathways water scarcity




INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

### Adaptation pathways water scarcity



### Adaptation pathways water scarcity



#### Transfer to another measure

— Measure has reached a tipping point

..... Measure has reduced effectiveness

1. Under medium global warming, the portfolio of demand side measures needs to be combined with transformative measures inc diversification of sources or land-use/cover changes.

**()** 

2. Under high global warming a large portfolio of measures is needed to reduce risk to water scarcity sufficiently, and this may not be possible to avoid water shortage.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

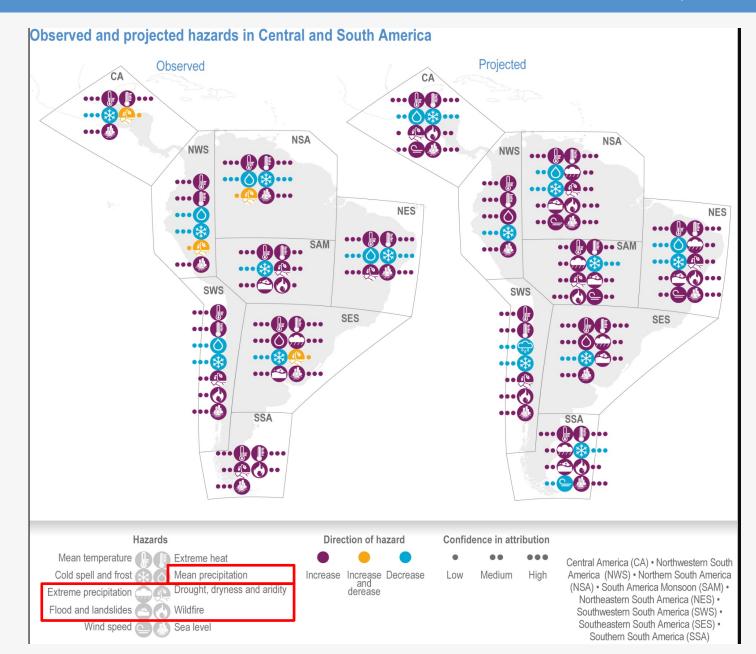



Figure 12.6 WGII AR6

Working Group II – Impacts, Adaptation and Vulnerability

INTERGOVERNMENTAL PANEL ON CLIMATE CHANEE WMO

> Synthesis of key risks for the CSA region. The base map indicates the mean temperature change between the SSP2 4.5 scenario using CMIP6 model projections for 2081–2100 and a baseline period of 1986–2005 (WGI AR6 Atlas, Gutiérrez et al., 2021).

6

**IOCC** 



Figure 12.11 WGII AR6

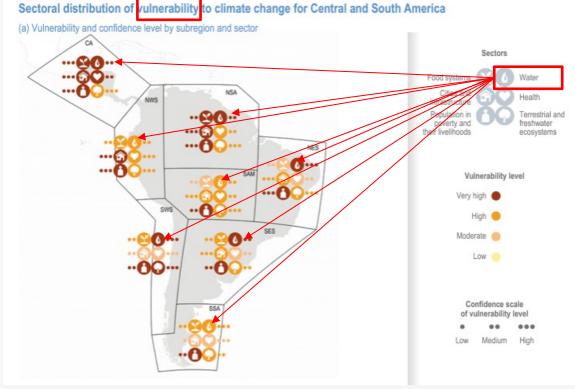
>3.0°C

2.5°C

2.0°C

1.5°C

<0.9°C

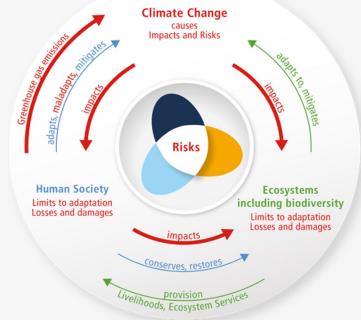

NES

\*\*

236

A 999

20




#### Figure 12.7 WGII AR6

Changes in water: from attributed impacts to projected risks in mountain regions

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

- Detection and attribution of climate change impacts
- Exposure: mountain areas and mountain people
- Vulnerability in mountains (some data challenges)
- Water related risks



The risk propeller shows that risk emerges from the overlap of:



WMO

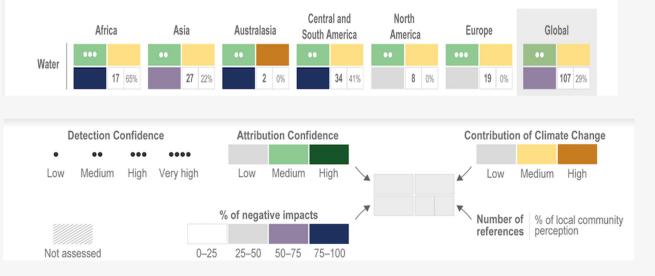


...of human systems, ecosystems and their biodiversity INTERGOVERNMENTAL PANEL ON Climate change

**ÍOCC** 

Detection and attribution of observed impacts of anthropogenic climate change in mountain regions

(7)


WMO

## Detection and attribution of changes in water availability

Table SMCCP5.5 | Water: River, lake, flood, drought (Code: W). Abbreviations in table: Local Community Perception (LCP), Confidence of detection (Conf. Det.), Contribution of climate change (Contr. C.C.), Confidence of attribution (Conf. Att.) and Negative or no negative impact (Neg / x). Confidences and contributions can be I=low, m=medium, h=high and vh=very high.

| Code | LCP | IPCC Continental<br>Region | Region        | Location/ Country                           | Conf. Det. | Contr. C.C. | Conf. Att. | Neg / x |
|------|-----|----------------------------|---------------|---------------------------------------------|------------|-------------|------------|---------|
| W1   |     | Africa                     | East Africa   | Upper Blue Nile                             | h          | l-m         | m          | х       |
| W2   |     | Africa                     | East Africa   | Tanzania                                    | m          | l-m         | l-m        | Neg     |
| W3   |     | Australasia                | Australia     | New South Wales, AU                         | m          | h           | m          | Neg     |
| W4   |     | Asia                       | South Asia    | SW Ghats, India                             | 1          | m           | 1          | Neg     |
| W5   |     | Asia                       | Middle East   | Zagros Mountains, Iran                      | m          | h           | m          | Neg     |
| W6   |     | Europe                     | Alps          | Italy                                       | h          | m           | m          | Neg     |
| W7   |     | Asia                       | Central Asia  | Tarim River, Tien Shan                      | h          | h           | m-h        | х       |
| W8   |     | Asia                       | Central Asia  | Tarim River, Tien Shan                      | l-m        | m           | m          | х       |
| W9   |     | Asia                       | Central Asia  | Tarim River, Tien Shan                      | m          | h           | m-h        | х       |
| W9   |     | Asia                       | Central Asia  | Tarim River, Tien Shan                      | m          | I-m         | 1          | Neg     |
| W10  |     | NA                         | North America | Rockies, Canada                             | h          | h           | h          | х       |
| W11  |     | CSA                        | Andes         | Cord. Blanca, Peru                          | h          | m-h         | m-h        | Neg     |
| W12  |     | Asia                       | Middle East   | Anatolia, Turkey                            | m-h        | h           | m-h        | х       |
| W13  |     | Europe                     | Alps          | Switzerland                                 | h          | h           | h          | х       |
| W14  |     | Europe                     | Scandinavia   | Arctic Norway                               | m-h        | m-h         | m-h        | х       |
| W15  |     | NA                         | North America | Rockies, Canada                             | m-h        | m-h         | m-h        | Neg     |
| W16  |     | NA                         | North America | Rockies, Canada                             | m-h        | m           | m-h        | х       |
| W17  |     | Europe                     | Alps          | Rhone, Po, Danube, Europe                   | h-vh       | m-h         | m-h        | х       |
| W17  |     | Europe                     | Alps          | Rhone, Po, Danube, Europe                   | h-vh       | I-m         | 1          | Neg     |
| W18  |     | Europe                     | Alps          | Europe                                      | m          | m           | m          | х       |
| W19  |     | Europe                     | Alps          | Austria                                     | m-h        | m-h         | m-h        | х       |
| W20  | yes | Asia                       | Himalaya      | Nepal, India                                | l-m        | m           | l-m        | Neg     |
| W21  |     | CSA                        | Andes         | Argentina                                   | m-h        | m           | l-m        | х       |
| W22  |     | Asia                       | Himalaya      | Nepal                                       | m          | m           | 1          | Neg     |
| W23  |     | Asia                       | Karakoram     | Central and Eastern<br>Karakoram            | m          | m-h         | m          | x       |
| W24  |     | Asia                       | Himalaya      | India                                       | m          | m           | l-m        | Neg     |
| W25  |     | Asia                       | Himalaya      | Upper Indus                                 | m          | h           | m          | Neg     |
| W26  |     | Asia                       | Central Asia  | Syr Darya, upper reaches                    | m          | m-h         | m-h        | х       |
| W26  |     | Asia                       | Central Asia  | Syr Darya, lower/middle<br>reaches          | m          | 1           | I          | Neg     |
| W27  |     | NA                         | North America | Columbia River, South and<br>Central Canada | m          | h           | h          | Neg     |
| W28  |     | NA                         | North America | BC, Canada                                  | m          | m           | m          | х       |

IPCC WG2 AR6, CCP5-SM



INTERGOVERNMENTAL PANEL ON Climate change 🛛 🐜

**IOCC** 

6

# IPCC WGI AR6 CH12

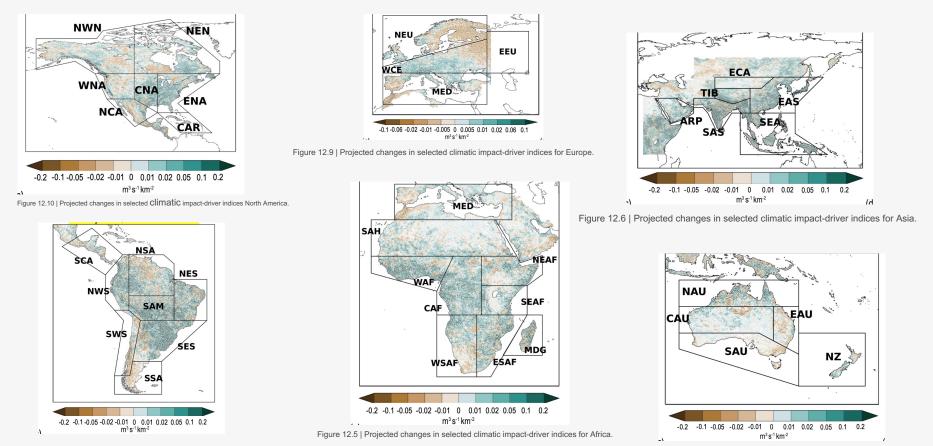



Figure 12.8 | Projected changes in selected climatic impact-driver indices for Central and South America.

Figure 12.7 | Projected changes in selected climatic impact-driver indices for Australasia

Ranasinghe, R., Ruane, A. C., Vautard, R., Arnell, N., **Coppola**, E., Cruz, F. A., et al. (2021). "Climate Change Information for Regional Impact and for Risk Assessment," in *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, eds. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Cambridge University Press). Available at: https://www.ipcc.ch./.

## Measuring exposure: mountain population and area

Table SMCCP5.2 | Comparison of 2015 population estimates in mountain regions in CCP Mountains, according to various combinations of available population data sets and mountain delineations.

| Population Data Source | Clobal population |                          | Mountain population       |                              |  |  |  |  |  |  |  |
|------------------------|-------------------|--------------------------|---------------------------|------------------------------|--|--|--|--|--|--|--|
| Population Data Source | Global population | Kapos et al. (2000) (K1) | Körner et al. (2011) (K2) | Karaguile et al. (2017) (K3) |  |  |  |  |  |  |  |
| GPW v4.11              | 7,329,886,101     | 1,285,255,489            | 746,806,057               | 2,289,068,972                |  |  |  |  |  |  |  |
| GHS-POP                | 7,349,323,942     | 1,019,033,666            | 344,370,651               | 2,091,200,860                |  |  |  |  |  |  |  |
| LandScan               | 7,284,273,061     | 1,025,345,709            | 355,300,352               | 2,079,259,051                |  |  |  |  |  |  |  |
| WorldPop               | 7,330,048,571     | 1098,621,501             | 498,107,371               | 2,150,488,502                |  |  |  |  |  |  |  |

## Decide on mountain delineation and population dataset

WMO

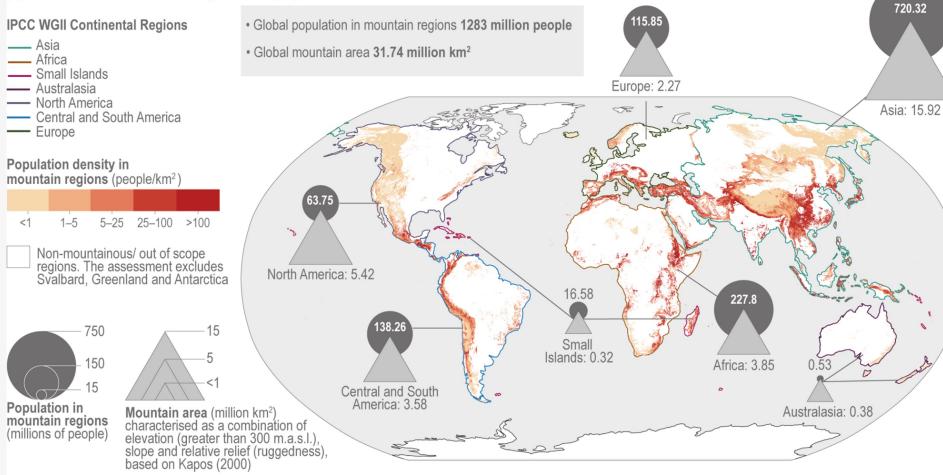
Table SMCCP5.1 | Mountain population estimates for 2015 according to the GPW v4.11 population grids (CIESIN, 2018) and the mountain extent delineations in the CCP Mountains based on Kapos (2000) ('K1'), presented in Figure CCP5.1 a).

| IPCC region               | Total population | Total mountain popu-<br>lation (K1) | Total mountain area<br>(K1) (km²) | Mean mountain pop-<br>ulation density (K1)<br>(km-2) | Proportion of popula-<br>tion in mountains (%) |
|---------------------------|------------------|-------------------------------------|-----------------------------------|------------------------------------------------------|------------------------------------------------|
| Africa                    | 1,135,725,637    | 227,804,121                         | 3,851,791                         | 59.1                                                 | 20.1                                           |
| Asia                      | 4,329,236,682    | 720,315,545                         | 15,915,570                        | 45.3                                                 | 16.6                                           |
| Australasia               | 25,332,636       | 533,142                             | 379,626                           | 1.4                                                  | 2.1                                            |
| Central and South America | 462,618,762      | 138,261,907                         | 3,581,164                         | 38.6                                                 | 29.9                                           |
| Europe                    | 778,521,501      | 115,851,128                         | 2,272,365                         | 51.0                                                 | 14.9                                           |
| North America             | 480,613,418      | 63,751,007                          | 5,418,728                         | 11.8                                                 | 13.3                                           |
| Small Islands             | 70,993,314       | 16,578,003                          | 321,752                           | 51.5                                                 | 23.4                                           |

## Present mountain population (based on 2015)

Table SMCCP5.3 | Projected changes in population in mountain regions between 2015 and 2100 per IPCC WGII Continental Regions and SSP presented in Figure CCP5.1 c) according to the mountain delineation in CCP Mountains, based on Kapos et al. (2000).

| SSP | Africa      | Asia         | Australasia | Central and<br>South America | Europe      | North America | Small Islands |
|-----|-------------|--------------|-------------|------------------------------|-------------|---------------|---------------|
| 1   | 107,571,973 | -242,813,434 | 768,769     | -27,709,931                  | -21,864,257 | 1,481,885     | 3,442,860     |
| 2   | 247,669,056 | -39,672,332  | 799,800     | 16,549,341                   | -3,319,602  | 18,972,817    | 14,428,853    |
| 3   | 492,860,214 | 369,312,026  | 161,430     | 116,645,357                  | 18,321,332  | 44,835,727    | 34,972,666    |
| 4   | 415,817,525 | -34,744,573  | 527,104     | 15,551,434                   | -27,053,252 | -3,214,268    | 26,681,907    |
| 5   | 98,426,392  | -247,621,276 | 1,637,941   | -35,651,905                  | 4,058,843   | 12,336,809    | 2,074,022     |


Projections of population for different SSPs HPCC WG2 AR6, CCP5-SM INTERGOVERNMENTAL PANEL ON Climate change who unei

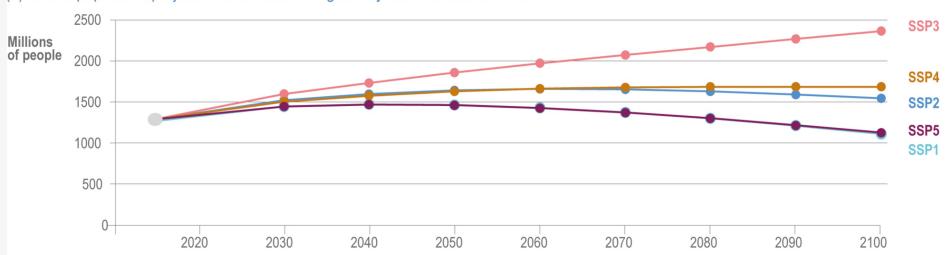
**IOCC** 

## Measuring exposure: mountain population and area

### Delineation of mountain regions, population densities and projections

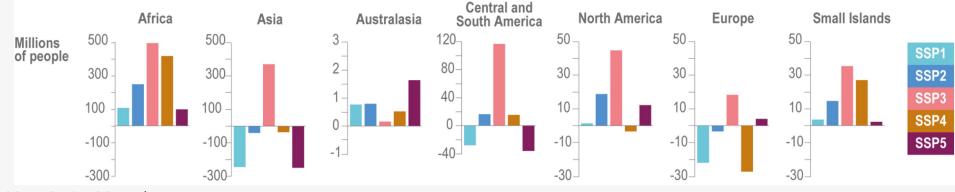
(a) Delineation of mountain regions and population densities in 2015




IPCC WG2 AR6, Fig. CCP5.1a

INTERGOVERNMENTAL PANEL ON Climate change 🛛 🐜

**IOCC** 

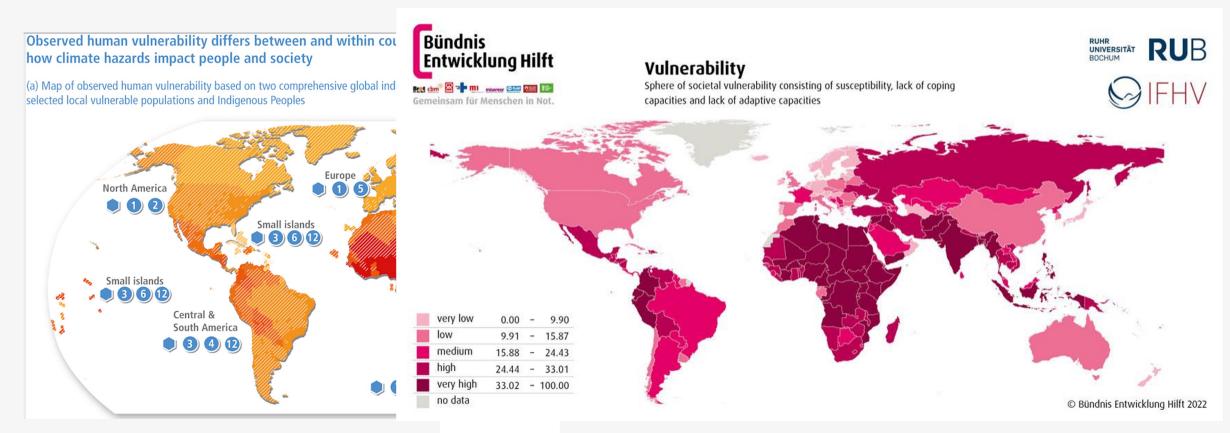

UNEF

## Population projections as proxies of future exposure



(b) Global population projections in mountain regions by 2100 for different SSPs

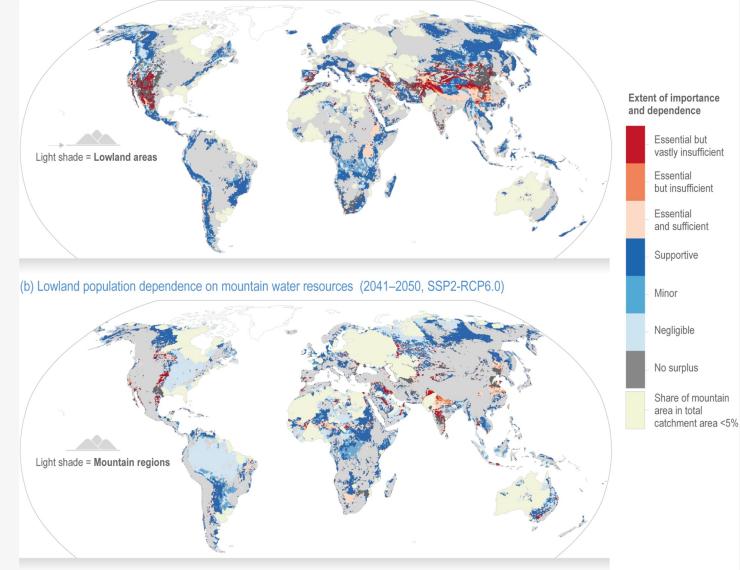
(c) Projected population changes in mountain regions for different SSPs from 2015 to 2100, per IPCC WGII Continental Region




IPCC WG2 AR6, Fig. CCP5.1b

#### INTERGOVERNMENTAL PANEL ON Climate change 💦 🕷

## Assessing vulnerability in mountains


- Only qualitative evidence from mountains and in generally very scattered
- Global vulnerability can be a proxy for mountain vulnerability but has obvious shortcomings.



https://weltrisikobericht.de/weltrisikobericht-2022-e/#worldriskindex

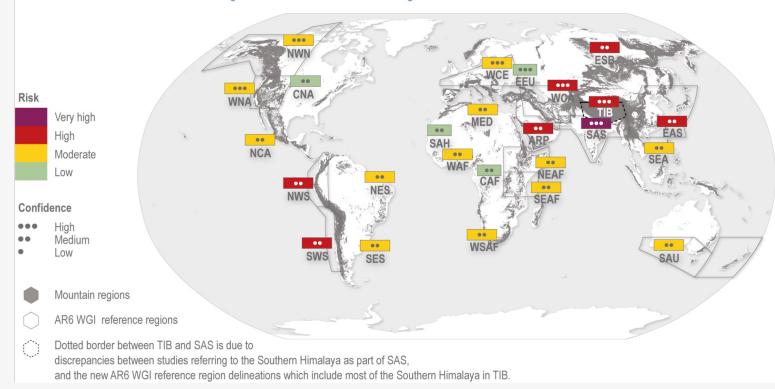
INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

## Risk interconnections: from mountains to the lowlands (a) Importance of mountain regions for lowland water resources (2041–2050, SSP2-RCP6.0)



Regions relaying on glacier- and snow-melt for irrigation will face erratic water supply and increased food insecurity (already irreversible).

Damages and losses from water related hazards such as floods and landslides are projected to increase between 1.5°C and 3°C. Globally projected increase in direct flood damages are 2.5-3.9 times higher at 3°C compared to 1.5°C.


IPCC WG2 AR6, Fig. CCP5.2a,b

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

ÍOCC

## Bringing all together: risks from changing water resources

**Risks to livelihoods and the economy from changing mountain water resources** between 1.5°C and 2°C Global Warming Level in AR6 WGI reference regions



The risk levels are calculated by further disaggregating the data and time period and assumptions on hazards (H), exposure (E) and vulnerability (V) level. Risk levels are between 0 and 1 and corresponds to low (0–0.25), medium (0.26–0.50), high (0.51–0.75) and very high (0.76–1). T

Screenshot of a small part of the data table

#### IPCC WG2 AR6, CCP5-SM

| IPCC continental<br>region | IPCC reference<br>region | Risk index | Risk level | Risk level (normal-<br>ised) | Sub-region aver-<br>aged risk level | References                                       |
|----------------------------|--------------------------|------------|------------|------------------------------|-------------------------------------|--------------------------------------------------|
| Africa                     | CAF                      | 2          | 1          | 0.25                         | 0.25                                |                                                  |
| Africa                     | NEAF                     | 2          | 1          | 0.25                         | 0.42                                |                                                  |
| Africa                     | NEAF                     | 6          | 2          | 0.5                          | 0.42                                |                                                  |
| Africa                     | SAH                      | 1          | 1          | 0.25                         | 0.25                                | ]                                                |
| Africa                     | SAH                      | 2          | 1          | 0.25                         | 0.25                                | ]                                                |
| Africa                     | SAH                      | 2          | 1          | 0.25                         | 0.25                                | ]                                                |
| Africa                     | SEAF                     | 2          | 1          | 0.25                         | 0.41                                | ]                                                |
| Africa                     | SEAF                     | 6          | 2          | 0.5                          | 0.41                                | ]                                                |
| Africa                     | WAFS                     | 2          | 1          | 0.25                         | 0.41                                | ]                                                |
| Africa                     | WAFS                     | 6          | 2          | 0.5                          | 0.41                                |                                                  |
| Africa                     | WAF                      | 2          | 1          | 0.25                         | 0.41                                | 1                                                |
| Africa                     | WAF                      | 6          | 2          | 0.5                          | 0.41                                | 1                                                |
| Asia                       | ARP                      | 8          | 2          | 0.5                          | 0.58                                | ]                                                |
| Asia                       | ARP                      | 12         | 3          | 0.75                         | 0.58                                | Immerzeel et al. (2020)                          |
| Asia                       | EAS                      | 8          | 2          | 0.5                          | 0.66                                | Viviroli et al. (2020)                           |
| Asia                       | EAS                      | 18         | 4          | 1                            | 0.66                                | Munia et al. (2020)<br>Strasser et al. (2019)    |
| Asia                       | ESB                      | 4          | 2          | 0.5                          | 0.58                                | Fuhrer et al. (2014)                             |
| Asia                       | ESB                      | 12         | 3          | 0.75                         | 0.58                                | Drenkhan et al. (2018)<br>Drenkhan et al. (2019) |
| Asia                       | ESB                      | 8          | 2          | 0.5                          | 0.58                                | Reyer et al. (2017)                              |
| Asia                       | SAE                      | 4          | 2          | 0.5                          | 0.50                                | Huang et al. (2021)                              |
| Asia                       | SAE                      | 6          | 2          | 0.5                          | 0.50                                |                                                  |
|                            |                          |            |            |                              |                                     | 1                                                |

#### IPCC WG2 AR6, Fig. CCP5.6

INTERGOVERNMENTAL PANEL ON Climate change

**ÍOCC** 

idcc INTERGOVERNMENTAL PANEL ON Climate change

Climate Change 2022 Mitigation of Climate Change





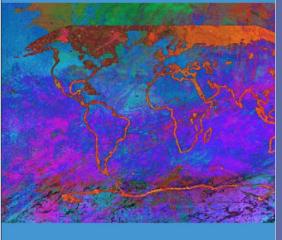
Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

Climate Change 2023

AR6 SYNTHESIS REPORT

Thanks!

INTERGOVERNMENTAL PANEL ON CLIMATE CHARGE

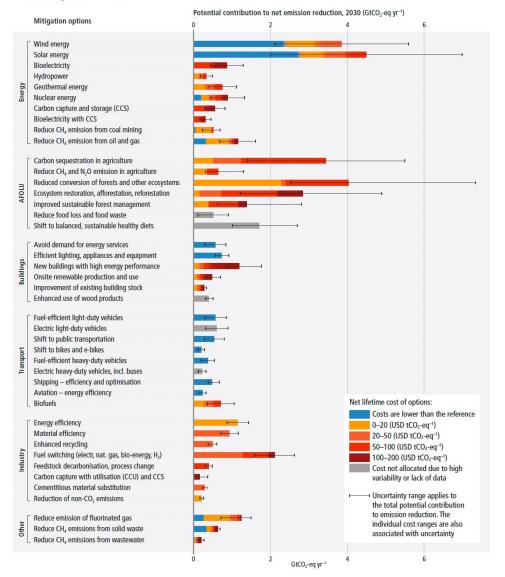

idcc

CALL CONTROL

Climate Change 2021

INTERGOVERNMENTAL PANEL ON CIMA

The Physical Science Basis






Working Group I contribution to the



Many options available now in all sectors are estimated to offer substantial potential to reduce net emissions by 2030. Relative potentials and costs will vary across countries and in the longer term compared to 2030.

