Kohn-Sham equation

Ryo Maezono

rmaezono@mac.com

School of Information Science,
Japan Advanced Institute of Science and Technolegy, (JAIST), Nomi, Ishikawa, Japan.

Book composed

for experimentalists/industrial researchers

In its Acknowledgement...

The content of this book is based on a Japanese book (ISBN-13: 978-4627170315) published by Morikita Publishing in 2020. The concept of this book was based on the tutorial training program funded by JST-Sakura Science plan, which accepted intern students from Asian countries, the tutorial training program 'ASESMA' (African School on Electronic Structure Methods and Applications) funded by ICTP (International Centre for Theoretical Physics), the workshop at Department of Metallurgical and Materials Engineering of IITM (Indian Institute of Technology, Madras), at Department of Materials Science of Chulalongkorn University (Thailand), etc. In particular, I would like to express my respectful acknowledgement to Prof. Richard Martin for his guidance in these activities.

I would like to thank Prof. Richard Needs and Dr. Mike D. Towler, and other members of the TCM group in Cavendish Laboratory (University of Cambridge) during my staying period, who helped me land in this field as a beginner in ab initio electronic structure calculations.

Dr. Tom Ichibha and Dr. Genki I. Prayogo have significantly assisted to prepare the tutorial materiale for thic honk I am orateful to mv lnontime research nartner

Book composed

PC cluster building and administration for experimentalists／industrial researchers

本 ，コンピュータ・IT ，パソコン・周辺機器

自作PCクラスタ超入門：ゼロからはじめる並列計算環境の構築
と運用 単行本－2017／12／14
前園涼（著）
－その他（）の形式およびエディションを表示する
単行本
$\neq 2,808 \quad$ prime
¥ 2，808より 1 新品

923－1292－石川県能美市にお届けできます。
prime student【学生限定】Prime Student会員なら，この商品は10\％Amazonポイント還元。6 $\underline{\text { か }}$月無料体験登録をして，お得に本を買おう。（Amazonマーケットプレイスでので注文は対象外）
※ Note，authors major is not about this，but numerical many－body physics！

Computational resource within a group...

Handmade Parallel Cluster

AMD-EPYC/64cores with 100Gbps interconnect...

2011, Kenya/Eldoret

International Tutorials

QMC tutorial workshop
Organized @JAIST, 10-days.
25 International Participants

Lectures from (Japan/Taiwan/UK)
Participants(Iran, Zimbabue, Kenya, Korea, India, Russia, Ethiopia, Nigeria, China, Cameroon,
Taiwan, Thai, Indonesia)

Tutorial Activities

How to build hand-made parallel simulations

For Japanese high-school teachers/high school students (funded by government) For Asian Under-Grad. internship (funded by government)

Organized as well in abroad! [Kenya2011/Thai2017 (Phuket)]

MPI-parallel simulation for materials science.
Interdisciplinary among Materials Sci. and Computer Sci.

100GB/OmniPath

Inter-connect becomes 'Not bottle-neck'! DDR4 memory becomes bottle-neck...

Real hand-made supercomputer! AMD-EPYC/64cores
Network: SuperMicro 100G Omni-Path switch
around 10 nodes in operation

- Much cheaper than the one purchased from Vendors...
- Very nice materials for training up students
for server-administration!

Outline of the talk...

- Overview of approaches for many-body Schrodinger equation

Several comparable methods including DFT.

- Molecular orbital method (traditional introduction to one-body form)

Good starting-point to understand DFT concept under the contrast...
Starting from practical usage/how to handle...

- Concept of DFT (density functional method) (mapping to one-body form)

- Idea to get Kohn-Sham equation (overview)
- Exchange-correlation functionals (eventual goal!)
\uparrow
Formulation to derive Kohn-Sham equation
Not starting from fundamentals...
... Getting audience bored by long stories without a goal in mind...
- Handling of Kohn-Sham equation

SCF procedure/Convergence/Smearing

- Notes on Kohn-Sham equation

Contrast with molecular orbitals/Quantum many-body interactions

Overview of approaches
 for many-body Schrodinger equation

Kohn-Sham framework is one of the approaches

Many-body Schrodinger Equation

(after Non-relativistic, Adiabatic approx.)
To be solved...
Set of electrons at $\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)$

$$
\left[-\frac{1}{2} \sum_{j} \nabla_{j}^{2}+V\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right] \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=E \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right) \quad \text { (Eigenvalue Equation) }
$$

Equation to dominate electrons in materials

Equation to find...

- Function $\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)$
... satisfying the above '='
- Value E

Once it is found, then E represents the energy for your electronic system

How to treat fundamental equation

$$
\left[-\frac{1}{2} \sum_{j} \nabla_{j}^{2}+V\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right] \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=E \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)
$$

Sorted into...
mainly in Phys. $\frac{\delta E[n(\vec{r})]}{\delta n}=0 \quad$... Variational w.r.t. Density
Density Functional Theory
mainly in Chem. $\frac{\delta E\left[\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right]}{\delta \Psi}=0 \quad$... Variational with respect to Wave Function
Molecular Orbital method $\Phi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\Phi\left[\left\{\varphi_{j}\left(\vec{r}_{j}\right)\right\}\right]$
... 3-dim. orbital to decouple 3N-dim. problem.
Quantum Monte Carlo (electronic structure calc.)

$$
\langle\hat{O}\rangle=\frac{\int d \vec{R} \cdot \Psi^{*}(\vec{R}) \cdot \hat{O} \Psi(\vec{R})}{\int d \vec{R} \cdot \Psi^{*}(\vec{R}) \Psi(\vec{R})}=\frac{\int d \vec{R} \cdot|\Psi|^{2} \cdot\left[\Psi^{-1}(\vec{R}) \cdot \hat{O} \Psi(\vec{R})\right]}{\int d \vec{R} \cdot|\Psi|^{2}}=\left\langle\Psi^{-1}(\vec{R}) \cdot \hat{O} \Psi(\vec{R})\right\rangle
$$

Major Engines for single point calculation

1) MO (Molecular Orbital method)

Traditionally precise methods.
Only applicable to smaller systems (atom and molecules)
2) DFT (Density Functional method)

Computationa cost performance is good (feasible for larger systems)
Reliability is quite "unknown" for some systems (to what extent it can be reliable?)
3) QMC (Quantum Monte Carlo method)

Believed as most accurate method, but costly!
Massive Parallel Computation is quite good at it.

Variety of Solvers

Drastic Assumptions

Tractable/Practical
Low-cost

Introduction of
One-body picture

$$
\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\Psi\left[\boldsymbol{\psi}_{1}\left(\vec{r}_{1}\right), \psi_{2}\left(\vec{r}_{2}\right), \cdots, \psi_{N}\left(\vec{r}_{N}\right), \boldsymbol{\psi}_{2}\left(\vec{r}_{1}\right), \cdots\right]
$$

Effective one-body potentials $\quad \psi_{j}(\vec{r}) \leftrightarrow v_{e f f}(\vec{r})$
Drastic approximation applied here
Molecular Orbital
MO method (Gaussian03)
DFT method (Quantum Espresso)
Density Functional Theory
How "original many-body form" is handled by one-body form?
How the one-body form introduced?

Outline of the talk...

- Overview of approaches for many-body Schrodinger equation

Several comparable methods including DFT.

- Molecular orbital method (traditional introduction to one-body form)

Good starting-point to understand DFT concept under the contrast...
Starting from practical usage/how to handle...

- Concept of DFT (density functional method) (mapping to one-body form)

- Idea to get Kohn-Sham equation (overview)
- Exchange-correlation functionals (eventual goal!)
\uparrow
Formulation to derive Kohn-Sham equation
Not starting from fundamentals...
... Getting audience bored by long stories without a goal in mind...
- Handling of Kohn-Sham equation

SCF procedure/Convergence/Smearing

- Notes on Kohn-Sham equation

Contrast with molecular orbitals/Quantum many-body interactions

Molecular orbital method

traditional introduction to one-body form
Good material to understand DFT concept by the contrast...

Variable Separation

... conventional strategy in Math. ...

$$
\left[-\frac{1}{2} \sum_{j} \nabla_{j}^{2}+V\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right] \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=E \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)
$$

$\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)$; many-variable function... Difficult to be imagined... (many-body Wavefunction)

Usual practice...

$$
\left.\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\psi_{1}\left(\vec{r}_{1}\right) \cdot \psi_{2}\left(\vec{r}_{2}\right) \cdot \psi_{3}\left(\vec{r}_{3}\right) \cdots \psi_{N}\left(\vec{r}_{N}\right) \quad \text { [Assumption }\right]
$$

... always as represented in this form or not??
1-fold 'many-body equation'
$\rightarrow N$-fold 'one-body equation' with respect to $\left\{\psi_{j}(\vec{r})\right\}_{j=1}^{N}$
(one-body Orbital function)
Much easier to be solved...

Updated ver. of variable separation

$$
\begin{gathered}
{\left[-\frac{1}{2} \sum_{j} \nabla_{j}^{2}+V\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right] \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=E \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)} \\
\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\psi_{1}\left(\vec{r}_{1}\right) \cdot \psi_{2}\left(\vec{r}_{2}\right) \cdot \psi_{3}\left(\vec{r}_{3}\right) \cdots \psi_{N}\left(\vec{r}_{N}\right) ; \text { simple variable separation }
\end{gathered}
$$

But for electronic systems, exact solution should satisfy...
[Hartree approximation]

$$
\Psi\left(\cdots, \vec{r}_{i}, \cdots, \vec{r}_{j}, \cdots\right)=(-) \cdot \Psi\left(\cdots, \vec{r}_{j}, \cdots, \vec{r}_{i}, \cdots\right) ; \text { anti-symmetric constraint }
$$

e.g.) 3-body system ; $\psi(2,1,3)=(-) \psi(1,2,3)$ should be satisfied, but...

$$
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)=\boldsymbol{\psi}_{1}\left(\vec{r}_{1}\right) \cdot \boldsymbol{\psi}_{2}\left(\vec{r}_{2}\right) \cdot \boldsymbol{\psi}_{3}\left(\vec{r}_{3}\right) \Rightarrow \Psi\left(\vec{r}_{2}, \vec{r}_{1}, \vec{r}_{3}\right)=\boldsymbol{\psi}_{1}\left(\vec{r}_{2}\right) \cdot \boldsymbol{\psi}_{2}\left(\vec{r}_{1}\right) \cdot \boldsymbol{\psi}_{3}\left(\vec{r}_{3}\right) \neq-\boldsymbol{\psi}_{1}\left(\vec{r}_{1}\right) \cdot \boldsymbol{\psi}_{2}\left(\vec{r}_{2}\right) \cdot \boldsymbol{\psi}_{3}\left(\vec{r}_{3}\right)
$$

... cannot satisfy anti-symmetric constraint...
Revising Hartree approx. by composing linear combination,

$$
\begin{aligned}
\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right) & =\binom{\psi_{1}\left(\vec{r}_{1}\right) \cdot \psi_{2}\left(\vec{r}_{2}\right) \cdot \psi_{3}\left(\vec{r}_{3}\right)+\psi_{2}\left(\vec{r}_{1}\right) \cdot \psi_{3}\left(\vec{r}_{2}\right) \cdot \psi_{1}\left(\vec{r}_{3}\right)+\psi_{3}\left(\vec{r}_{1}\right) \cdot \psi_{1}\left(\vec{r}_{2}\right) \cdot \psi_{2}\left(\vec{r}_{3}\right)}{-\psi_{1}\left(\vec{r}_{1}\right) \cdot \psi_{3}\left(\vec{r}_{2}\right) \cdot \psi_{2}\left(\vec{r}_{3}\right)-\psi_{3}\left(\vec{r}_{1}\right) \cdot \psi_{2}\left(\vec{r}_{2}\right) \cdot \psi_{1}\left(\vec{r}_{3}\right)-\psi_{2}\left(\vec{r}_{1}\right) \cdot \psi_{1}\left(\vec{r}_{2}\right) \cdot \psi_{3}\left(\vec{r}_{3}\right)} ; \psi(2,1,3)=() \psi(1,2) \text { andiond } \\
& =\sum_{p}(-)^{p} \psi_{p_{1}}\left(\vec{r}_{1}\right) \cdot \psi_{p_{2}}\left(\vec{r}_{2}\right) \cdot \psi_{p_{3}}\left(\vec{r}_{3}\right) ; \text { anti-symmetrized products } \quad \text { [Hartree-Fock approximation] }
\end{aligned}
$$

Updated ver. of variable separation

$$
\left[-\frac{1}{2} \sum_{j} \nabla_{j}^{2}+V\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right] \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=E \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)
$$

1) $\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\psi_{1}\left(\vec{r}_{1}\right) \cdot \psi_{2}\left(\vec{r}_{2}\right) \cdot \psi_{3}\left(\vec{r}_{3}\right) \cdots \psi_{N}\left(\vec{r}_{N}\right)$; simple variable separation cannot satisfy...

$$
\Psi\left(\cdots, \vec{r}_{i}, \cdots, \vec{r}_{j}, \cdots\right)=(-) \cdot \Psi\left(\cdots, \vec{r}_{j}, \cdots, \vec{r}_{i}, \cdots\right) ; \text { anti-symmetric constraint }
$$

[for solution describing electrons (fermion)]

$$
\begin{aligned}
& \text { 2) Hartree-Fock approximation } \\
& \quad \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\sum_{P}(-)^{P} \psi_{P_{1}}\left(\vec{r}_{1}\right) \cdot \psi_{p_{2}}\left(\vec{r}_{2}\right) \cdots \psi_{P_{N}}\left(\vec{r}_{N}\right)=\left|\begin{array}{cccc}
\psi_{1}\left(\vec{r}_{1}\right) & \psi_{1}\left(\vec{r}_{2}\right) & \cdots & \psi_{1}\left(\vec{r}_{N}\right) \\
\psi_{2}\left(\vec{r}_{1}\right) & \ddots & & \vdots \\
\vdots & & \\
\psi_{N}\left(\vec{r}_{1}\right) & \cdots & & \psi_{N}\left(\vec{r}_{N}\right)
\end{array}\right| \quad \text { Slater Determinant }
\end{aligned}
$$

One-body form with molecular orbitals

Original many-body form

$$
\left[-\frac{1}{2} \sum_{j} \nabla_{j}^{2}+V\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right] \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=E \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right) \quad \text { 1-fold 'many-body equation' }
$$ anti-symmetrized variable separation

$$
\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\sum_{P}(-)^{P} \psi_{P_{1}}\left(\vec{r}_{1}\right) \cdot \psi_{P_{2}}\left(\vec{r}_{2}\right) \cdots \psi_{P_{N}}\left(\vec{r}_{N}\right) \text { [Assumption/Approx.] }
$$

... substituting this assumption into many-body equation leads to...

One-body form

N-fold 'one-body equation' w.r.t. $\quad\left\{\psi_{j}(\vec{r})\right\}_{j=1}^{N}$
The term already appeared in Hartree approx.
The term only appeared when anti-symmetry considered.

$$
\begin{aligned}
& {\left[-\frac{1}{2} \nabla^{2}+v_{\text {ext }}(\vec{r})+\sum_{j \neq i} \int d \vec{r}^{\prime} \cdot \frac{\left|\psi_{j}\left(\vec{r}^{\prime}\right)\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \cdot \psi_{i}(\vec{r})-\sum_{j \neq i}\left[\int_{i{ }_{j}} d \vec{r}^{\prime} \cdot \psi_{j}^{*}\left(\vec{r}^{\prime}\right) \frac{\delta_{\sigma_{i} \sigma_{j}}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \psi_{i}\left(\vec{r}^{\prime}\right)\right] \cdot \psi_{j}(\vec{r})=\varepsilon_{i} \cdot \psi_{i}(\vec{r}) \quad \text { [Hartree-Fock equation] } } \\
& \text { Classical Coulomb } \\
& \text { (Hartree term) } \text { Statistical Effect by Quantum Mech. (Pauli exclusion) } \\
& \text { (Exchange term) }
\end{aligned}
$$

Computational Implementation for this has well been developed over decades...
N.B./Interaction evaluated by the non-interacting WF.(Variable-separation justified when non-interacting)

Hartree-Fock approximation

'Reference zero' for further improvements...
$\left[-\frac{1}{2} \sum_{j} \nabla_{j}^{2}+V\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right] \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=E \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)$; many-body Schrodinger equation

$$
\begin{gathered}
\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\left|\begin{array}{cccc}
\psi_{1}\left(\vec{r}_{1}\right) & \psi_{1}\left(\vec{r}_{2}\right) & \cdots & \psi_{1}\left(\vec{r}_{N}\right) \\
\psi_{2}\left(\vec{r}_{1}\right) & \ddots & & \\
\vdots & & & \\
\psi_{N}\left(\vec{r}_{1}\right) & & & \psi_{N}\left(\vec{r}_{N}\right)
\end{array}\right| \text { is assumed form of wavefunction } \\
\text { [Interactions are evaluated by this non-interacting solution] } \\
\\
{\left[-\frac{1}{2} \nabla^{2}+v_{e x t}(\vec{r})+\sum_{j \neq i} \int d \vec{r}^{\prime} \cdot \frac{\left|\psi_{j}\left(\vec{r}^{\prime}\right)\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \cdot \psi_{i}\left((\vec{r})-\sum_{j \neq i}\left[\int d \vec{r}^{\prime} \cdot \psi_{j}^{*}\left(\vec{r}^{\prime}\right) \frac{\delta_{\sigma, \sigma_{j}}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \psi_{i}\left(\vec{r}^{\prime}\right)\right] \cdot \psi_{j}(\vec{r})=\varepsilon_{i} \cdot \psi_{i}(\vec{r})\right. \text { [Hartree-Fock equation] }}
\end{gathered}
$$

Classical Coulomb
(Hartree term)

Statistical Effect by Quantum Mech
(Exchange term)

Reality : interactions should be evaluated by 'deformed wavefunction by the interaction)

$$
\left.\rightarrow\left[-\frac{1}{2} \nabla^{2}+v_{\text {ext }}(\vec{r})+\sum_{j \neq i} \int d \vec{r}^{\prime} \frac{\left|\psi_{j}\left(\vec{r}^{\prime}\right)\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \psi_{i}(\vec{r})-\sum_{j \neq i}\left[\sum_{j \neq i} \int d \vec{r}^{\prime} \psi_{j}^{*}\left(\vec{r}^{\prime}\right) \frac{\delta_{\sigma_{i} \sigma_{j}}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \psi_{i}\left(\vec{r}^{\prime}\right)\right] \psi_{j}(\vec{r})+\hat{V}_{C} \psi_{i}(\vec{r}) \right\rvert\,=\varepsilon_{i} \cdot \psi_{i}(\vec{r})
$$

What is explained in this lecture...

$\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\left|\begin{array}{cccc}\psi_{1}\left(\vec{r}_{1}\right) & \psi_{1}\left(\vec{r}_{2}\right) & \cdots & \psi_{1}\left(\vec{r}_{N}\right) \\ \psi_{2}\left(\vec{r}_{1}\right) & \ddots & & \\ \vdots & & & \\ \psi_{N}\left(\vec{r}_{1}\right) & & & \psi_{N}\left(\vec{r}_{N}\right)\end{array}\right|$
is assumed form of wavefunction
$\rightarrow\left[-\frac{1}{2} \nabla^{2}+v_{\text {ext }}(\vec{r})+\sum_{j \neq i} \int d \vec{r}^{\prime} \cdot \frac{\left|\psi_{j}\left(\vec{r}^{\prime}\right)\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \cdot \psi_{i}(\vec{r})-\sum_{j \neq i}\left[\int d \vec{r}^{\prime} \cdot \psi_{j}^{*}\left(\vec{r}^{\prime}\right) \frac{\delta_{\sigma_{i} \sigma_{j}}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \psi_{i}\left(\vec{r}^{\prime}\right)\right] \cdot \psi_{j}(\vec{r})=\varepsilon_{i} \cdot \psi_{i}(\vec{r}) \quad$ [Hartree-Fock equation]
Classical Coulomb
Statistical Effect by Quantum Mech.
(Hartree term)
(Exchange term)
Reality : interactions should be evaluated by 'deformed wavefunction by the interaction)

1
Derived by what \& how ?? On what way of concept ??
(Never via approximation using variable separation!)

Concept of DFT

Though both takes similar one-body form...

Molecular Orbital theory
MO/ original Many-body \rightarrow Set of One-body form.
(Approximation/Variable separation)

Density Functional Theory
DFT/ equivalent one-body form EXACTLY reproducing original many-body form possible?
(Mapping onto the equivalent prob.)

Concept of DFT

equivalent one-body form EXACTLY reproducing original many-body form possible? (Mapping onto the equivalent prob.)

How is it justified??

Hohenberg-Kohn Theorem

Normal Way...

$$
\left[-\frac{1}{2} \sum_{j} \nabla_{j}^{2}+V\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right] \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=E \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)
$$

Primary...
Energy as Eigenvalue E_{G} [primary to be identified first]
$\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)$ as Eigenfunction
Secondary...

$$
n(\vec{r})=n\left[\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right]
$$

$$
n(\vec{r})=\frac{\int\left|\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)\right|^{2} \cdot \sum_{j=1}^{N} \delta\left(\vec{r}-\vec{r}_{j}\right) \cdot d \vec{r}_{1} \cdots d \vec{r}_{N}}{\int\left|\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \cdots, \vec{r}_{N}\right)\right|^{2} \cdot d \vec{r}_{1} \cdots d \vec{r}_{N}}=\left\langle\sum_{j=1}^{N} \delta\left(\vec{r}-\vec{r}_{j}\right)\right\rangle
$$

Hohenberg-Kohn theorem...

$$
E_{G S}=E_{G S}[n(\vec{r})] \quad \text { Formally proved (proof by contradiction) }
$$

Applying Hohenberg-Kohn Theorem...

Original Many-body form

If there exists such a one-body form... that gives the exact $n(r)$, then...
The same exact Ground state energy estimated!
Any proof assuring the existence? $->$ YES! Hohenberg/Kohn/Levy etc. in 60's [Density Functional Theory]

Kohn-Sham framework

Original Many-body form

Instead of working on original complicated interacting form,
Solve the equivalent reference system! Well-established numerical framework available...
Effective one-body potential so that it can give the same $n(r)$
of exact interacting many-body system

How? in Kohn-Sham framework...

Effective one-body potential so that it can reproduce exact $n(r)$.
How to get such an Effective Problem giving the exact $n(r)$?

$$
\begin{gathered}
\text { Another theorem } \frac{\delta E_{G S}[n]}{\delta n(\vec{r})}=0 \text { restricts the form of one-body equation. } \\
\text {... leading to derive Kohn-Sham eq. (explained later) }
\end{gathered}
$$

exact solution satisfies this.
... though we don't know what is exact $n(r)$,
Density Functional Theory only ensures ..
but we know exact $n(r)$ should satisfy what...
Existence of such a problem/potential but not how to construct it.
exchange-correlation

XC potential practical

effective one-body potential so that it can reproduce exact $n(r)$.

$$
\left[-\frac{1}{2} \nabla^{2}+V_{e f f}[n(\vec{r})]\right] \cdot \psi_{i}(\vec{r})=\varepsilon_{i} \cdot \psi_{i}(\vec{r})
$$

Density Functional Theory just ensures ... Existence of such a problem/potential but not how to construct it...

Variety of XC potentials practically used...

- Those constructed based on 'Homogeneous Electron Gas' estimations.
- Those constructed based on 'Benchmark molecules'.
- Those constructed so that required conservation rules are satisfied.

DFT framework itself rigorous, but approximations introduced
at the level when practical implementation of XC potentials made...

Random walk is capable to climb up

DFT

Outline of the talk...

- Overview of approaches for many-body Schrodinger equation

Several comparable methods including DFT.

- Molecular orbital method (traditional introduction to one-body form)

Good starting-point to understand DFT concept under the contrast...
Starting from practical usage/how to handle...

- Concept of DFT (density functional method) (mapping to one-body form)

- Idea to get Kohn-Sham equation (overview)
- Exchange-correlation functionals (eventual goal!)
\uparrow
Formulation to derive Kohn-Sham equation
Not starting from fundamentals...
... Getting audience bored by long stories without a goal in mind...
- Handling of Kohn-Sham equation

SCF procedure/Convergence/Smearing

- Notes on Kohn-Sham equation

Contrast with molecular orbitals/Quantum many-body interactions

How Kohn-Sham equation derived...

How Kohn-Sham equation derived (1)

To perform $\frac{\delta E[n(\vec{r})]}{\delta n}=0$

$$
\text { setting a form for } E_{G S}=E_{G S}[n(\vec{r})]
$$

$$
\text { as } E[n] \equiv \underbrace{\int v_{\mathrm{ext}}(\boldsymbol{r}) n(\boldsymbol{r}) d \boldsymbol{r}}_{\uparrow}+\underset{\text { internal factors of interacting particles }}{F[n]} \text {. }
$$

...separating out the interaction with external factors
[Interaction with Nuclei array (geometry)]
'Universal functional'

... taking universal form with respect to n for a kind of interaction.
(Coulomb interaction/Nucleus interaction/etc.)

How Kohn-Sham equation derived (2)

To perform $\frac{\delta E[n(\vec{r})]}{\delta n}=0$
internal factors of interacting particles
setting $\quad E[n] \equiv \int v_{\mathrm{ext}}(\boldsymbol{r}) n(\boldsymbol{r}) d \boldsymbol{r}+F[n]$.
and setting, $F[n]=T_{s}[n]+\frac{1}{2} \iint \frac{n(\boldsymbol{r}) n\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d \boldsymbol{r} d \boldsymbol{r}^{\prime}+E_{\mathrm{xc}}[n]$
Kinetic energy of reference system
namely,

$$
\begin{aligned}
T_{s}[n]= & \sum_{i} \varepsilon_{i}-\int v_{\mathrm{eff}}(\boldsymbol{r}) n(\boldsymbol{r}) \\
& \left(n(\boldsymbol{r})=\sum_{i}\left|\psi_{i}(\boldsymbol{r})\right|^{2}\right)
\end{aligned}
$$

$$
\left[-\frac{\boldsymbol{\nabla}^{2}}{2}+v_{\mathrm{eff}}(\boldsymbol{r})\right] \psi_{i}(\boldsymbol{r})=\varepsilon_{i} \psi_{i}(\boldsymbol{r})
$$

[N.B.; every formulation is motivated just on 'without losing generality'...]

How Kohn-Sham equation derived (3)

Then, $\quad E_{\mathrm{GS}}[n(\vec{r})]=T_{\mathrm{S}}+\int d \vec{r} \int d \vec{r}^{\prime} \frac{n\left(\vec{r}^{\prime}\right) n(\vec{r})}{\left|\vec{r}-\vec{r}^{\prime}\right|}+E_{\mathrm{XC}}[n(\vec{r})]+\int d \vec{r} \cdot v_{\mathrm{ext}}(\vec{r}) \cdot n(\vec{r})$

$$
T_{s}[n]=\sum_{i} \varepsilon_{i}-\int v_{\mathrm{eff}}(\boldsymbol{r}) n(\boldsymbol{r})
$$

Performing $\frac{\delta E[n(\vec{r})]}{\delta n}=0$
consequence of the variational requirement
$\left.\begin{array}{c}\text { we get a relation... } v_{\mathrm{eff}}(\vec{r})=v_{\mathrm{ext}}(\vec{r})+\int d \vec{r}^{\prime} \frac{n\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}+\frac{\delta E_{\mathrm{XC}}[n(\vec{r})]}{\delta n(\vec{r})} \\ {\left[-\frac{\nabla^{2}}{2}+v_{\mathrm{eff}}(\boldsymbol{r})\right]}\end{array}\right] \psi_{i}(\boldsymbol{r})=\varepsilon_{i} \psi_{i}(\boldsymbol{r}) \quad$.
reference system to give true density $n(\boldsymbol{r})=\sum_{i}\left|\psi_{i}(\boldsymbol{r})\right|^{2}$
[density identical to that of an interacting system]

How Kohn-Sham equation derived (4)

Kohn-Sham equation
Classical Coulomb Quantum effects (exchange \& correlation)

$$
\left[-\frac{1}{2} \nabla^{2}+v_{\mathrm{ext}}(\vec{r})+\int d \vec{r}^{\prime} \frac{n\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}+\frac{\delta E_{\mathrm{XC}}[n(\vec{r})]}{\delta n(\vec{r})}\right] \cdot \psi_{i}(\vec{r})=\varepsilon_{i} \cdot \psi_{i}(\vec{r})
$$

Exchange-correlation functional ; $V_{\mathrm{XC}}[n(\vec{r})]=\frac{\delta E_{\mathrm{XC}}[n(\vec{r})]}{\delta n(\vec{r})}$

```
reference system to give true density \(\quad n(\boldsymbol{r})=\sum_{i}\left|\psi_{i}(\boldsymbol{r})\right|^{2}\)
    [density identical to that of an interacting system]
    Ground state energy; \(E_{G S}=E_{G S}[n(\vec{r})]\)
```


Though the form is similar...

Conceptual extension of Hartree-Fock equation...

Reality : interactions should be evaluated by 'deformed wavefunction by the interaction)

$$
\begin{gathered}
{\left[-\frac{1}{2} \nabla^{2}+v_{e x t}(\vec{r})+\sum_{j \neq i} \int d \vec{r}^{\prime} \frac{\left|\psi_{j}\left(\vec{r}^{\prime}\right)\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \psi_{i}(\vec{r})-\sum_{j \neq i}\left[\sum_{j \neq i} \int d \vec{r}^{\prime} \psi_{j}^{*}\left(\vec{r}^{\prime}\right) \frac{\delta_{\sigma_{i} \sigma_{j}}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \psi_{i}\left(\vec{r}^{\prime}\right)\right] \psi_{j}(\vec{r})+\hat{V}_{C} \psi_{i}(\vec{r})=\varepsilon_{i} \cdot \psi_{i}(\vec{r})} \\
\text { (Hartree term) }
\end{gathered}
$$

Kohn-Sham equation

$$
\left[-\frac{1}{2} \nabla^{2}+v_{\mathrm{ext}}(\vec{r})+\int d \vec{r}^{\prime} \frac{n\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}+\frac{\delta E_{\mathrm{XC}}[n(\vec{r})]}{\delta n(\vec{r})}\right] \cdot \psi_{i}(\vec{r})=\varepsilon_{i} \cdot \psi_{i}(\vec{r})
$$

How Kohn-Sham equation derived (5)

$$
\text { Since, } \begin{aligned}
T_{s}[n] & =\sum_{i} \varepsilon_{i}-\int v_{\mathrm{eff}}(\boldsymbol{r}) n(\boldsymbol{r}) \\
T_{\mathrm{S}} & =\sum_{i} \varepsilon_{i}-\int d \vec{r} \cdot\left[v_{\mathrm{ext}}(\vec{r})+\int d \vec{r}^{\prime} \frac{n\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}+\frac{\delta E_{\mathrm{XC}}[n(\vec{r})]}{\delta n(\vec{r})}\right] \cdot n(\vec{r}) \\
& =\sum_{i} \varepsilon_{i}-\int d \vec{r} \cdot v_{\mathrm{ext}}(\vec{r}) \cdot n(\vec{r})-\int d \vec{r} \int d \vec{r}^{\prime} \frac{n\left(\vec{r}^{\prime}\right) n(\vec{r})}{\left|\vec{r}-\vec{r}^{\prime}\right|}-E_{\mathrm{XC}}[n(\vec{r})]
\end{aligned}
$$

Ground state energy gets, ...

$$
\begin{aligned}
E_{\mathrm{GS}}[n(\vec{r})]= & T_{\mathrm{S}}+\int d \vec{r} \int d \vec{r}^{\prime} \frac{n\left(\vec{r}^{\prime}\right) n(\vec{r})}{\left|\vec{r}-\vec{r}^{\prime}\right|}+E_{\mathrm{XC}}[n(\vec{r})]+\int d \vec{r} \cdot v_{\mathrm{ext}}(\vec{r}) \cdot n(\vec{r}) \\
= & \left(\sum_{i} \varepsilon_{i}-\int d \vec{r} \cdot v_{\mathrm{ext}}(\vec{r}) \cdot n(\vec{r})-\int d \vec{r} \int d \vec{r}^{\prime} \frac{n\left(\vec{r}^{\prime}\right) n(\vec{r})}{\left|\vec{r}-\vec{r}^{\prime}\right|}-E_{\mathrm{XC}}[n(\vec{r})]\right) \\
& \quad+\int d \vec{r} \int d \vec{r}^{\prime} \frac{n\left(\vec{r}^{\prime}\right) n(\vec{r})}{\left|\vec{r}-\vec{r}^{\prime}\right|}+E_{\mathrm{XC}}[n(\vec{r})]+\int d \vec{r} \cdot v_{\mathrm{ext}}(\vec{r}) \cdot n(\vec{r}) \\
= & \sum_{i} \varepsilon_{i} \quad \ldots \text { sum of Kohn-Sham levels... }
\end{aligned}
$$

Outline of the talk...

- Overview of approaches for many-body Schrodinger equation

Several comparable methods including DFT.

- Molecular orbital method (traditional introduction to one-body form)

Good starting-point to understand DFT concept under the contrast...
Starting from practical usage/how to handle...

- Concept of DFT (density functional method) (mapping to one-body form)

- Idea to get Kohn-Sham equation (overview)
- Exchange-correlation functionals (eventual goal!)
\uparrow
Formulation to derive Kohn-Sham equation
Not starting from fundamentals...
... Getting audience bored by long stories without a goal in mind...
- Handling of Kohn-Sham equation

SCF procedure/Convergence/Smearing

- Notes on Kohn-Sham equation

Contrast with molecular orbitals/Quantum many-body interactions

Procedure on Kohn-Sham equation

SCF procedure to solve KS equation

Kohn-Sham equation; $\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+v(\vec{r})\right\} \cdot \psi_{i}(\vec{r})=\varepsilon_{i} \cdot \psi_{i}(\vec{r})$
To setup concrete form of equation, its solution required...
$v(\vec{r})=v_{\text {ext }}(\vec{r})+e^{2} \int d^{3} r^{\prime} \cdot \frac{n^{\prime}\left(\overrightarrow{r^{\prime}}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}+V_{x c}[n(\vec{r})]$

Initial guess, $n_{0}(r)$, provided at beginning
Package provides automatically as default

$$
n_{0}(r) \text {--> } n_{1}(r) \text {--> } n_{2}(r) \text {--> } n_{3}(r) \text {--> } . .
$$

Convergence of calculation
$\delta_{k}=n_{k}(r)-n_{k-1}(r)$

Getting eventual convergence,

$$
n(\vec{r})=\sum_{j=1}^{N}\left|\psi_{j}(\vec{r})\right|^{2} \quad E_{G S}^{\prime}=\sum_{j=1}^{N} \varepsilon_{j}
$$

Tough convergence and resume

Repeated cycles taking over the densities

$$
\begin{aligned}
& \text { 'From scratch' } \\
& \begin{array}{l}
\text { 'resume' } \\
n_{0}(r) \rightarrow N_{\text {iteration }}=500
\end{array} \rightarrow n_{500}(r) \rightarrow N_{\text {iteration }=500} \rightarrow n_{2 * 500}(r) \rightarrow N_{\text {iteration }}=500 \rightarrow n_{3 * 500}(r) \\
& n_{0}(r) \rightarrow N_{\text {iteration }}=500 \rightarrow n_{0}(r) \rightarrow N_{\text {iteration }}=500 \rightarrow n_{0}(r) \rightarrow N_{\text {iteration }}=500 \rightarrow
\end{aligned}
$$

How to improve the convergence??
Silly mistake found frequently for beginners...

- Modifying initial guess (closer to final solution)
effectively works [as expert's skill!]
- Smearing technique (explained later...)

Further notes for Kohn-Sham equation

Though the form is similar．

$\left[-\frac{1}{2} \sum_{j} \nabla_{j}^{2}+V\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)\right] \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=E \cdot \Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right) \quad ;$ many－body Schrodinger equation

$$
\Psi\left(\vec{r}_{1}, \cdots, \vec{r}_{N}\right)=\left|\begin{array}{ccccc}
\psi_{1}\left(\vec{r}_{1}\right) & \psi_{1}\left(\vec{r}_{2}\right) & \cdots & \psi_{1}\left(\vec{r}_{N}\right) \\
\psi_{2}\left(\vec{r}_{1}\right) & \ddots & & & \\
\vdots & & & \\
\psi_{N}\left(\vec{r}_{1}\right) & & & \psi_{N}\left(\vec{r}_{N}\right)
\end{array}\right| \quad \begin{aligned}
& \text { 'many-body' decomposed into 'product of one=body' } \\
& \\
& \text { (Hartree term) }
\end{aligned}
$$

バンド構造

$$
\rightarrow\left[-\frac{1}{2} \nabla^{2}+v_{e x t}(\vec{r})+\sum_{j \neq i} \int d \vec{r}^{\prime} \cdot \frac{\left|\psi_{j}\left(\vec{r}^{\prime}\right)\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \cdot \psi_{i}(\vec{r})-\sum_{j \neq i}\left[\int d \vec{r}^{\prime} \cdot \psi_{j}^{*}\left(\vec{r}^{\prime}\right) \frac{\delta_{\sigma_{i} \sigma_{j}}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \psi_{i}\left(\vec{r}^{\prime}\right)\right] \cdot \psi_{j}(\vec{r})=\varepsilon_{i} \cdot \psi_{i}(\vec{r})
$$

アドバンスソフトのweb真から転記
［Hartree－Fock orbital］

Quantum many-body interaction

$$
\begin{aligned}
& \text { Classical Coulomb } \\
& \text { (Hartree term) } \\
& {\left[\begin{array}{c}
\text { (Hartree term) } \\
{\left[-\frac{1}{2} \nabla^{2}+v_{e x t}(\vec{r})+\sum_{j \neq i} d \vec{r}^{\prime} \frac{\left|\psi_{j}\left(\vec{r}^{\prime}\right)\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \psi_{i}(\vec{r})-\sum_{j \neq i}\left[\sum_{j \neq i} \int d \vec{r}^{\prime} \psi_{j}^{*}\left(\vec{r}^{\prime}\right) \frac{\delta_{\sigma, \sigma_{j}}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \psi_{i}\left(\vec{r}^{\prime}\right)\right] \psi_{j}(\vec{r})+\hat{V}_{C} \psi_{i}(\vec{r})=\varepsilon_{i} \psi_{i}(\vec{r})}
\end{array}\right.} \\
& =\left[-\frac{1}{2} \nabla^{2}+v_{e x t}(\vec{r})+\sum_{j \neq i} \int d \vec{r}^{\prime} \frac{\left|\psi_{j}\left(\vec{r}^{\prime}\right)\right|^{2}}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right] \psi_{i}(\vec{r})+\hat{V}_{X} \psi_{i}(\vec{r})+\hat{V}_{c} \psi_{i}(\vec{r}) \\
& =\left[-\frac{1}{2} \nabla^{2}+V_{\text {classical }}(\vec{r})\right] \begin{array}{l}
\Psi_{i}(\vec{r})+\left(\hat{V}_{X}+\hat{V}_{C}\right) \psi_{i}(\vec{r}) \\
\text { (exchange-correlation) }
\end{array}
\end{aligned}
$$

[Quantum many-body interaction] = [Classical meanfield] + [Quantum statistical] + [Electronic correlation]

$$
\begin{aligned}
& =[\text { Classical meanfield }]+\quad \text { [Exchange } \& \text { Correlation }] \\
& =[\text { Classical meanfield }]+\text { [Quantum statistical] }]+ \text { [Electronic correlation] } \\
& =\quad \text { [quantum meanfield] }
\end{aligned}
$$

Outline of the talk...

- Overview of approaches for many-body Schrodinger equation

Several comparable methods including DFT.

- Molecular orbital method (traditional introduction to one-body form)

Good starting-point to understand DFT concept under the contrast...
Starting from practical usage/how to handle...

- Concept of DFT (density functional method) (mapping to one-body form)

- Idea to get Kohn-Sham equation (overview)
- Exchange-correlation functionals (eventual goal!)
\uparrow
Formulation to derive Kohn-Sham equation
Not starting from fundamentals...
... Getting audience bored by long stories without a goal in mind...
- Handling of Kohn-Sham equation

SCF procedure/Convergence/Smearing

- Notes on Kohn-Sham equation

Contrast with molecular orbitals/Quantum many-body interactions

Metals and smearing techniques

Ryo Maezono

rmaezono@mac.com

School of Information Science,
Japan Advanced Institute of Science and Technolegy, (JAIST),
Nomi, Ishikawa, Japan.

Which is difficult, metal or insulator??

Complex shape of Fermi surface...

Numerical integral by mesh... gets difficult... [Reciprocal space picture]

```
"Computational-costly"
```


More fundamental viewpoint...

- Huge degeneracy on the choice of Slater det.
[c.f, 'Huge electronic correlation' /Geometrical correlation/Static correlation]
... Convergence gets difficult... (explained later...)
"Sloshing" and "Smearing technique"... (explained later...)
- Difference in coherent length.... [Real space picture]
"Twisting average" (explained later...)

Multi-determinant nature of metal...

More fundamental viewpoint...

- Huge degeneracy on the choice of Slater det.
[c.f, 'Huge electronic correlation' /Geometrical correlation/Static correlation]

Smearing

Simulation with Integer number of electrons... (e.g., 8)

$\left|{ }^{* *-* * *}\right| \ldots \varphi_{3}$ vacant, φ_{5} occupied
Describing the reality requires multi-determinants..

$$
D_{\text {true }}=\left.c_{1}\right|^{* * * *} \mathrm{OO}\left|+c_{2}\right|^{* * *} \mathrm{O} \mathrm{O} \mid+\ldots
$$

Viscosity to suppress the amplitude...

Then 'sloshing' occurs...

Metal

$$
\left|* * _* * *\right| \ldots \varphi_{3} \text { vacant, } \varphi_{5} \text { occupied } \quad|* * * *-*| \ldots \varphi_{3} \text { occupied, } \varphi_{5} \text { vacant }
$$

$$
D_{\text {true }}=c_{1}|* * * * \mathrm{oO}|+c_{2}\left|* * *_{\mathrm{O}}{ }^{*} \mathrm{O}\right|+\ldots
$$

In self-consistent loop...
To setup concrete form of equation, its solution required.

Iteration to converge

$n_{0}(r)$--> $n_{1}(r)-->n_{2}(r)$--> $n_{3}(r)$--> \ldots

1) $n_{0}(r)$ composed using $\ldots D_{5}=\left.\right|^{* * * *} 00 \mid$ i.e., ' φ_{3} less stable than φ_{5} ' assumed...
2) Then, ' φ_{3} more stable than φ_{5} ' predicted...
3) Then, $n_{1}(r)$ should be composed using $\ldots D_{3}=\|^{* * *}{ }^{*}{ }_{0} \mid$ i.e., ' φ_{3} more stable than φ_{5} ' assumed...
4) Then, ' φ_{3} less stable than φ_{5} ' predicted...
5) Then, $n_{2}(r)$ should be composed using $\ldots D_{5}=\left|* * *{ }_{00}\right|$
i.e., ' φ_{3} less stable than φ_{5} ' assumed...

Initial guess, $n_{0}(r)$, provided at beginning

From Wikipedia

'Smearing' for improving convergence

Drastic change of occupations leads to oscillation behavior...

[c.f, Another remedy ; Mixing adjustment in SCF] Too sensitive update in SCF leading to sloshing.

$$
n_{\text {next }}[k]=(1-x) * n[k]+x^{*} n[k-1]
$$

...moderate update of charge density so that no drastic sloshing occurs...

'Smearing' scheme

Schemes to generate fractional-wise occupations...

Viscosity against relaxation to true ground state configuration...

Beyond the naive Fermi-dist. function,
several schemes are developed...

Fermi-distribution function
to further improve the convergence.

- 'Gaussian',
- 'Methfessel-Paxton(MP)',

'Smearing' scheme

https://docs.quantumatk.com/manual/technicalnotes/occupation_methods/occupation_methods.htm/

Twisted boundary condition

Real space image of metal/insulator...

Boundary ... artificially introduced for computational convenience..

$$
\begin{aligned}
n(r+L a) & =n(r) \quad \text { i.e., }|\psi(r+L a)|=|\psi(r)| \\
& \psi(r+L a)=\exp \left[i \phi_{s}\right] \cdot \psi(r)
\end{aligned}
$$

Note, $\phi_{s}=0$ (Born-von Karman boundary condition) is just one of the choice for convenience...
$\phi_{s} \neq 0$ (Twisting boundary condition) is also possible for your calculation.

Easily understood that..

(Born-von Karman boundary condition)... Non-shifted mesh calculation
(Twisting boundary condition)... Shifted mesh calculation

$$
k(L \times a)=\phi_{s}+2 \pi N \longrightarrow \quad k=\frac{\phi_{s}}{L a}+\frac{2 \pi}{L a} \cdot N
$$

Twisted averaging scheme

You can perform the simulation with twisted boundary condition using shifted mesh calculation

Practically, you'll observe ...
Results depending on the choice of $\phi_{S} \quad$ This is an artifact!
It's meaning ...
Your simulation happens to feel the artificial wall at boundary...
(Such wall is completely artificial thing, isn't it?)

Long-conveying coherency

Boundary ... artificially introduced for computational convenience..

Thank you

